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This paper discusses the extension of the PVS sub-theory for rings, part of the PVS algebra the-
ory, with theorems related to the division algorithm for Euclidean rings and Unique Factorization
Domains that are general structures where an analogous of the Fundamental Theorem of Arithmetic
holds. First, we formalize the general abstract notions of divisibility, prime and irreducible elements
in commutative rings, essential to dealing with unique factorization domains. Then, we formalize the
landmark theorem establishing that every principal ideal domain is a unique factorization domain.
Finally, we specify the theory of Euclidean domains and formally verify that the rings of integers,
the Gaussian integers, and arbitrary fields are Euclidean domains. To highlight the benefits of such a
general abstract discipline of formalization, we specify a Euclidean gcd algorithm for Euclidean do-
mains and formalize its correctness. Also, we show how this correctness is inherited under adequate
parameterizations for the structures of integers and Gaussian integers.

1 Introduction

The NASA PVS algebra library ([4]) was recently enriched with a series of theorems related to the
theory of rings. The extension includes complete formalizations of the isomorphism theorems for rings,
principal and prime and maximal ideals, and a general abstract version of the Chinese Remainder Theo-
rem (CRT) which holds for abstract rings, including non-commutative rings. The benefit of formalizing
algebraic results from this abstract theoretical perspective was made evident showing how, from the ab-
stract version of CRT, the well-known numerical version of CRT for the ring of integers Z was formalized
[21].

In this work, we give another substantial step towards enriching the PVS abstract algebra library
by formalizing properties about factorization in commutative rings regarding both unique factorization
domains and Euclidean rings. Roughly, unique factorization domains are abstract structures for which a
general version of the Fundamental Theorem of Arithmetic holds. On the other hand, Euclidean rings
are equipped with a norm that allows defining a suitable generalization of Euclid’s division lemma and
consequently of notions such as greatest common divisor (gcd). The practicality of gcd is well-known
in the ring Z. Nevertheless, mathematicians known this notion is of general fundamental importance in
abstract Euclidean domains for which in general, gcd should and may be defined in different manners.

Figure 1 highlights the subtheories subject of the extension to the PVS theory algebra discussed
in this paper. The red ones are related to Euclidean rings and gcd algorithms for Euclidean domains,
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2 Formalizing Factorization on Euclidean Domains

Figure 1: Ring theories expanding the PVS algebra library

and the orange ones are those related to unique factorization domains. The extension includes 210 new
formulas enlarging the theory algebra from 1356 (cf [21]) to 1566 formalized lemmas.

The main motivation to formalize such structures is due to their potential theoretical and practical
applications. Using the example of gcd, one can provide a general abstract version of the Euclidean
algorithm to determine a gcd between two elements (Euclidean gcd algorithm) in a Euclidean domain.
Since the ring of integers Z, the Gaussian integers Z[i] (which are the subset of complex numbers whose
real and imaginary parts are integer numbers) and rings of polynomials over integral domains are partic-
ular Euclidean domain structures, the Euclidean gcd algorithm can be applied over them, in a relatively
straightforward manner, to compute gcds in different manners. Not only for the above mentioned struc-
tures, but for a variety of Euclidean domains.

Also, every element of a unique factorization domain can be factorized as a finite number of irre-
ducible elements, and one can prove that Euclidean domains are unique factorization domains. These
properties allow us to introduce modular arithmetic, and verify generic versions of Euler’s Theorem and
Fermat’s Little Theorem for Euclidean domains, and promote factorization in Euclidean domains as a
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convenient feature to develop efficient algorithms in symbolic computation [20], [11]. Thus, a formal-
ization of the main results about unique factorization and Euclidean domains would allow the formal
verification of more complex theories involving such structures in their scope.

The main contributions of this paper are listed below.

• We formalize the abstract notions of divisibility, prime and irreducible elements in commutative
rings, which are essential to deal with unique factorization domains. In integral domains, prime
elements are irreducible. The converse is not true in general. Among other properties, we formalize
the theorem that establishes that in principal ideal domains (as it is well-known, it holds in Z)
irreducible elements are also prime.

