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Abstract This work discusses a formalization in Isabelle/HOL of the compactness
theorem for propositional logic. The formalization is based on the model existence
theorem approach. Further, the paper presents applications of this theorem to formalize
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theorem for countable graphs, König Lemma, and set- and graph-theoretical versions
of Hall’s Theorem for countable families of sets and graphs.
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1 Introduction

The propositional compactness theorem is of principal importance for any meta-logical
development because of the myriad of applications in logic and combinatorics. Typi-
cally, this theorem is presented as a simple consequence of the completeness theorem.
However, constructive proofs based on Henkin’s-style model existence theorem provide
the mathematical machinery to design proofs of combinatorial properties in areas such
as set theory and graph theory through the construction of logical interpretations and
models.
This paper discusses a formalization in Isabelle/HOL of the compactness theorem for
propositional logic according to Smullyan’s approach given in the third chapter of his
influential textbook on mathematical logic [48], and based on Henkin’s model existence
theorem. The formalization follows the impeccable presentation in Fitting’s textbook
[12]. In addition, we present three applications of this formalization of the compact-
ness theorem, detailing how models and interpretations are built for proving landmark
theorems such as the de Bruijn-Erdös k-colouring theorem, and Hall’s theorem, both
them for the countable infinite case and König’s lemma.
The proofs described in this paper add to the meta-logic available in Isabelle/HOL, a
proof of the compactness theorem for propositional logic for the countable case. The
formalization is adapted from Serrano’s thesis [41]. The formalization of Hall’s theorem
for countable sets is only briefly discussed since it was reported in detail in [42]. Also, a
graph-theoretical version of Hall’s theorem for countable graphs was presented in [43].
The formalizations of the de Bruijn-Erdös k-coloring theorem for countable graphs
and of König Lemma by the model construction technique and application of the
compactness theorem are unpublished.

1.1 Organization

Initially, Section 2 discusses the formalization of the compactness theorem; afterward,
Section 3 details the three applications mentioned above; finally, after a brief discussion
on related work in Section 4, Section 5 concludes. The paper includes links to all
discussed crucial points of the development Compactness Theory .

2 Compactness Theorem

For the preamble of this section, we present a selection of comments extracted from
the excellent discussion on the compactness theorem by Paseau and Leek [33] and on
Gödel’s mathematical work in [11].

2.1 Proofs of the Compactness Theorem

The compactness theorem is a fundamental property for the model theory of (classical)
propositional and first-order logic. Besides algebra and combinatorics, the compactness
theorem also has implications in topology and foundations of mathematics. In general,
it implies that any compact logic extending first-order logic cannot express the notions

https://github.com/mayalarincon/CompactnessJAR/blob/main/
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of finitude or infinitude (of a model). Also, it implies that any first-order theory of
arithmetic satisfied by the standard model has a non-standard model. It also can be
used to prove the Order-Extension Principle: any partial order may be extended to a
linear order.
Also, according to Paseau and Leek [33], the first proof of a compactness theorem
for countable versions of propositional and first-order logic was published by Gödel:
(Satz X in [19]), who also proved the general version for arbitrary languages applying
transfinite recursion in [20]. Mal’cev [31] also proved the compactness theorem for
propositional logic, again using the full strength of the Axiom of Choice. His proof
relies on transfinite induction.
The first explicit, published proofs of a compactness theorem from completeness, which
is the one presented in several contemporary textbooks in logic, were given indepen-
dently by Henkin and Robinson for the first-order functional calculus [25] and [37], and
for the simple theory of types [26]. Indeed, Paseau and Leek [33] adequately remark
that “proofs of compactness via completeness are not satisfactory because they are
based on properties incidental to the semantic property of interest. Such proofs con-
clude compactness, a semantic property, from a property of the logic relating its syntax
to its semantics.” The authors also cited Keisler’s connections between ultraproducts
technique and compactness and essential and unessential applications of such method.
In particular, Keisler’s viewpoint about such proofs of compactness [29]: “Unlike the
completeness theorem, the compactness theorem does not involve the notion of a for-
mal deduction, and so it is desirable to prove it directly without using that notion.”
They finish with the following commentary: “From the perspective of a model theorist
who sees talk of syntax as a heuristic for the study of certain relations between struc-
tures that happen to have syntactic correlates, proving compactness via completeness
is tantamount to heresy ([34], page 53).”
Our formalization uses Smullyan’s approach in Fitting’s textbook [12], which is a direct
proof of the Compactness Theorem for propositional logic without using the Complete-
ness Theorem.

2.2 Formalization of the Compactness Theorem

The formalization was first given in [41] and follows Smullyan’s proof as presented in
Fitting’s famous textbook [12]. König’s Lemma can be used to prove the compactness
theorem for propositional logic in the countable case. Consider a set of formulas S. It
is enough to order the countable set of sentences in S, say as F1, F2, . . ., and to build
a countable tree with successful evaluations of the propositional letters validating the
subsets of formulas {F1}, {F1, F2}, and so on. The infinite branch gives an interpre-
tation of S. There are other proofs of this theorem also given as part of a collection
of classical propositional formalizations aiming at applications and teaching logic. For
instance, Michaelis and Nipkow developed a formalization, part of IsaFOL, based on an
enumeration of all formulas and saturation accordingly to Enderton’s textbook proof
([10]) [32]. The formalization in this paper is based on the so-called “model existence
theorem”. It shows first Hintikka’s Lemma: Hintikka sets of propositional formulas are
satisfiable. Such a set is defined as a set of propositional formulas that does neither
include both A and ¬A for a propositional letter nor ⊥, or ¬⊤. Additionally, if it in-
cludes ¬¬F , F is included; if it includes a conjunctive formula, which is an α formula,

https://github.com/IsaFoL/IsaFoL
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then the two components of the conjunction are included; and finally, if it includes a
disjunction, which is a β formula, at least one of the components of the disjunction is
included (specified as hintikkaP ).
The satisfiability of any Hintikka set is proved by assuming a valuation that maps
all propositional letters in the set to true and all other propositional letters to false
(map IH  in the specification). The second step consists in proving that families
of sets of propositional formulas, which hold the so-called “propositional consistency
property” (definition consistenceP ), consist of satisfiable sets. The last is indeed the
model existence theorem (Theo_ExistenceModels ). The model existence theorem
compiles the essence of completeness: a family of sets of propositional formulas that
holds the propositional consistency property can be extended, preserving this property
to a set collection that is closed for subsets and satisfies the finite character property.
The finite character property states that a set belongs to the family if and only if each
of its finite subsets belongs to the family. With the model existence theorem in hands,
the compactness theorem (Compacteness_Theorem ) is obtained easily: given a set
of propositional formulas S such that all its finite subsets are satisfiable, one considers
the family C of subsets in S such that all their finite subsets are satisfiable. S belongs
to the family C and the latter holds the propositional consistence property.
The main theorems are given below.

Theorem 1 (Model Existence (Theorem 3.6.2 in [12])) If C is a propositional
consistency property, and S ∈ C, then S is satisfiable.

Theorem 2 (Compactness Theorem (Theorem 3.6.3 in [12])) Let S be a set
of propositional formulas. If every finite subset of S is satisfiable, so is S.

We present the most important definitions and proofs used in the formalization.
The language of propositional formulas is specified through the following datatype.

Datatype ′b formula  =
⊥
| ⊤
| atom ′b
| negation ′b formula (¬.(-) [110 ] 110 )
| conjuntion ′b formula ′b formula (infixl ∧. 109 )
| disjunction ′b formula ′b formula (infixl ∨. 108 )
| implication ′b formula ′b formula (infixl →. 100 )

To evaluate the truth-value of propositional formulas over an interpretation we specify
the operator t-v-evaluation.

