

Number Theory Session

PAIRS OF QUADRATIC FORMS OVER P-ADIC FIELDS.

DAVID LEEP*
(DEPARTMENT OF MATHEMATICS UNIVERSITY OF KENTUCKY LEXINGTON, KENTUCKY, USA)

Thursday, February 08, 2024.
16h40-17h20
Online

Abstract

.

Let K be a p-adic field and let $\mathcal{Q}_{1}, \mathcal{Q}_{2} \in K\left[x_{1}, \cdots, x_{n}\right]$ be quadratic forms in n variables with coefficients in K.

Heath-Brown proved that if $n=8, \mathcal{Q}_{1}, \mathcal{Q}_{2}$ have a nontrivial common zero defined over K, and the variety defined by $\left\{\mathcal{Q}_{1}, \mathcal{Q}_{2}\right\}$ is nonsingular, then there exist $a, b \in K$, not both zero, such that $a \mathcal{Q}_{1}+b \mathcal{Q}_{2}$ splits off at least 3 hyperbolic planes.

This rather technical theorem, whose proof is very long, was an important ingredient to Heath-Brown's proof that nonsingular pairs of quadratic forms in 8 variables defined over a number field satisfy the Hasse Principle. More concretely: Suppose that $\left\{\mathcal{Q}_{1}, \mathcal{Q}_{2}\right\}$ is a pair of quadratic forms in 8 variables defined over a number field F and assume that the variety defined by $\left\{\mathcal{Q}_{1}, \mathcal{Q}_{2}\right\}$ is nonsingular. If $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ have a nontrivial zero defined over each nonarchimedean completion of F and also over each real completion of F (if any), then $\mathcal{Q}_{1}, \mathcal{Q}_{2}$ have a nontrivial zero defined over F.

[^0]Heath-Brown's theorem on pairs of quadratic forms over p-adic fields raised many questions in my mind, including why his proof was so difficult. Also, it seemed that this result for $n=8$ should be part of a bigger theorem for general values of n.

This talk will explore the situation for general values of n.
JOINT WORK WITH JOHN HALL.
Keywords: Pairs of Quadratic Forms, p-adic fields.

[^0]: *Email: LEEP@UKY.EDU