• We specify unique factorization domains and formalize the theorem that every principal ideal
domain is a unique factorization domain, which is a landmark result in abstract algebra.

• We specify the notion of Euclidean domain and formally verify that the rings Z and Z[i], and any
arbitrary field are Euclidean domains.

• We specify the general abstract notion of gcd for commutative rings, providing a general Eu-
clidean gcd algorithm for Euclidean domains and formalize its correctness. Using this result, we
parameterize the adequate norms and gcd relations for the rings Z and Z[i]; thus, obtaining in a
straightforward manner the correctness of such instantiations of the abstract algorithm for these
Euclidean domains. In this manner, we illustrate the benefits of maintaining the abstract general
discipline of formalization for algebraic theories and the potential of such a discipline for applica-
tion in concrete algebraic structures.

Organization of the paper. Section 2 presents a theoretical overview of unique factorization and Eu-
clidean domains, pointing out the main concepts and results. Also, it comments on some differences
between pen-and-paper proofs presented in Hungerford’s textbook [17] and this formalization. Section
3 discusses the aspects of the formalization of the Euclidean gcd Algorithm for Euclidean Domains, as
well as its application for two particular cases. Section 4 discusses related work and work in progress.
Finally, Section 5 concludes and suggests future work. The formalizations were developed using the
Prototype Verification System (PVS) and are available at algebra W.

2 Formalization of Euclidean Domains

Notions such as prime element, division, and gcd between two elements and some landmark results,
including the Fundamental Theorem of Arithmetic, Euclid’s division lemma, and Euclidean Algorithm,
are well established and widespread for the ring of integers. Such concepts and general versions of
exciting results are extended for abstract algebraic structures ([17], [9], [12]) and are the scope of our
formalization.

This section gives both a theoretical overview of the central notions and properties and discusses the
PVS features used in their formalization. In addition, to highlight crucial differences between pen-and-
paper vs formalized proofs, some analytical concepts and results are presented as enunciated in Chapter
III of Hungerford’s textbook [17].

2.1 Prime and irreducible elements on rings

The definitions of prime and irreducible elements rely on the general concept of divisibility on a ring.
The specification of the notions of divisibility and associated elements are specified as the curried pred-

https://github.com/mayalarincon/algebraITP2023


4 Formalizing Factorization on Euclidean Domains

Specification 1: Divisibility and associated elements in the sub-theory ring_divides_def W

R: VAR (ring?)
a, b: VAR T

divides ?(R)(a: (R - {zero}), b: (R)): bool = EXISTS (x: (R)): a*x = b

associates ?(R)(a,b:(R - {zero })): bool = divides ?(R)(a,b) AND
divides ?(R)(b,a)

icates given in Specification 1. These predicates are abstracted for any ring structure given as their first
argument, R.

In Hungerford’s textbook, the definition of divisibility relies on a commutative ring. It avoids the
discrimination between an element’s left or right divisor, and since the main results demand a commu-
tative ring in the hypothesis, it is a reasonable requirement. However, notice that commutativity is not
a crucial property in such a notion since it only depends on the operation of multiplication in a ring.
Because of that, we opted to generalize the definition and specify divisibility on non necessarily com-
mutative rings as (divides?(R)(a,b)). Another interesting remark is related to the specification of
associates?(R)(a,b): Hungerford’s textbook omits that the type of the parameters a and b are non-
zero elements. Of course, this is obvious since it is required in the definition of divides?(R)(a,b).
However, the lack of such a hypothesis is recurrent in several statements along the textbook that require
it (for example, in Theorem 2.1).

In the sub-theory ring_divides W , we formalized the properties related to the divisibility stated
in Theorem 2.1. Some of them involve the object “unit”.
In a ring (R,+,∗,zero,one) with multiplication identity one, an element u is called a unit if u is left- and
right-invertible; that is, if there exist elements u−1

1 ,u−1
2 ∈ R such that u∗u−1

1 = u−1
2 ∗u = one.

Theorem 2.1 (Th.3.2, Hungerford [17]). Let a,b and u be elements of a commutative ring R with identity.