Primrec t-v-evaluation  :: ( ′b ⇒ truth-value) ⇒ ′b formula ⇒ truth-value
where

t-v-evaluation I ⊥ = Ffalse
| t-v-evaluation I ⊤ = Ttrue
| t-v-evaluation I (Atom P) = I P
| t-v-evaluation I (¬. F ) = (v-negation (t-v-evaluation I F ))
| t-v-evaluation I (F ∧. G) = (v-conjunction (t-v-evaluation I F ) (t-v-evaluation I G))
| t-v-evaluation I (F ∨. G) = (v-disjunction (t-v-evaluation I F ) (t-v-evaluation I G))
| t-v-evaluation I (F →. G) = (v-implication (t-v-evaluation I F ) (t-v-evaluation I G))

The operator t-v-evaluation uses the definitions below.

https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L16-L23
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L26-L27
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T5Closedness.thy#L17-L23
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/ModelExistence.thy#L107-L123
https://github.com/mayalarincon/CompactnessJAR/blob/main/Compactness.thy#L359-L372
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L60-L67
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L157-L165
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Definition v-negation  :: truth-value ⇒ truth-value where
v-negation x ≡ (if x = Ttrue then Ffalse else Ttrue)

Definition v-conjunction  :: truth-value ⇒ truth-value ⇒ truth-value where
v-conjunction x y ≡ (if x = Ffalse then Ffalse else y)

Definition v-disjunction  :: truth-value ⇒ truth-value ⇒ truth-value where
v-disjunction x y ≡ (if x = Ttrue then Ttrue else y)

Definition v-implication  :: truth-value ⇒ truth-value ⇒ truth-value where
v-implication x y ≡ (if x = Ffalse then Ttrue else y)

The notion of satisfiability is specified through the existence of models.

Definition model  :: ( ′b ⇒ truth-value) ⇒ ′b formula set ⇒ bool (- model - [80 ,80 ]
80 )
where I model S ≡ (∀F ∈ S . t-v-evaluation I F = Ttrue)

Definition satisfiable  :: ′b formula set ⇒ bool where satisfiable S ≡ (∃ v . v model S)

The notion of compactness is specified using the Isabelle specification for finite sets
and a specification for countable sets.
The next lemma, from Isabelle, formalized the fact that a finite set A is finite if and only
if there exists a surjective function f from In onto A, where In = {m ∈ N | m < n},
for some n ∈ N.

Lemma finite A ←→ (∃n f . A = f ‘ {i ::nat . i < n})

We specify countable sets using the notion of enumeration, i.e., the existence of a
surjective function with domain N, given below.

Definition enumeration  :: (nat ⇒ ′b) ⇒ bool where enumeration f = (∀ y.∃n. y = (f n))

Hintikka’s lemma is formalized as the following corollary.

Corollary Hintikka-satisfiable :

assumes hintikkaP H
shows satisfiable H

The formalization of Hintikka’s lemma is by induction on the structure of the formulas
in a Hintikka set H by applying the technical theorem hintikkaP_model_aux . This
theorem applies a series of lemmas to address the evaluation of all possible cases of
formulas in H. Indeed, considering the Boolean evaluation IH that maps all proposi-
tional letters in H to true and all other letters to false, the most interesting cases of
the inductive proof are those related to implicational formulas in H and the negation
of arbitrary formulas in H. These cases are not straightforward since implicational and
negation formulas are not considered in the definition of Hintikka sets. For an impli-
cational formula, say F1 −→ F2, it is necessary to prove that if it belongs to H, its
evaluation by IH is true. Also, whenever ¬(F1 −→ F2) belongs to H its evaluation
is false. The proof is obtained by relating such formulas, respectively, with β and α

formulas (case P6 ). The second interesting case is the one related to arbitrary nega-
tions. In this case, it is proved that if ¬F belongs to H, its evaluation by IH is true,
and in the case that ¬¬F belongs to H, its evaluation by IH is also true (Case P7)
.

https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L143-L144
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L146-L147
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L149-L150
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L152-L153
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L331-L332
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T1SyntaxAndSemantics.thy#L341-L342
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T7MaximalSet.thy#L169-L170
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L421-L425
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L359-L399
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L255-L318
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L321-L356
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T8HintikkaTheory.thy#L321-L356
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As previously mentioned, both these theorems require the definition of propositional
consistency. Let C be a collection of sets of propositional formulas. We call C a propo-
sitional consistency property if it meets the conditions for each S ∈ C, given in the
definition consistenceP, as specified below. In this definition, FormulaAlpha and For-
mulaBeta correspond respectively to conjunctive (α) and disjunctive (β) propositional
formulas as defined in [12].

Definition consistenceP  :: ′b formula set set ⇒ bool where
consistenceP C =

(∀S . S ∈ C −→ (∀P . ¬ (atom P ∈ S ∧ (¬.atom P ) ∈ S)) ∧
⊥ /∈ S ∧ (¬.⊤) /∈ S ∧
(∀F . (¬.¬.F ) ∈ S −→ S ∪ {F} ∈ C) ∧
(∀F . ((FormulaAlpha F ) ∧ F∈S) −→ ( S ∪ {Comp1 F , Comp2 F}) ∈ C) ∧
(∀F . ((FormulaBeta F ) ∧ F∈S) −→ ( S ∪ {Comp1 F} ∈ C) ∨
( S ∪ {Comp2 F} ∈ C)))

The specifications of the model existence and the compactness theorems are given
below.

Theorem TheoremExistenceModels :
assumes h1 : ∃ g. enumeration (g:: nat ⇒ ′b formula)
and h2 : consistenceP C
and h3 : (S :: ′b formula set) ∈ C
shows satisfiable S

The formalization of the existence model theorem requires a series of properties. In the
theory T5Closedness , closedness properties of the propositional consistency property
are proved. Such properties leave to conclude that if C holds the property, then (C+),
which is the closure o C under subsets, does too (Closed_ConsistenceP ).
The finite character property previously mentioned is specified below.

Definition finite-character  :: ′a set set ⇒ bool where
finite-character C = (∀S . S ∈ C = (∀S ′. finite S ′ −→ S ′ ⊆ S −→ S ′ ∈ C))

In order to formalize the finite character property for subset closed families of sets of
propositional formulas that satisfy the propositional consistency property, it is neces-
sary to show a series of properties for extensions of the families of sets. It is proved that
a finite character property of families of sets of propositional formulas implies subset
closedness (finite_character_closed ).
Finally, the theorem that states that subset closed propositional consistency properties
can be extended to satisfy the finite character property is specified below.

Theorem cfinite-consistenceP :
assumes hip1 : consistenceP C and hip2 : subset-closed C
shows consistenceP (C)

The proof is by induction on the structure of propositional formulas based on the
analysis of cases for the possible different types of formula in the sets of the collection
of sets that hold the propositional consistency property (lemmas cond_characterP1
to cond_characterP5  in the theory T6Finiteness).
An interesting corollary of the model existence theorem is that each subset of a set of
formulas C that satisfies the propositional consistency property, which is built over a
countable set of propositional letters, is satisfiable. This corollary requires proving that

https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T5Closedness.thy#L17-L23
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/ModelExistence.thy#L107-L123
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T5Closedness.thy#L11-L179
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T5Closedness.thy#L155-L176
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T6Finiteness.thy#L17-L18
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T6Finiteness.thy#L21-L40
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T6Finiteness.thy#L314-L333
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T6Finiteness.thy#L87-L111
https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T6Finiteness.thy#L247-L309
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the set of formulas built over a countable set of propositional letters is countable. The
last result is formalized in the theory FormulaEnumeration .
The following auxiliary lemma, ConsistenceCompactness, is required to apply Theore-
mExistenceModels to obtain the compactness theorem. This lemma states the general
fact that the collection C of all sets of propositional formulas such that all their subsets
are satisfiable is a propositional consistency property ConsistenceP. The collection of
such sets is defined below.

C = {W | ∀A (A ⊆ W ∧A finite → A satisfiable)}

Lemma ConsistenceCompactness :
shows consistenceP{W :: ′b formula set . ∀A. (A⊆ W ∧ finite A) −→ satisfiable A}

With this lemma in hand, since any countable set of formulas that belongs to C is
satisfiable as a consequence of the theorem of the existence of models, one obtains the
formalization of the Compactness Theorem. Indeed, given a set S of formulas, all whose
finite subsets of formulas are satisfiable, it is only necessary to prove it belongs to C.

Theorem Compactness-Theorem :
assumes ∃ g. enumeration (g:: nat ⇒ ′b formula)
and ∀A. (A ⊆ (S :: ′b formula set) ∧ finite A) −→ satisfiable A
shows satisfiable S

So, the key technical part of the formalization of the Compactness Theorem from
the theorem of existence of models is the above lemma ConsistenceCompactness. This
lemma is formalized unfolding the definition consistenceP through a series of auxiliary
lemmas consistenceP_Prop1 to consistenceP_Prop6 for each of the conditions of the
definition. For instance, the auxiliary lemma consistenceP_Prop5  states the required
satisfiability property for the case of formulas α:

∀F.(F ∈ W ∧ FormulaAlpha F )
∀A.(A ⊆ W ∧A finite) −→ A satisfiable

−→
∀A.(A ⊆ W{Comp1 F,Comp2 F} ∧A finite) −→ A satisfiable

This lemma is formalized by applying another auxiliary lemma (such as for the case of
the property of formulas β in the definition of consistenceP) satisfiableUnion2  that
states the more simple property below.

