

NUMBER THEORY SESSION

PAIRS OF QUADRATIC FORMS OVER P-ADIC FIELDS.

DAVID LEEP* (DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY, USA)

> Thursday, February 08, 2024. 16h40 - 17h20

> > Online

Abstract.

Let K be a p-adic field and let $Q_1, Q_2 \in K[x_1, \dots, x_n]$ be quadratic forms in n variables with coefficients in K.

Heath-Brown proved that if n = 8, Q_1 , Q_2 have a nontrivial common zero defined over K, and the variety defined by $\{Q_1, Q_2\}$ is nonsingular, then there exist $a, b \in K$, not both zero, such that $aQ_1 + bQ_2$ splits off at least 3 hyperbolic planes.

This rather technical theorem, whose proof is very long, was an important ingredient to Heath-Brown's proof that nonsingular pairs of quadratic forms in 8 variables defined over a number field satisfy the Hasse Principle. More concretely: Suppose that $\{Q_1, Q_2\}$ is a pair of quadratic forms in 8 variables defined over a number field F and assume that the variety defined by $\{Q_1, Q_2\}$ is nonsingular. If Q_1, Q_2 have a nontrivial zero defined over each nonarchimedean completion of F and also over each real completion of F (if any), then Q_1, Q_2 have a nontrivial zero defined over F.

^{*}Email: LEEP@UKY.EDU

Heath-Brown's theorem on pairs of quadratic forms over p-adic fields raised many questions in my mind, including why his proof was so difficult. Also, it seemed that this result for n = 8 should be part of a bigger theorem for general values of n.

This talk will explore the situation for general values of n.

JOINT WORK WITH JOHN HALL.

Keywords: Pairs of Quadratic Forms, p-adic fields.