(i) a divides b (denoted as a | b) if and only if (b)⊂ (a), where (x) denotes the principal ideal gener-
ated by x.

(ii) a and b are associates if and only if (a) = (b).

(iii) u is a unit if and only if u | r for all r ∈ R.

(iv) u is a unit if and only if (u) = R.

(v) The relation “a and b are associates” is an equivalence relation on R.

(vi) If a = br, where r ∈ R is a unit, then a and b are associates. If R is an integral domain, then the
converse is true.

Theorem 2.1 has a straightforward formalization due to the robustness of the formal framework pre-
viously developed for rings and principal ideals [21]. The formalization of the properties (i), (ii), and (iv)
illustrates it clearly. In fact, by definition, (a) denotes the intersection of all ideals in a ring R containing
the element a. The lemma principal_ideal_charac W in theory ring_principal_ideal charac-
terizes (a) as the set one_gen(R)(a) W in the theory ring_one_generator. The last characterization
depends on a sum, specified as R_sigma, over elements of a function in the ring R, defined over abstract
types, as given in the theory ring_basic_properties W . The constructor R_sigma generalizes con-
structors in the nasalib built for specific theories as the theory of reals. Also, since R is a commutative

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_divides_def.pvs/#L25-L45
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_divides.pvs#L23-L87
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal.pvs#L48-L50
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_one_generator.pvs#L50-L52
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_basic_properties.pvs#L25-L226
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Specification 2: Definitions of irreducible and prime elements in the subtheories
ring_irreducible_element_def W and ring_prime_element_def W , respectively
R: VAR (ring_with_one?)
R_irreducible_element ?(R)(x:(R)): bool = x/=zero AND

(NOT unit?(R)(x)) AND
(FORALL (a,b:(R)): x = a*b IMPLIES (unit?(R)(a) OR unit?(R)(b)))

%---------------------------------------
R_prime_element ?(R)(x:(R)): bool = x/=zero AND (NOT unit?(R)(x)) AND
(FORALL (a,b:(R)): divides ?(R)(x, a*b) IMPLIES

divides ?(R)(x, a) OR divides ?(R)(x, b))

ring with identity, the lemma commutative_id_one_gen_charac W provides a much simpler charac-
terization of the set one_gen(R)(a); indeed, such characterization simplifies the analysis of properties
(i), (ii), and (iv) since (a) can be built as the set aR = {ar : r ∈ R}.

From the concepts of divisibility and unit, we specified prime and irreducible elements on a ring with
identity as the predicates given in the Specification 2.

In the ring of integers, prime and irreducible elements are indistinguishable. However, this is not
true for all rings. For instance, 2 is prime but not irreducible in Z6. Theorem 2.2 gives some properties
regarding prime and irreducible elements formalized in the subtheories ring_prime_element W and
ring_principal_ideal_domain W . Among others, it shows that prime and irreducible elements are
equal over principal ideal domains.

Theorem 2.2 (Th.3.4, Hungerford [17]). Let p and c be nonzero elements in an integral domain R.

(i) p is prime if and only if (p) is a nonzero prime ideal;

(ii) c is irreducible if and only if (c) is maximal in the set S of all proper principal ideals of R.

(iii) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime if and only if p is irreducible.

(v) Every associate of an irreducible [resp. prime] element of R is irreducible [resp. prime].

(vi) The only divisors of an irreducible element of R are its associates and the units of R.

Although the result is stated for integral domains, Hungerford advises that a weakened hypothesis
can be considered in some parts of the theorem. We formalize the results using the minimum number of
required conditions and detect that items (i) and (vi) of the Theorem 2.2 hold for commutative rings with
identity.

Properties (i), (ii), and (iii) form the basis for the formalization of the characterization of primes
as irreducible elements over principal ideal domains, given in property (iv) and specified as the lemma
PID_prime_el_iff_irreducible W . The sufficiency of the property (iv), established in the property
(iii), is verified as the lemma prime_el_is_irreducible W . It follows in a relatively straightforward
manner from the definition of prime elements and the result that the multiplicative cancelation law holds
for non-zero elements in integral domains (lemma nzd_R_cancel_left W ) since integral domains
have not zero divisors.