FormulaAlfa F ∧ satisfiable (A ∪ {F}) −→
satisfiable (A ∪ {Comp1 F, Comp2 F})

Another application of the model existence theorem for propositional logic, formalized
in Serrano’s Thesis ([41]), is Craig’s interpolation theorem. In addition, and always
following Fitting’s textbook elegant presentation ([12]), the Thesis includes formal-
izations of a variety of results for first-order logic as the model existence theorem,
the Löwenheim-Skolem theorem, obtained as an application of such theorem, and the
completeness of natural deduction.

https://github.com/mayalarincon/CompactnessJAR/blob/main/ModelExistence/T11FormulaEnumeration.thy#L1-L129
https://github.com/mayalarincon/CompactnessJAR/blob/main/Compactness.thy#L302-L352
https://github.com/mayalarincon/CompactnessJAR/blob/main/Compactness.thy#L359-L372
https://github.com/mayalarincon/CompactnessJAR/blob/main/Compactness.thy#L187-L212
https://github.com/mayalarincon/CompactnessJAR/blob/main/Compactness.thy#L167-L185
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3 Applications of the Compactness Theorem

This section discusses the formalization of three important applications of the Com-
pactness Theorem; namely, the de Bruijn-Erdös k-coloring theorem, König Lemma,
and Hall’s theorem.

3.1 De Bruijn-Erdös Graph Couloring Theorem

The theory k_coloring  formalizes the de Bruijn-Erdös k-coloring theorem for count-
able graphs. The proof follows as a consequence of the compactness theorem for propo-
sitional logic. We start with the definition of digraphs.

Definition 1 (Digraph) A digraph G = (V,E) is a sorted pair, where V is a set of
vertices and E ⊆ V × V is a binary irreflexive relation called edges.
A pair of vertices u, v ∈ V are called to be adjacent if (u, v) ∈ E or (v, u) ∈ E

The essential components of a digraph are specified below.

synonym ′v digraph  = ( ′v set) × (( ′v × ′v) set)

abbreviation vert  :: ′v digraph ⇒ ′v set (V [-] [80 ] 80 ) where
V [G] ≡ fst G

abbreviation edge  :: ′v digraph ⇒ ( ′v × ′v) set (E [-] [80 ] 80 ) where
E [G] ≡ snd G

definition is-graph  :: ′v digraph ⇒ bool where
is-graph G ≡ ∀ u v . (u,v) ∈ E [G] −→ u ∈ V [G] ∧ v ∈ V [G] ∧ u ̸= v

Notice how the irreflexibility of the edge relation is obtained from the definition above,
excluding self-loops.

Definition 2 (Induced digraph) Let G = (V,E) be a digraph, and S ⊆ V . The
digraph GS = (S,E ∩ (S × S)) is the subgraph of G induced by S.

The above definition of the subgraph induced by a subset of vertices is specified below,
followed by a lemma on its well-definedness.

definition is-induced-subgraph  :: ′v digraph ⇒ ′v digraph ⇒ bool where
is-induced-subgraph H G ≡
(V [H ] ⊆ V [G]) ∧ E [H ] = E [G] ∩ ((V [H ]) × (V [H ]))

lemma
assumes is-graph G and is-induced-subgraph H G
shows is-graph H

A digraph is k-colorable, for k ∈ N, if its vertices can be mapped to the set {1, . . . , k}
avoiding mapping adjunct vertices to the same natural.

Definition 3 (k-Coloring) Let k be a positive integer. A k-coloring of a digraph
G = (V,E) is a function c : V → [k] = {1, . . . , k} such that c(u) ̸= c(v) for all
(u, v) ∈ E.
A graph G is said to be k-colorable if there is a k-coloring of G.

https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L9-L881
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L32-L32
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L34-L35
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L37-L38
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L40-L41
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L50-L52
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The above definition is specified in Isabell/HOL below.

definition coloring  :: ( ′v ⇒ nat) ⇒ nat ⇒ ′v digraph ⇒ bool where
coloring c k G ≡
(∀ u. u∈V [G]−→ c(u)≤k) ∧ (∀ u v .(u,v)∈E [G] −→ c(u) ̸=c(v))

definition colorable  :: ′v digraph ⇒ nat ⇒ bool where
colorable G k ≡ ∃ c. coloring c k G

3.1.1 Informal proof of the de Bruijn-Erdös Theorem

The de Bruijn-Erdös theorem is stated below. The “pen-and-paper” proof applies the
compactness theorem.

Theorem 3 (de Bruijn-Erdös) Let G = (V,E) be a countable graph and k be a
positive integer. If for all finite S ⊆ V , GS is k-colorable, then G is k-colorable.

Proof Let us fix a set of propositional symbols,

P = {Cu,i | u ∈ V, 1 ≤ i ≤ k}

where Cu,i is interpreted as “the vertex u has color i”. We define three propositional
formula sets:

1. F = {Cu,1 ∨ Cu,2 ∨ · · · ∨ Cu,k | u ∈ V };
2. G = {¬(Cu,i ∧ Cu,j) | u ∈ V, 1 ≤ i, j ≤ k, i ̸= j};
3. H = {¬(Cu,i ∧ Cv,i) | u, v ∈ V, (u, v) ∈ E, 1 ≤ i ≤ k}.

The previous sets express the following properties regarding G and k, respectively:

1. each vertex corresponds to at least a color;
2. no vertex is associated with more than one color; and,
3. adjacent vertices are associated with different colors.

Let T = F ∪G ∪H. The compactness theorem is applied to prove that T is satisfiable.
Let S be a finite subset of T and V0 = {u1, . . . , un} be the set of all vertices u such
that Cu,i for some i, occurs in some formula in S.
Let GV0

= (V0, E0) be the subgraph of G induced by V0.
Let c : V0 → [k] be a k-coloring of GV0

.
We define the interpretation v : P → {T,F} as

v(Cu,i) =

{
T if u ∈ V0 and c(u) = i,

F otherwise.

We have v(F ) = T for all F ∈ S since c is a k-coloring and F ∈ F ∪G ∪H. Thus, T is
finitely satisfiable; hence, by the compactness theorem, it is satisfiable.
Let I : P → {T,F} be an interpretation that satisfies T . We establish a correspondence
c : V → [k] defined as c(u) = i if and only if I(Cu,i) = T.
Therefore, by the definition of T and since I(F ) = T for all F ∈ T , one has that c is
a k-coloring of G = (V,E). Indeed, since F and G are satisfiable, to each vertex v ∈ V

corresponds exactly a color in [k], thus, c is a function. Finally, since H is satisfiable,
adjacent vertices have different colors. 2

https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L95-L97
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L99-L100
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3.1.2 Formalization of the Bruijn-Erdös k-coloring Theorem

This subsection discusses details of the formalization of the k-coloring theorem following
the proof of the previous Theorem 3.
The following Isabelle definitions specify the set related to the set of propositional
symbols P, and the sets of formulas F ,G,H and T .

primrec atomic-disjunctions  :: ′v ⇒ nat ⇒ ( ′v × nat)formula where
atomic-disjunctions v 0 = atom (v , 0 )
| atomic-disjunctions v (Suc k) =
(atom (v , Suc k)) ∨. (atomic-disjunctions v k)

definition F  :: ′v digraph ⇒ nat ⇒ (( ′v × nat)formula) set where
F G k ≡ (

⋃
v∈V [G]. {atomic-disjunctions v k})

definition G  :: ′v digraph ⇒ nat ⇒ ( ′v × nat)formula set where
G G k ≡ {¬.(atom (v , i) ∧. atom(v ,j ))

| v i j . (v∈V [G]) ∧ (0≤i ∧ 0≤j ∧ i≤k ∧ j≤k ∧ i ̸=j )}

definition H  :: ′v digraph ⇒ nat ⇒ ( ′v × nat)formula set where
H G k ≡ {¬.(atom (u, i) ∧. atom(v ,i))

|u v i . (u∈V [G] ∧ v∈V [G] ∧ (u,v)∈E [G]) ∧ (0≤i ∧ i≤k)}

definition T  :: ′v digraph ⇒ nat ⇒ ( ′v × nat)formula set where
T G k ≡ (F G k) ∪ (G G k) ∪ (H G k)

