

NUMBER THEORY SESSION

IMPROVEMENTS TO WARNING'S THEOREM

DAVID LEEP* (DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY, USA)

Wednesday, February 07, 2024. 16h40 - 17h20

Online

Abstract.

Let \mathbb{F}_q be the finite field with q elements, where q is a power of the characteristic p, and let $f = \{f_1, \dots, f_r\}$ be a set of polynomials in $\mathbb{F}_q[x_1, \dots, x_n]$ of degrees d_1, \dots, d_r , respectively. Let $N(f, \mathbb{F}_q)$ denote the number of common zeros of f_1, \dots, f_r defined over \mathbb{F}_q .

The theorems due to Chevalley and Warning state that if $N(f, \mathbb{F}_q) > 0$ and if $n > d_1 + \cdots + d_r$, then $N(f, \mathbb{F}_q)$ is divisible by p and $N(f, \mathbb{F}_q) \ge q^{n-(d_1+\cdots+d_r)}$.

There are examples where $N(f, \mathbb{F}_q) = q^n - (d_1 + \cdots + d_r)$ under the stated hypotheses, showing that this bound is best possible.

Heath-Brown proved that if $N(f, \mathbb{F}_q) = q^n - (d_1 + \cdots + d_r)$, then the set of common zeros of f over \mathbb{F}_q form an affine linear space (a subspace or a translate of a subspace).

Heath-Brown studied systems f where the set of common zeros of f over \mathbb{F}_q does not form an affine linear space. In these cases, then subject to the above hypotheses, he showed that $N(f, \mathbb{F}_q) > q^n - (d_1 + \cdots + d_r)$ and he gave some lower bound estimates for $N(f, \mathbb{F}_q)$, which improve the classical estimate of $q^n - (d_1 + \cdots + d_r)$. In this talk I will present theorems that improve the estimates of Heath-Brown.

JOINT WORK WITH RACHEL PETRIK.

Keywords: Homogeneous Forms, Finite Fields, Number of Zeros.

*Email: LEEP@UKY.EDU