On the other hand, the necessity of (iv) is trickier since it depends on properties (i), (ii), and other ad-
ditional previous results developed for rings with identity and maximal ideals. Property (i) is specified by
the lemma prime_el_iff_prime_ideal W . Its proof depends on the lemmas prime_ideal_prop1

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_irreducible_element_def.pvs#L22-L45
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_element_def.pvs#L22-L38
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_with_id_one_generator.pvs#L56-L58
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L23-L128
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L58-L59
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L63-L65
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_nz_closed_aux.pvs#L43-L44
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L51-L53
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_ideal.pvs#L41-L50
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Specification 3: Theory ring_unique_factorization_domain_def W with the definition of unique
factorization domain
fsIr?(R)(fsI: finseq [(R)]): bool = FORALL (i: below[length(fsI )]):

R_irreducible_element ?(R)(fsI(i))

unique_factorization_domain ?(R): bool = integral_domain_w_one?(R) AND
FORALL(a: (R)): a /= zero AND NOT unit?(R)(a) IMPLIES
EXISTS(fsI:(fsIr?(R))):a = op_fseq(fsI) AND
FORALL(fsIp:fsIr(R)):a = op_fseq(fsIp) IMPLIES length(fsI) = length(fsIp) AND
EXISTS(phi:[below[length(fsI)]->below[length(fsI )]]): (bijective ?(phi)) AND
FORALL(i:below[length(fsI )]): associates ?(R)(fsIp(phi(i)),fsI(i))

and prime_ideal_prop2 W formalized in theory ring_prime_ideal, which provide a characteri-
zation of prime ideals over commutative rings. Lemma el_irred_iff_one_gen_maximal W spec-
ifies property property (ii), which establishes that the principal ideal generated by an irreducible ele-
ment is a maximal element in the set S of all proper principal ideals of a ring. It is important to stress
here that in the pen-and-paper proof of property (iv) given in [17], Hungerford assumes the vital result
that maximal elements in the previously mentioned set S are maximal ideals in R. We formalized this
property without this assumption as the lemma el_max_iff_one_gen_maximal W in the sub-theory
ring_principal_ideal_domain. Finally, the necessity of property iv) is concluded as follows. If p is
an irreducible element, then (p) is a maximal element, according to el_max_iff_one_gen_maximal.
Since R is a ring with identity, R2 = R by lemma ring_w_one_is_idempotent W , which is formal-
ized in the sub-theory ring_with_one_basic_properties. Consequently, (p) is a prime ideal by the
lemma maximal_prime_ideal W and, by property (i), p is a prime element.

2.2 Unique Factorization Domains

The well-known Fundamental Theorem of Arithmetic for integers states that any positive integer greater
than 1 can be factorized as a unique product of primes unless a permutation of such factors. Unique Fac-
torization Domains (UFDs) are integral domains with an analogous of such theorem. The Specification 3
shows the definition of UFDs. It depends on a sequence of irreducible elements fsIr?(R)(fsI) on a ring
R with identity and a recursive operator op_fseq(fsI), as specified in the sub-theory op_finseq_def
W , which multiplies the elements of such a sequence. The operator op_fseq(fsI) is specified over an
abstract structure (T,∗,one) equipped with a binary operation ∗ and a constant one.

From the point of view of formalization, such a general specification is very useful for two reasons:
firstly, it allows the use of the operator op_fseq(fsI) in a variety of abstract and concrete structures
(monoids, monads, groups, rings, integers, reals) by only adequately parameterizing the sub-theory
op_finseq_def; secondly, it avoids proof obligations, called in PVS Type Correctness Conditions
(TCCs), automatically generated by the system, since the operator is defined for elements of an abstract
type, which provides more automation in our formal verification. Indeed, suppose such an operator was
defined over elements of an algebraic structure, for example, a monad. To each application of that defini-
tion in a specific context, PVS will automatically generate a proof obligation to verify that op_fseq(fsI)
acts on a sequence whose elements belong to a monad. This specification design would make the theory
verification more onerous. It is advantageous to use polymorphism to formalize concepts and properties
that hold for a non-interpreted type since it allows the reuse of such results in multiple contexts.