The set of vertices occurring in a formula and a set S of formulas denoted as V0 in the
proof of Theorem 3 are defined below.

primrec vertices-formula  :: ( ′v × nat)formula ⇒ ′v set where
vertices-formula FF = {}
| vertices-formula TT = {}
| vertices-formula (atom P) = {fst P}
| vertices-formula (¬. F ) = vertices-formula F
| vertices-formula (F ∧. G) = vertices-formula F ∪ vertices-formula G
| vertices-formula (F ∨. G) = vertices-formula F ∪ vertices-formula G
| vertices-formula (F →.G) = vertices-formula F ∪ vertices-formula G

definition vertices-set-formulas  :: ( ′v × nat)formula set ⇒ ′v set where
vertices-set-formulas S = (

⋃
F∈ S . vertices-formula F )

Several auxiliary lemmas are formalized that relate a subset of formulas S, the sets of
propositional symbols in P, representing vertices and their possible colors, and the set
T . For instance, the next lemma specifies that the subset of vertices occurring in any
subset of formulas S of T is a subset of the set of vertices of G.

lemma vertices-subset-formulas :
assumes S ⊆ (T G k)
shows vertices-set-formulas S ⊆ V [G]

https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L157-L160
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L162-L163
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L165-L167
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L169-L171
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L173-L174
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L178-L185
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L187-L188
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L380-L387
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The next definition specifies the subgraph given by a set of vertices V of a graph. Let
S be a finite subset of T , and V0 = {u1, . . . , un} be the set of vertices u such that Cu,i,
for some i, occurs in some formula in S. The lemma finite-subraph below, formalizes
the fact that the subgraph of G induced by V0, GV0

= (V0, E0), also is a finite graph.

definition subgraph-aux  :: ′v digraph ⇒ ′v set ⇒ ′v digraph where
subgraph-aux G V ≡ (V , E [G] ∩ (V × V ))

lemma finite-subgraph :
assumes is-graph G and S ⊆ (T G k) and finite S
shows finite-graph (subgraph-aux G (vertices-set-formulas S))

The theorem coloring-satisfiable states that a coloring of GV0
enables the construction

of a model of S. The formalization uses the function graph-interpretation, showing that
it gives a k-coloring of the subgraph induced by the vertices in the set of formulas S.

fun graph-interpretation  :: ′v digraph ⇒ ( ′v ⇒ nat) ⇒ (( ′v × nat) ⇒ v-truth) where
graph-interpretation G f = (λ(v ,i).(if v ∈ V [G] ∧ f (v) = i then Ttrue else Ffalse))

theorem coloring-satisfiable :
assumes is-graph G and S ⊆ (T G k) and
coloring f k (subgraph-aux G (vertices-set-formulas S))
shows satisfiable S

An interpretation I : P → {T,F} that holds T establishes a coloring c : V → [k] given
by c(u) = i if and only if I(Cu,i) = T.

fun graph-coloring  :: (( ′v × nat) ⇒ v-truth) ⇒ nat ⇒ ( ′v ⇒ nat)
where

graph-coloring I k = (λv .(THE i . (t-v-evaluation I (atom (v ,i)) = Ttrue) ∧ 0≤i ∧ i≤k))

The following lemma establishes the existence of the previous coloring function when I

is a model of T . It is formalized using a series of auxiliary lemmas that state the exis-
tence and unicity of the color associated with each vertex regarding any interpretation
I model of T .

lemma coloring-function :
assumes u ∈ V [G] and I model (T G k)
shows ∃ !i . (t-v-evaluation I (atom (u,i)) = Ttrue ∧ 0≤i ∧ i≤k) ∧

graph-coloring I k u = i

The following lemma establishes that if the set of formulas T for a graph G and a
natural k is satisfied, then G is k-colourable. The proof assumes a model I for T by
the satisfiability hypothesis. Applying the previous lemma coloring-function, the
function graph-coloring will give a unique color i, 0 ≤ i ≤ k for each vertex u in the
graph. This happens since the evaluation of the formulas F and G for the model I will
guarantee the existence of a unique atom cu,i that is true. Finally, by applying another

https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L396-L397
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L414-L426
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L435-L436
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L534-L602
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L611-L613
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L734-L764
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auxiliary lemma called distinct-color  (that states graph-coloring gives different colors
for adjacent vertices), since I is also a model for H, one guarantees that the evaluation
of I for adjacent vertices u and v is such that the unique atoms cu,i and cv,j evaluated
as true are such that i ̸= j.

theorem satisfiable-coloring :
assumes is-graph G and satisfiable (T G k)
shows colorable G k

Finally, the de Bruijn-Erdös theorem (Theorem 3) is specified below. Its formaliza-
tion applies theorem coloring_satisfiable to prove that any finite subgraph H of G

induces a finite subset S of formulas of T that is satisfiable; therefore, by the com-
pactness theorem one has that T is satisfiable, concluding by application of theorem
satisfiable_coloring that G is colorable.

theorem deBruijn-Erdos-coloring :
assumes is-graph (G::( ′vertices:: countable) set × ( ′vertices × ′vertices) set)
and ∀H . (is-induced-subgraph H G ∧ finite-graph H −→ colorable H k)

shows colorable G k

3.2 Formalization of König’s Lemma

Using the Compactness Theorem for propositional logic, we formalize König’s Lemma
for countable trees:

Any infinite countable finitely branching tree has an infinite path.

The steps of the formal proof follow the approach sketched in [5].
In the following, we provide the definitions and properties regarding trees needed to
formalize König’s Lemma. Also, the specification of each one is presented.

Definition 4 (Basic Relations) Let R be a binary relation on a set A.

i) R is irreflexive if and only if

∀x ∈ A, (x, x) /∈ R.

ii) R is transitive if and only if

∀x ∈ A∀y ∈ A∀z ∈ A ((x, y) ∈ R ∧ (y, z) ∈ R −→ (x, z) ∈ R).

iii) R is total if and only if

∀x ∈ A∀y ∈ A (x ̸= y −→ (x, y) ∈ R ∨ (y, x) ∈ R).

iv) An element a ∈ A is a minimum element of A if and only if

∀x ∈ A (x ̸= a −→ (a, x) ∈ R).

https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L783-L805
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L807-L842
https://github.com/mayalarincon/CompactnessJAR/blob/main/k_coloring.thy#L848-L879
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v) Consider a ∈ A. We define the set of predecessors, Pr(a), of a as

Pr(a) = {x ∈ A | (x, a) ∈ R}.

Specifications of these relations in Isabelle are presented below.

type-synonym ′a rel = ( ′a × ′a) set

definition irreflexive-on  :: ′a set ⇒ ′a rel ⇒ bool
where irreflexive-on A r ≡ (∀ x∈A. (x , x) /∈ r)

definition transitive-on  :: ′a set ⇒ ′a rel ⇒ bool
where transitive-on A r ≡
(∀ x∈A. ∀ y∈A. ∀ z∈A. (x , y) ∈ r ∧ (y, z ) ∈ r −→ (x , z ) ∈ r)

definition total-on  :: ′a set ⇒ ′a rel ⇒ bool
where total-on A r ≡ (∀ x∈A. ∀ y∈A. x ̸= y −→ (x , y) ∈ r ∨ (y, x) ∈ r)

definition minimum  :: ′a set ⇒ ′a ⇒ ′a rel ⇒ bool
where minimum A a r ≡ (a∈A ∧ (∀ x∈A. x ̸= a −→ (a,x) ∈ r))

definition predecessors  :: ′a set ⇒ ′a ⇒ ′a rel ⇒ ′a set
where predecessors A a r ≡ {x∈A.(x , a) ∈ r}

Definition 5 (Height, Level, and Immediate successors) Let R be a binary
relation on A such that for all a ∈ A, Pr(a) is finite.

1. For all a ∈ A, we define the height of a, Hg(a), as the number of its predecessors:

Hg(a) = |Pr(a)|.

2. For each integer number n ≥ 0, the n-th level of R is the set of elements of A,
whose height is n; that is,

Lv(n) = {a ∈ A | Hg(a) = n}.

3. For each a ∈ A, the set of immediate successors of a, Suc(a), is defined as

Suc(a) = {y ∈ A | (a, y) ∈ R ∧Hg(y) = Hg(a) + 1}.