In sub-theory ring_unique_factorization_domain, we formalized the Theorem 2.3, which is a

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_ideal.pvs#L41-L50
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_unique_factorization_domain_def.pvs#L1-L22
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_ideal.pvs#L41-L50
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L56-L60
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L51-L55
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_with_one_basic_properties.pvs#L63-L64
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_maximal_ideal.pvs#L39-L41
https://github.com/mayalarincon/algebraITP2023/blob/main/op_finseq_def.pvs#L22-L33
https://github.com/mayalarincon/algebraITP2023/blob/main/op_finseq_def.pvs#L22-L33
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Specification 4: Auxiliary function to build an ascending chain of ideals
phi(n:nat , R:principal_ideal_domain , a:(non_fact_el_set(R))):
RECURSIVE (non_fact_el_set(R)) =
IF n = 0 then a
ELSE choose ({x : (non_fact_el_set(R))|

strict_subset ?(one_gen(R)(phi(n-1, R, a)),one_gen(R)(x))})
ENDIF MEASURE n

landmark result about UFDs.

Theorem 2.3 (Th.3.7, Hungerford [17]). Every principal ideal domain is a unique factorization domain.

The formalization of the Theorem 2.3 has two main steps that we briefly comment on the following.
Step 1 - Existence of a factorization
First, previous subtheories established in the PVS theory algebra were enriched with auxiliary

results. The new lemma chain_ideal_ union_idealW , which states that the union of a chain of ideals
in a ring R is an ideal, is included in the sub-theory ring_ideal W . The new lemma nonzero_ ring_
exists_maximal_ideal_auxW , which proves that every ideal in a ring R with identity, except R itself,
is contained in a maximal ideal in R, is added to the sub-theory ring_with_ one_maximal_idealW .

The formalization of this lemma considers an ideal A 6=R, S= {B⊂R; B is ideal in R, B 6=R and A⊂
B} and C = {Ci | i ∈ I} an arbitrary chain of ideals in S. We prove that the ideal C =

⋃
Ci is an

upper bound of the chain C in S and, by using Zorn’s lemma (available in the NASA PVS theory
orders), we conclude that S has a maximal element, which is a maximal ideal in R. In the sub-theory
ring_principal_ideal W , we add the new lemma stable_chain W , which states that if R is
a principal ideal ring and (a1) ⊂ (a2) . . . is a chain of ideals in R, then for some positive integer n,
(a j) = (an) for all j ≥ n. The new lemma nonzero_nonunit_irreducible_divides W , formalized
in the sub-theory ring_principal_ideal_domain W , states that every nonzero and non-unit element
in a principal ideal domain is divided by an irreducible element.

We conclude Step 1 by verifying that the subset of R below, a principal ideal domain, is empty.

non_fact_el_set(R) =


x : x is a nonzero non-unit element

in R and cannot be finitely
factorized into irreducible elements


In fact, if a ∈ non_fact_el_set(R), we could build an ascending chain of ideals, (a)⊂ (a1)⊂ . . .,

which contradicts the lemma stable_chain. The key to verifying such fact was to specify the recursive
function phi(n,R,a) W showed in Specification 4 (sub-theory ring_principal_ideal_domain W )
and verify that it is well defined whenever non_fact_el_ set(R) is non-empty.

Whenever a∈ non_fact_el_set(R), the choice of the element a1, obtained by the function choose
in Specification 4, is guaranteed. In fact, the lemma nonzero_nonunit_ irreducible_divides en-
sures that a= ca1, where c is irreducible. It implies that a1 belongs to non_fact_el_set(R) and satisfies
the condition (a)⊂ (a1) by Theorem 2.1(i).

Step 2: “Uniqueness” of a factorization
We mean “uniqueness”, the existence of a bijective function between the elements of two factoriza-

tions mapping associated elements. First, we formalized the lemma prime_el_ dividesW (sub-theory
ring_prime_element W ) which states if a prime element p in an integral domain divides the product
a1 . . .an then there exists 1 ≤ i ≤ n such that p divides ai. By 2.2(iii), it holds if p is an irreducible

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_ideal.pvs#L108-L110
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_ideal.pvs#L24-L113
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_with_one_maximal_ideal.pvs#L79-L81
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_with_one_maximal_ideal.pvs#L79-L81
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_with_one_maximal_ideal.pvs#L25-L88
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal.pvs#L24-L71
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal.pvs#L63-L68
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L62-L64
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L75-L79
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L85-L89
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_prime_and_irreducible_element.pvs#L23-L128
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Specification 5: Definitions of Euclidean rings and Euclidean domains
euclidean_ring?(R): bool = commutative_ring?(R) AND
EXISTS (phi: [(R - {zero}) -> nat]): FORALL(a,b: (R)):

((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES EXISTS(q,r:(R)):
(a = q*b+r AND (r = zero OR (r /= zero AND phi(r) < phi(b))))))

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

euclidean_domain ?(R): bool = euclidean_ring?(R) AND integral_domain_w_one?(R)

element. From this, if a1 . . .an = a = b1 . . .bm, where ai,1 ≤ n and b j, 1 ≤ m are irreducible elements,
then a1 divides b j, for some j. By Theorem 2.2(vi), a1 and b j are associates. Using induction on n, we
prove that n = m and establish the required bijective function.

2.3 Euclidean Rings

A Euclidean ring is a commutative ring R equipped with a norm ϕ over R−{zero}, where an abstract
version of the well-known Euclid’s division lemma holds. Euclidean rings and domains are specified in
the subtheories euclidean_ring_def W and euclidean_domain_def W (Specification 5).

In sub-theory euclidean_domain W , we formalized that elements of Euclidean ring can be fac-
torized as irreducible elements by verifying Theorem 2.4.

Theorem 2.4 (Th.3.9, Hungerford [17]). A Euclidean ring R is a principal ideal ring with identity.
Consequently, every Euclidean domain is a unique factorization domain.

The verification makes use of the well-ordering principle over ϕ(I∗) = {ϕ(x) ∈ N; x ∈ I−{zero}},
where I is a nonzero ideal in R and ϕ is a norm on R−{zero}. By choosing a ∈ I such that ϕ(a) is the
minimum element of ϕ(I∗), b ∈ I satisfies b = qa+ r, for some q ∈ R and r ∈ I. From this, we infer
that r = 0, since r 6= 0 contradicts the minimality of ϕ(a). Consequently, b = qa and I ⊂ Ra ⊂ (a) ⊂ I,
guaranteeing that every ideal in R is a principal ideal. By Theorem 2.3, we have that a Euclidean principal
ideal domain is a unique factorization domain.

In sub-theory euclidean_domain W , we also formalized the results stating that the ring of integers
( W ) and any arbitrary field ( W ) are Euclidean domains.

3 Formalization of gcd Algorithm for Euclidean Domains

The theory Euclidean_ring_def W includes two additional definitions to allow abstraction of ac-
ceptable Euclidean norms and associated functions fulfilling the properties of Euclidean rings (see Spec-
ification 6).

The first definition is the relation Euclidean_pair? W Given a Euclidean ring R and a Euclidean
norm of non-zero elements over the naturals φ : R\{zero}→ N, the predicate Euclidean_pair?(R,φ)
holds whenever φ satisfies the constraints of a Euclidean norm over R.

The second definition is the curried relation given as Euclidean_f_phi?(R,φ)( fφ ) W . This rela-
tion holds whenever Euclidean_pair?(R,φ) holds, and fφ is a function from R×R\{zero} to R×R,
such that for all pair of elements of R in its domain, fφ (a,b) gives a pair of elements, say (div,rem)
satisfying the constraints of Euclidean rings regarding the norm φ : if a 6= zero, a = div ∗ b+ rem, and

https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_ring_def.pvs#L24-L56
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_domain_def.pvs#L25-L38
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_domain.pvs#L24-L57
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_domain.pvs#L24-L57
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_domain.pvs#L46-L47
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_domain.pvs#L50-L51
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_ring_def.pvs#L24-L56
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_ring_def.pvs#L40-L43
https://github.com/mayalarincon/algebraITP2023/blob/main/euclidean_ring_def.pvs#L47-L52
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Specification 6: Additional definitions in the sub-theory Euclidean_ring_def
Euclidean_pair?(R : (Euclidean_ring?), phi: [(R - {zero}) -> nat]) : bool =