The above definitions are specified in Isabelle below.

definition height  :: ′a set ⇒ ′a ⇒ ′a rel ⇒ nat
where height A a r ≡ card (predecessors A a r)

definition level  :: ′a set ⇒ ′a rel ⇒ nat ⇒ ′a set
where level A r n ≡ {x∈A. height A x r = n}

definition imm-successors  :: ′a set ⇒ ′a ⇒ ′a rel ⇒ ′a set
where imm-successors A a r ≡
{x∈A. (a,x)∈ r ∧ height A x r = (height A a r)+1}

The uniqueness of the minimum in an SPO is given by the following lemma and for-
malized in Isabelle as the subsequent specification.

Definition 6 (Strict Partial Order (SPO) and Linear Order) Let R be a binary
relation on A.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L23-L24
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L26-L28
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L30-L31
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L33-L34
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L36-L37
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L39-L40
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L42-L43
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L45-L47
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1. The pair (A,R) is called a strict partial order if and only if R is irreflexive and
transitive.

2. (A,R) is a linear order if and only if it is a strict partial order and R is a total
relation.

The class of strict partial orders is specified below.

definition strict-part-order  :: ′a set ⇒ ′a rel ⇒ bool
where strict-part-order A r ≡ irreflexive-on A r ∧ transitive-on A r

Lemma 1 (Uniqueness of Minimum in SPO) Let (A,R) be a strict partial order.
If A has a minimum element, then such an element is unique.

lemma spo-uniqueness-min :
assumes strict-part-order A r and minimum A a r and minimum A b r
shows a=b

Next, the definitions and the specifications of (finite and infinite) trees are given.

Definition 7 (Tree) Let R ̸= ∅ be a binary relation on a set A. A pair T = (A,R)
is a tree if and only if:

1. (A,R) is a strict partial order.
2. A has a minimum element, which we call the root of T .
3. For all a ∈ A, the set Pr(a) is finite and the restriction of R to Pr(a) is total.

The elements of A are called nodes of T .

definition tree  :: ′a set ⇒ ′a rel ⇒ bool
where tree A r ≡

r ⊆ A × A ∧ r ̸={} ∧ (strict-part-order A r) ∧ (∃ a. minimum A a r) ∧
(∀ a∈A. finite (predecessors A a r) ∧ (total-on (predecessors A a r) r))

Definition 8 (Finite Tree) A tree T = (A,R) is finite if and only if the set of nodes
A is finite; otherwise, T is infinite.

definition finite-tree :: ′a set ⇒ ′a rel ⇒ bool
where

finite-tree A r ≡ tree A r ∧ finite A

abbreviation infinite-tree :: ′a set ⇒ ′a rel ⇒ bool
where

infinite-tree A r ≡ tree A r ∧ ¬ finite A

The definition and specification of a finitely branching tree are given below.

Definition 9 (Finitely Branching Tree) Let T = (A,R) be a tree. T is finitely
branching if and only if for each a ∈ A, the set Suc(a) is finite.

definition finitely-branching  :: ′a set ⇒ ′a rel ⇒ bool
where finitely-branching A r ≡ (∀ x∈A. finite (imm-successors A x r))

Next, finite and infinite paths in trees are defined.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L49-L50
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L71-L91
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L392-L395
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L397-L399
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L401-L403
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L408-L409
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Definition 10 (Path) Let T = (A,R) be a tree. A set of nodes B ⊆ A is a path of T
if and only if (B,R) is a linear order and B is maximal (regarding the subset relation).
If B is finite, it is called a finite path; otherwise, B is an infinite path.

Notice that a finitely branching tree having an infinite path has an infinite branch.
Specifications of sub-linear orders and trees are given below.

definition sub-linear-order  :: ′a set ⇒ ′a set ⇒ ′a rel ⇒ bool
where sub-linear-order B A r ≡ B⊆A ∧ (strict-part-order A r) ∧ (total-on B r)

definition path  :: ′a set ⇒ ′a set ⇒ ′a rel ⇒ bool
where path B A r ≡
(sub-linear-order B A r) ∧
(∀C . B ⊆ C ∧ sub-linear-order C A r −→ B = C )

definition finite-path :: ′a set ⇒ ′a set ⇒ ′a rel ⇒ bool
where finite-path B A r ≡ path B A r ∧ finite B

definition infinite-path :: ′a set ⇒ ′a set ⇒ ′a rel ⇒ bool
where infinite-path B A r ≡ path B A r ∧ ¬ finite B

The following lemmas (Lemmas 2, 3, 4 and 5) are crucial and form the basis to prove
König’s lemma.

Lemma 2 (Finiteness of levels in Finitely Branching Trees) Let T = (A,R)
be a tree. The following statements are equivalent:

1. T is finitely branching.
2. For all n ≥ 0, the set Lv(n) is finite.

Although we formalized the equivalence between the propositions in Lemma 2, only
the essential condition to verify König’s lemma (namely, (1) ⇒ (2)) is shown below as
the lemma finite-level.

lemma finite-level :
assumes tree A r and finitely-branching A r
shows finite (level A r n)

Lemmas 3 and 4 guarantee the existence of a path from any node to the root of a tree
and the non-emptiness of each level in a finitely branching infinite tree, respectively.
They are formalized as lemmas path-to-node and all-levels-non-empty.

Lemma 3 (Root Reachability in Trees) Let T = (A,R) be a tree. If n ≥ 0 and
x ∈ Lv(n + 1) then for all k, 0 ≤ k ≤ n, there is yk such that (yk, x) ∈ R and
yk ∈ Lv(k).

lemma path-to-node :
assumes tree A r and x ∈ (level A r (n+1 ))
shows ∀ k .(0≤k ∧ k≤n)−→ (∃ y. (y,x)∈r ∧ y ∈ (level A r k))

Lemma 4 (Non-emptiness of Levels) Consider T = (A,R) a finitely branching
infinite tree. Thus, for all n ≥ 0, Lv(n) ̸= ∅.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L411-L412
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L414-L417
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L419-L420
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L422-L423
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L820-L832
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L895-L961
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lemma all-levels-non-empty :
assumes infinite-tree A r and finitely-branching A r
shows ∀n. level A r n ̸= {}

Lemma 5 states that the elements in the same set of predecessors are at distinct levels.

Lemma 5 (Emptyness of Level Intersection) Let T = (A,R) be a tree. Suppose
that (x, z) ∈ R, (y, z) ∈ R, and x ̸= y. If x ∈ Lv(n) and y ∈ Lv(m) then Lv(n) ∩
Lv(m) = ∅.

lemma emptyness-inter-diff-levels :
assumes tree A r and (x ,z )∈ r and (y,z )∈ r
and x ̸=y and x ∈ (level A r n) and y ∈ (level A r m)

shows level A r n ∩ level A r m = {}

3.2.1 Informal proof of König’s Lemma

In this section, we discuss the “pen-and-paper” proof of König’s Lemma (Theorem 4)
obtained as a consequence of the Compactness Theorem.

Theorem 4 (König Lemma) Every finitely branching infinite (countable) tree has
an infinite branch.

Proof Let T = (A,R) be a finitely branching infinite countable tree. Consider the
following set of propositional symbols indexed by the vertices of T :

P = {Bu | u ∈ A}.

From the set P, one can define a set of formulas T , such that if T is satisfiable then
for any interpretation I, which is model of T , the set of vertices B is an infinite path
of T :

B = {u ∈ A | I(Bu) = T}

T is given by the union of the following three sets of propositional formulas.

1. For each n ∈ N,
F = {

∨
u∈Lv(n)

Bu | n ∈ N},

where
∨

u∈Lv(n) Bu is the disjunction of the atomic formulas corresponding to the
elements of the level Lv(n), which is a finite set by the Lemma 2.

2. G = {Bu −→ Bv | u, v ∈ A, (v, u) ∈ R},
3. H = {¬(Bu ∧Bv) | u, v ∈ Lv(n), u ̸= v, n ∈ N}.

The previous sets allow the characterization of an infinite path in a tree. Indeed, if a
set B of vertices of T satisfies such sets, then for any n ∈ N, there is at least one vertex
of T in the level n which belongs to B; every predecessor of any element of B belongs
to B, and B has only a vertex in the level n.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1051-L1092
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1180-L1221
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Now, we show that the set T = F ∪ G ∪H is satisfiable by applying the Compactness
Theorem.
Let S be a finite subset of T . Since S is finite, the set

N = {u ∈ A | Bu occurs in some formula of S}

is also finite; consequently, the set of the heights of vertices from N has a maximum
element h. Additionally, one has that Lv(h + 1) ̸= ∅ since T is infinite and finitely
branching (Lemma 4).
Consider t ∈ Lv(h+ 1) and define the interpretation I : P → {T,F} as,

I(Bu) =

{
T , if (u, t) ∈ R

F , otherwise.