FORALL(a,b: (R)): ((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES

EXISTS(q,r:(R)): (a = q*b+r AND
(r = zero OR (r /= zero AND phi(r) < phi(b))))))

Euclidean_f_phi?(R : (Euclidean_ring?),
phi : [(R - {zero}) -> nat] | Euclidean_pair?(R,phi))

(f_phi : [(R) , (R - {zero}) -> [(R),(R)]]) : bool =
FORALL (a : (R), b :(R - {zero })):
IF a = zero THEN f_phi(a,b) = (zero , zero)
ELSE LET div = f_phi(a,b)‘1, rem = f_phi(a,b)‘2 IN

a = div * b + rem AND
(rem = zero OR (rem /= zero AND phi(rem) < phi(b)))

ENDIF

if rem 6= zero, φ(rem) < φ(b). These definitions are correct since the existence of such a φ and fφ is
guaranteed by the fact that R is a Euclidean ring. Also, notice that the decrement of the norm, i.e.,
φ(rem)< φ(b), is the key to building an abstract Euclidean terminating procedure.

Using the previous two relations, a general abstract recursive Euclidean gcd algorithm is specified in
the sub-theory ring_euclidean_algorithm W as the curried definition Euclidean_gcd_algorithm
W (See Specification 7). The correctness of this algorithm is guaranteed by the types of its argu-
ments. Indeed, since allowed arguments R,φ , and fφ should satisfy Euclidean_f_phi?(R,φ)( fφ ),
R is a Euclidean ring with associated Euclidean norm φ and adequate division and remainder func-
tions given by fφ . The termination of the algorithm is a proof obligation W (termination TCC) au-
tomatically generated by PVS. Termination is proved using the lexicographical MEASURE of the al-
gorithm provided in the specification. This measure decreases after each possible recursive call: for
Euclidean_gcd_algorithm(R,φ , fφ )(a,b), if a 6= zero, φ(a)≥ φ(b) and rem 6= zero, the recursive call
is Euclidean_gcd_algorithm(R,φ , fφ )(b,rem); thus, the pair (φ(b),φ(a)) is lexicographically greater
than (φ(rem),φ(b)), since φ(b)> φ(rem).

In the other case, the recursive call is Euclidean_gcd_algorithm(R,φ , fφ )(b,a). This happens if
a 6= zero, and φ(b)> φ(a); therefore, (φ(b),φ(a)) is lexicographically greater than (φ(a),φ(b)).

It is worth mentioning that such termination TCCs are generated automatically by PVS, but in gen-
eral, as in this case, the mandatory proof must be formalized manually.

The proof of correctness of the recursive algorithm is given as a straightforward corollary of the
Euclid_theorem W (in Specification 7) that establishes the correctness of each recursive step regard-
ing the abstract definition of gcd W given in Specification 8. Essentially, this theorem states that given
an adequate Euclidean norm φ and associated function fφ , the gcd of a pair (a,b) is equal to the gcd
of the pair (rem,b), where rem is computed through fφ , i.e., rem is equal to the second projection of
fφ (a,b). Notice that since Euclidean rings allow a variety of Euclidean norms and associated functions
(e.g., [17], [12]), the definition of gcd is not specified as a function but as the relation “gcd?”.