Notice that, I(J) = T for every formula J ∈ S. In fact:

1. If J ∈ F then J =
∨

u∈Lv(n) Bu, which corresponds to the disjunction of the
atomic formulas associated with the vertices of the level n, for some n ≤ h. Since
the vertices that occur in J have height n < h + 1, there exists u ∈ Lv(n) such
that (u, t) ∈ R (Lemmas 4, 3). Consequently, I(Bu) = T and I(J) = T.

2. If J ∈ G then there exist u,w ∈ A such that J = Bu −→ Bw and (w, u) ∈ R. If
I(J) = F then I(Bu) = T and I(Bw) = F. Consequently, (u, t) ∈ R and (w, t) /∈ R

which is impossible considering that (w, u) ∈ R and R is transitive relation. Thus,
I(J) = T.

3. If J ∈ H then there exist u,w ∈ Lv(n), for some n ≥ 0, such that u ̸= w and
J = ¬(Bu ∧ Bw). Since u and w belong to the same level, one has that (u, t) /∈ R

or (w, t) /∈ R (Lemma 5). Consequently, I(Bu) = F or I(Bw) = F, and I(J) = T.

Therefore, T is finitely satisfiable and, as a consequence of the Compactness Theorem,
T is satisfiable.
Let I : P → {T,F} be a model for T . Then,

B = {u ∈ A | I(Bu) = T}

is an infinite path of T :
Since I satisfies F and H, one has that, for each level n, the intersection B∩Lv(n) is a
singleton vertex. In the following, we show that (B, R) is a total and maximal relation
and B is infinite.

(a) (B, R) is a total relation: consider u,w ∈ B such that u ̸= w. Assume that Hg(u) <
Hg(w). Let n = Hg(u) and x be the predecessor of w at level n. Then, Bw −→
Bx ∈ G, hence I(Bw −→ Bx) = T. Since I(Bw) = T, I(Bx) = T. Therefore,
x ∈ B and, since u, x ∈ Lv(n), one concludes that u = x. Thus, (u,w) ∈ R. The
case Hg(w) < Hg(u) is proved analogously. Therefore, one concludes that (B, R)
is total.

(b) (B, R) is maximal: we prove that if B ⊆ B′ and (B′, R) is total then B′ ⊆ B. Let
x ∈ B′, n = Hg(x) and u be a vertex that belongs to the intersection of B and
the vertices at level Lv(n). Since u ∈ B′ and (B′, R) is total, if u ̸= x, then either
(u, x) ∈ R or (x, u) ∈ R, which is impossible since in a strict order, comparable
elements with a finite number of predecessors are at different levels. Therefore,
x = u, which implies B′ ⊆ B.
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(c) B is infinite: since I satisfies F , it is enough to prove that for all n ≥ 0, Lv(n) ̸= ∅.
This implies that there exists u such that u ∈ B ∩ Lv(n), therefore, B is infinite.
Suppose there exists n such that Lv(n) = ∅. This implies that for all m > n,
Lv(m) = ∅ too. Consequently, since T is finitely branching, it would be finite. To
conclude, one also needs to consider that Lv(n) ∩ Lv(m) = ∅ for all n ̸= m, and
therefore

⋃
n∈N B ∩ Lv(n) is infinite. 2

3.2.2 Formalization of König’s Lemma

In this subsection, we explain the crucial steps in the formalization of this proof.
The Isabelle formalizations of the sets F ,G,H, and T use the recursive constructor
disjuction-nodes of disjuction of atoms below.

primrec disjunction-nodes  :: ′a list ⇒ ′a formula where
disjunction-nodes [] = FF
| disjunction-nodes (v#D) = (atom v) ∨. (disjunction-nodes D)

The specification of F ,G,H, and T are given below. Notice that H is built as the union
of all the sets Hn of negations of formulas of the form (Bu∧Bv) for nodes at the same
level (n).

definition F  :: ′a set ⇒ ′a rel ⇒ ( ′a formula) set where
F A r ≡ (

⋃
n. {disjunction-nodes(set-to-list (level A r n))})

definition G  :: ′a set ⇒ ′a rel ⇒ ( ′a formula) set where
G A r ≡ {(atom u) →. (atom v) |u v . u∈A ∧ v∈A ∧ (v ,u)∈ r}

definition Hn  :: ′a set ⇒ ′a rel ⇒ nat ⇒ ( ′a formula) set where
Hn A r n ≡ {¬.((atom u) ∧. (atom v))

|u v . u∈(level A r n) ∧ v∈(level A r n) ∧ u ̸=v }
definition H  :: ′a set ⇒ ′a rel ⇒ ( ′a formula) set where
H A r ≡

⋃
n. Hn A r n

definition T  :: ′a set ⇒ ′a rel ⇒ ( ′a formula) set where
T A r ≡ (F A r) ∪ (G A r) ∪ (H A r)

The definition maximum-height specifies the maximum height of nodes in a set of
formulas. The specification uses nodes-set-formulas, which specify the union of the
nodes in a finite set of formulas.

definition maximum-height :: ′v set ⇒ ′v rel ⇒ ′v formula set ⇒ nat where
maximum-height A r S = Max (

⋃
x∈nodes-set-formulas S . {height A x r})

Let S be a set of formulas, and h be the maximum height of the set of nodes occurring
in the formulas of S. The next function returns some node at level Lv(h+ 1).

fun node-sig-level-max :: ′v set ⇒ ′v rel ⇒ ′v formula set ⇒ ′v
where node-sig-level-max A r S =
(SOME u. u ∈ (level A r ((maximum-height A r S)+1 )))

The next lemma shows that any finite subset S of T is satisfiable:

lemma satisfiable-path :
assumes infinite-tree A r

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1236-L1238
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1294-L1295
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1297-L1298
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1300-L1302
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1303-L1304
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1306-L1307
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1321-L1322
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1369-L1371
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1418-L1550
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and finitely-branching A r and S ⊆ (T A r)
and finite S

shows satisfiable S

The formalization of previous lemma builds a very simple model in the following man-
ner: we select a node, say u, in the tree at level h+ 1, where h is the maximum level
of the set of nodes occurring in the formulas of S. The truth value of all nodes (atomic
formulas) except the predecessors of u, which have truth value true, is false. This is
built through a simple interpretation path-interpretation:

fun path-interpretation  :: ′v set ⇒ ′v rel ⇒ ′v ⇒ ( ′v ⇒ v-truth)
where path-interpretation A r u =
(λv . (if (v ,u)∈r then Ttrue else Ffalse))

In this way, using lemmas (4, 3 and 5, resp.) all-levels-non-empty, path-to-node and
emptyness-inter-diff-levels one concludes that such interpretation holds in S.
So, T is finitely satisfiable, and so is satisfiable by the compactness theorem.
The next definition of the set of nodes B, which are true in an interpretation I, gives
the construction of the infinite path used in the proof of König’s lemma (Theorem 4).

definition B :: ′a set ⇒ ( ′a ⇒ v-truth) ⇒ ′a set where
B A I ≡ {u|u. u∈A ∧ t-v-evaluation I (atom u) = Ttrue}

The properties of B are described by the following lemmas.
The next lemma states that if B is built from an infinite finitely branching tree and
I is an interpretation that satisfies F , then B has at least a node in each level of the
tree. The proof is by induction on the number of nodes at any level of the tree.

lemma intersection-branch-set-nodes-at-level :
assumes infinite-tree A r and finitely-branching A r
and I : ∀F ∈ (F A r). t-v-evaluation I F = Ttrue

shows ∀n. ∃ x . x ∈ level A r n ∧ x ∈ (B A I )

The following lemma states that for each tree and interpretation I that satisfies H,
the set B has at most one node with a truth value true at each level of the tree. The
formalization follows by contradiction.

lemma intersection-branch-emptyness-below-height :
assumes I : ∀F ∈ (H A r). t-v-evaluation I F = Ttrue
and x∈(B A I ) and y∈(B A I ) and x ̸= y and n: x ∈ level A r n
and m: y ∈ level A r m

shows n ̸= m

In addition, by applying the previous two lemmas, one formalizes that if the tree is an
infinite finitely branching tree, and the interpretation I is a model of F and H, the set
B has only a node at each level of the tree:

lemma intersection-branch-level :
assumes infinite-tree A r and finitely-branching A r
and I : ∀F ∈ (F A r) ∪ (H A r). t-v-evaluation I F = Ttrue

shows ∀n. ∃ u. (B A I ) ∩ level A r n = {u}

The next lemma states that for any tree and interpretation I that satisfies G, all
predecessors of a node in the set B belong to B.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1385-L1386
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1552-L1553
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1595-L1615
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1617-L1642
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1644-L1674
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lemma predecessor-in-branch :
assumes I : ∀F ∈ (G A r). t-v-evaluation I F = Ttrue
and y∈(B A I ) and (x ,y)∈ r and x∈A and y∈A

shows x∈(B A I )

By applying all previous lemmas, one formalizes that for an infinite finitely branching
three and an interpretation I of T , the set B is a path:

lemma is-path :
assumes infinite-tree A r and finitely-branching A r
and I : ∀F ∈ (T A r). t-v-evaluation I F = Ttrue

shows path (B A I ) A r

To close the sequence of auxiliary lemmas on the set B, the lemma below shows that this
set is infinite whenever it is built from a model of F , for an infinite finitely branching
tree.

lemma infinite-path :
assumes infinite-tree A r and finitely-branching A r
and I : ∀F ∈ (F A r). t-v-evaluation I F = Ttrue

shows infinite (B A I )

Finally, the formalization of König’s lemma (Theorem 4) is obtained by applying the
lemma satisfiable-path that proves that any finite subset S of an infinite finitely branch-
ing tree satisfies T , then, applying the compactness theorem to conclude that the tree
also satisfies T . In the sequence, assuming that I is a model of T for the tree, and
building the set B and by applying the auxiliary lemmas one obtains that the tree has
an infinite path.

theorem Koenig-Lemma :
assumes infinite-tree (A:: ′nodes set) r
and enumeration (g:: nat ⇒ ′nodes)
and finitely-branching A r

shows ∃B . infinite-path B A r

3.3 Formalizations of Hall’s Theorem

This subsection briefly discusses the application of the compactness theorem in the
Isabelle/HOL formalizations of Hall’s theorem for countable sets and graphs described
in detail in [42] and [43].
The Hall’s Theorem, also called “marriage theorem,” proved primarily by Philip Hall
[21], provides necessary and sufficient conditions to choose a distinct representative for
each set in a finite family of finite sets A over elements in a set S.
Given S, an arbitrary set, and {Si}i∈I a collection of not necessarily distinct subsets
of S with indices in the set I, a function f : I →

⋃
i∈I Si is a system of distinct

representatives (SDR) for {Si}i∈I if:

1. for all i ∈ I, f(i) ∈ Si, and;
2. f is an injective function.

From the definition of an SDR, one can state Hall’s Theorem for sets as follows.

https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1676-L1692
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1694-L1858
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1911-L1925
https://github.com/mayalarincon/CompactnessJAR/blob/main/KoenigLemma.thy#L1927-L1964
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Theorem 5 (Hall’s Theorem | finite case) Consider an arbitrary set S and a
positive integer n. A finite collection {S1, S2, . . . , Sn} of finite subsets of S has an
SDR if and only if the so-called marriage condition (M) below is satisfied.

For every 1 ≤ k ≤ n and an arbitrary set of k distinct indices
1 ≤ i1, . . . , ik ≤ n, one has that |Si1 ∪ . . . ∪ Sik | ≥ k. (M)

Hall’s theorem is a landmark result that is equivalent to several other significant the-
orems in combinatory and graph theory (cf. [4], [5], [36]), namely: Menger’s theorem
(1929), König’s minimax theorem (1931), König–Egerváry theorem (1931), Dilworth’s
theorem (1950), Max Flow-Min Cut theorem (Ford-Fulkerson algorithm), among oth-
ers. Consequently, a complete formalization of Hall’s Theorem gives rise to formally
proving those equivalent results. Considering Isabelle/HOL theorem prover, Jiang and
Nipkow [27] formalized Hall’s theorem by implementing both Halmos and Vaughan’s
[22] and Rado’s [35] techniques.
More general versions of Hall’s Theorem were established [35]. In particular, Hall’s
Theorem, as enunciated in Theorem 6, holds for a countable collection of finite subsets
{Si}i∈I of a set S.

Theorem 6 (Hall’s Theorem | countable case) Let S be an arbitrary set and I

an enumerable set of indices of finite subsets of S. The family {Si}i∈I has an SDR if
and only if the condition (M∗) below holds.

For every finite subset of indices J ⊆ I, one has that |
⋃

j∈J Sj | ≥ |J |. (M∗)

This theorem is formalized in the theory Hall_Theorem .
As another application of the Compactness Theorem for propositional logic, Serrano
et al. formalized Theorem 6 in Isabelle/HOL. Such a development combines the for-
malization of the Compactness Theorem as in [41], described in Section 2, and of Jiang
and Nipkow’s for the finite case of Hall’s Theorem. The formal proof of the countable
case of Hall’s Theorem in Isabelle/HOL was recently published in [42] and gives rise to
provide mechanisms to formally establish general versions of results that are equivalent
to Theorem 6.
For instance, besides the set-theoretical version of Hall’s Theorem for countable families
of sets 6, another well-known version is Hall’s Theorem for graphs was also formalized.

Theorem 7 (Hall’s Theorem graph version | countable case) Let G = ⟨X,Y,E⟩
be a digraph such that the set of vertices X ∪Y is countable, the set of edges holds E ⊆
X×Y , and for each vertex x ∈ X, the set of neighborhoods of x N(x) = {y | (x, y) ∈ E}
is finite. Then G contains a perfect matching covering the set of vertices X if and only
if (M†) below holds.

For every finite subset of vertices J ⊆ X, one has that |
⋃

j∈J N(j)| ≥ |J |. (M†)

This theorem is formalized in the theory Hall_Th_Graph_Theo .
Previously, we cited some combinatorial theorems equivalent to Hall’s theorem. De-
pending on the result, the proof of such an equivalence can be adapted to either the
set-theoretical or graph-theoretical versions. For example, König–Egerváry theorem
states that the minimum cover in a finite bipartite graph has the same cardinality as
a maximum matching. Thus, if we assume Hall’s theorem for finite graphs, one pos-
sible way to infer König–Egerváry theorem will consist of building a reduction from

https://github.com/mayalarincon/CompactnessJAR/blob/main/Hall_Theorem.thy#L6-L1052
https://github.com/mayalarincon/CompactnessJAR/blob/main/Hall_Th_Graph_Theo.thy#L6-L461
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the latter to the former. Considering the nature of König–Egerváry theorem, it is clear
that the graph-theoretical version of Hall’s theorem is more appropriate than the set
version to establish the equivalence between these theorems.
In the preprint [43], by applying authors’ development in [42], the infinite graph-
theoretical version of Hall’s theorem was formalized in Isabelle/HOL. The mechaniza-
tion focuses on maintaining specifications and proofs as closely as possible to text-
books since our primary objective was to increase mathematicians’ interest in using
interactive proof assistants. Although this, the specification also includes a concise and
more automatized proof using locales, which can be seen at the end of the theory
Hall_Th_Graph_Theo .
Interestingly, other combinatorial well-known results equivalent to Hall’s theorem in
the finite case are not straightforwardly equivalent in the infinite case; for instance, the
infinite version of König-Egerváry theorem that as reported in [2] cannot be inferred
from the compactness theorem. Thus, another of the aspects we are interested in is to
explore if possible restricted variations of infinite versions of König-Egerváry theorem
can be obtained as a consequence of the Compactness Theorem.

4 Related Work

4.1 Formalizations of the compactness theorem

As mentioned in Subsection 2.2, another proof in Isabelle/HOL of the compactness the-
orem is given by Michaelis and Nipkow as part of IsaFOL [32]. In general, formalizations
of the compactness theorem belong to collections of developments for propositional and
first-order logic, as is the case of IsaFOL (e.g., [14], [40], [13]). In particular, Michaelis
and Nipkow formalized proof systems for propositional logic, such as sequent calculus,
natural deduction, and Hilbert systems; they added to ISAFOL proofs of soundness,
completeness, cut-elimination, interpolation, and the model existence theorem. How-
ever, the formalization of compactness follows a different approach, as the one of this
paper, which is based on an enumeration of all formulas and saturation [32].
Among a variety of solid formal developments in classical logic, which provide elements
for formalizations of theorems as those treated in this paper, one can include Shankar’s
pioneering formalizations of the Church-Rosser and the first Gödel incompleteness the-
orem in the Boyer-Moore theorem prover [44]. Also, it deserves to mention Harrison’s
formalization in HOL Light of important results such as the compactness and the
Löwenheim-Skolem theorems [23]. Harrison’s formalization of the propositional com-
pactness theorem is also for the countable case and applies Zorn’s lemma to extend
satisfiable sets to maximal satisfiable sets of propositional formulas (as in the proof
given in Enderton’s textbook [10]).

4.2 Formalizations of König’s Lemma, and de Bruijn-Erdös and Hall’s Theorems

Nowadays, proof assistants include robust proof engines and elaborated mathematical
libraries that make the formalization of König’s lemma an easy routine exercise. An
earlier proof of König’s lemma in the Boyer-Moore theorem prover is reported by
Kaufmann in [28]. The formalization uses the NQTHM extension of this prover to deal

https://github.com/mayalarincon/CompactnessJAR/blob/main/Hall_Th_Graph_Theo.thy#L6-L461
https://github.com/IsaFoL/IsaFoL
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with quantification by applying the technique of (event) Skolemization. The existence
of an infinite path in a finitely branching infinite tree is obtained using the predicate “for
any node with infinite descendants there exists a successor with infinite descendants.”
Bancerek developed another earlier formalization of this theorem in Mizar [3]. The
formalization states the lemma proving the existence of an infinite branch whenever
the tree has arbitrary long finite chains.
Despite the fact of the existence of excellent libraries on graph theory for different
interactive theorem provers (e.g., those related to Gonthier’s formalization of the four-
color theorem for planar graphs in Coq [15,17,16]), to the best of our knowledge there
are no formalizations of the de Bruijn-Erdös k-colouring theorem, neither for the finite
nor for the countable case.
Considering the finite version of Hall’s Theorem, Romanowicz and Grabowski [38]
reported the first formalization of this result in Mizar. Jiang and Nipkow [27] presented
two formalizations in Isabelle/HOL: in addition to a formalization of Rado’s proof
([35]), also used in Mizar, the Isabelle/HOL development formalizes Vaughan’s proof
([22]). Also, a formalization in Coq applies Dilworth’s decomposition theorem and bi-
partitions in graphs [45]. Dilworth’s theorem is formalized in Mizar in [39]. Recently,
Gusakov, Mehta, and Miller [18] reported different formalizations in Lean of the finite
version of Hall’s theorem; the first, in terms of indexed families of finite subsets, the
second, in terms of the existence of injections that saturate binary relations over finite
sets and, the third, in terms of matchings in bipartite graphs. Related combinatorial
results are reported in recent works by Doczkal et al. in their graph theory Coq library
(e.g., [7], [9], and [8]). Additionally, Singh and Natarajan formalized in Coq other
combinatorial results as the perfect graph theorem and a weak version of this theorem
(e.g., [46], [47]).
Adaptations to the infinite case from theorems equivalent to the finite case of Hall’s
marriage theorem may be elaborated. Moreover, such adaptations would not necessarily
be derivable from the compactness theorem. An example is König’s duality theorem
that states that in every bipartite graph G = ⟨X,Y,E⟩, there exists a matching M ⊆ E

such that selecting one vertex from each arc in M one has a cover of the graph [1,
2]. This theorem is a strong form of the König-Egerváry theorem, stating that in a
finite bipartite graph, the size of a maximal matching is equal to that of a minimal
cover [30]. The key difference of the duality theorem is that such a cover of the graph
cannot be extracted from any matching; namely, given any matching of the graph, it
is possible to build a cover of the same cardinality as the cardinality of the matching,
but not that covers the graph entirely. So, the notion of König cover came to arise,
which is defined as a cover of the graph that consists of a selection of one vertex from
each arc of a matching.
Lifting results from the finite to the infinite through the application of compactness (of
König’s lemma) corresponds to a recursive construction of a procedure that produces
the target solution in the degree of unsolvability of the halting problem [2]. Such a
recursive construction is possible for Dilworth’s theorem (restricting the maximal anti-
chains in infinite partial ordered sets to be finite - [6], see also Sec. 2.5 in [24]) but not
for König’s duality theorem. Indeed, Aharoni et al. [2] proved that the complexity of
constructing covers exceeds the complexity of the halting problem; it is even a problem
of higher complexity than answering all first-order questions about arithmetic. Also,
they proved that the compactness theorem and König’s lemma do not suffice to prove
the duality theorem and other related results in matching theory.
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There are two formalizations of the countable set-theoretical version of Hall’s theorem:
one by the authors detailed in [42], and another by Gusakov, Mehta, and Miller pre-
sented in [18]. Also, we formalized a countable graph-theoretical version derived from
the set-theoretical formalization presented in [43]. The distinguishing feature of our
formalization in Isabelle/HOL is the application of the compactness theorem. In the
Lean formalization, the authors use an inverse limit version of the König’s lemma.
This lemma states that if {Xi}i∈N is an indexed family of nonempty finite sets with
functions fi : Xi+1 → Xi, for each i ∈ N, then there exists a family of elements
x ∈

∏
i Xi such that xi = fi(xi+1), for all i ∈ N. König’s lemma follows from this

infinite limit version by choosing as set Xi the paths of length i from the root vertex
v0 in a tree. So, the function fi maps paths in Xi+1 into the paths without their
last arc, which are paths that belong to Xi. The inverse limit consists of the infinite
chain of functions f1, f2, . . .. König’s lemma is applied to prove the countable version
of Hall’s theorem by taking Mn as the set of all matchings on the first n indices of I
(i.e., the set of all possible SDRs for the sets S1, . . . , Sn), and fn : Mn+1 → Mn as the
restriction of a match to a smaller set of indices. Since the marriage condition holds for
the finite indexed families, each Mn is nonempty, and by König’s lemma, an element
of the inverse limit gives a matching on I.

5 Conclusions and Future Work

We presented a complete formalization of the propositional compactness theorem based
on the construction of models. The compactness theorem was applied to build complete
and constructive proofs of three relevant applications: Hall’s theorem for countable sets
and graphs, de Bruijn-Erdös theorem for countable graphs, and König’s lemma.
The whole Isabelle/HOL development discussed in this paper, available through the
link Compactness Theory , consists of a directory called ModelExistence with all
required elements to prove the model existence theorem. The total number of lines
in the theories related to the logical notions and properties required on the proof
of the model existence theorem is 3218, in which proofs of seventeen theorems are
included (see the “subtotal” row in the Table 1). The theory Compactness uses the
formalization of the model existence theorem and adds 15 lemmas to formalize the
compactness theorem. Table 1 also contains information about the theories related
to the discussed applications. It is remarkable to notice that the elements required to
apply the compactness theorem to prove König’s lemma are almost twice the size of the
other applications. Also, notice that the formalization of Hall’s theorem for countable
graphs is smaller since this uses directly the set-theoretical version of Hall’s theorem
without building any model.
As mentioned in the section on related work (Subsection 4.2), potential applications
would lift combinatorial results from the infinite to the countable cases. Exploring such
extensions is of remarkable interest since it is well-known that the finite cases of Hall’s
and de Bruijn-Erdös theorems are equivalent to other relevant combinatorial theorems.

https://github.com/mayalarincon/CompactnessJAR/blob/main/
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Table 1 Theories of the development

Theory Name Line
Num.

Number of Proved
Formulas

Lemmas Corollaries Theorems
SyntaxAndSemantics.thy  691 17 3
UniformNotation.thy  694 29
Closedness.thy  180 7 1
Finiteness.thy  337 7 2
MaximalSet.thy  235 5 1 4
Hintikka_theory.thy  429 8 3 1
MaximalHintikka.thy  158 6 1
BinaryTreeEnumeration.thy  172 11
FormulaEnumeration.thy  129 4 3 1
ModelExistence.thy  147 1 2 4
Subtotal 3172 95 9 17
Compactness.thy  374 15 1
Total 3546 110 9 18

Applications
k_coloring.thy  881 30 3
KoenigLemma.thy  1966 66 1
Hall_Theorem.thy  997 44 4
Hall_Th_Graph_Theo.thy  461 7 3
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