Finally, the proof of correctness of the abstract Euclidean algorithm is obtained by induction, using
the lexicographic MEASURE of the algorithm. The theorem Euclidean_gcd_alg_correctness W (in
Specification 7) formalizes this fact. For an input pair (a,b), in the inductive step of the proof, when
φ(b)> φ(a) and the recursive call swaps the arguments, one assumes that

gcd?(R)({b,a},Euclidean_gcd_algorithm(R,φ , fφ )(b,a)),

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L23-L67
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L36-L48
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L36-L48
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.tccs#L105-L119
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L51-L57
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_gcd_def.pvs#L36-L40
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L60-L65
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Specification 7: Abstract gcd Euclidean algorithm for Euclidean rings in the sub-theory
ring_euclidean_algorithm W

Euclidean_gcd_algorithm(R : (Euclidean_domain ?[T,+,*,zero ,one]),
(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R,phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)))
(a: (R), b: (R - {zero })) : RECURSIVE (R - {zero}) =

IF a = zero THEN b
ELSIF phi(a) >= phi(b) THEN

LET rem = (f_phi(a,b))‘2 IN
IF rem = zero THEN b
ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,rem)
ENDIF

ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,a)
ENDIF

MEASURE lex2(phi(b), IF a = zero THEN 0 ELSE phi(a) ENDIF)

Euclid_theorem : LEMMA
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}), g : (R - {zero })) :

gcd?(R)({x : (R) | x = a OR x = b}, g) IFF
gcd?(R)({x : (R) | x = (f_phi(a,b))‘2 OR x = b}, g)

Euclidean_gcd_alg_correctness : THEOREM
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}) ) :

gcd?(R)({x : (R) | x = a OR x = b},
Euclidean_gcd_algorithm(R,phi ,f_phi)(a,b))

which means that Euclidean_gcd_algorithm(R,φ , fφ )(b,a) computes correctly the gcd of the pair
(b,a). From this assumption, one concludes that

gcd?(R)({a,b},Euclidean_gcd_algorithm(R,φ , fφ )(a,b)).

Otherwise, when the recursive call is Euclidean_gcd_algorithm(R,φ , fφ )(b,rem), which happens if
φ(a) ≥ φ(b), then rem = ( fφ (a,b))′2, the second component of fφ (a,b); by induction hypothesis one
has that

gcd?(R)({b,rem},Euclidean_gcd_algorithm(R,φ , fφ )(b,rem)).

Finaly, by application of Euclid_theorem, one concludes that the abstract general Euclidean algorithm
computes correctly a gcd for the pair (a,b).

Now, we show how the correctness of the abstract algorithm Euclidean_gcd_algorithm is eas-
ily inherited, under adequate parameterizations, for the structures of integers Z and Gaussian integers
Z[i]. The lines of reasoning follow those given in discussions on factorization in commutative rings and
multiplicative norms in textbooks (e.g., Section 47 in [12], or Chapter 3, Section 3 in [17]).

The Specification 9 presents the case of the Euclidean ring Z. The Euclidean norm φZ is selected
as the absolute value while the associated function fφZ is built using the integer division and remainder,

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L23-L67
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Specification 8: gcd definition for commutative rings - sub-theory ring_gcd_def W

gcd?(R)(X: {X | NOT empty ?(X) AND subset ?(X,R)}, d:(R - {zero })): bool =
(FORALL a: member(a, X) IMPLIES divides ?(R)(d,a)) AND

(FORALL (c:(R - {zero })):
(FORALL a: member(a, X) IMPLIES divides ?(R)(c,a)) IMPLIES

divides ?(R)(c,d))

Specification 9: Correctness of the parameterization of the abstract Euclidean algorithm for the Euclidean
ring Z - sub-theory ring_euclidean_gcd_algorithm_Z W

phi_Z(i : int | i /= 0) : posnat = abs(i)

f_phi_Z(i : int , (j : int | j /= 0)) : [int , below[abs(j)]] =
((IF j > 0 THEN ndiv(i,j) ELSE -ndiv(i,-j) ENDIF), rem(abs(j))(i))

phi_Z_and_f_phi_Z_ok : LEMMA Euclidean_f_phi?[int ,+,*,0](Z,phi_Z)(f_phi_Z)

Euclidean_gcd_alg_correctness_in_Z : COROLLARY
FORALL(i: int , (j: int | j /= 0) ) :

gcd?[int ,+,*,0](Z)({x : (Z) | x = i OR x = j},
Euclidean_gcd_algorithm[int ,+,*,0,1](Z, phi_Z,f_phi_Z)(i,j))

specified in the PVS prelude libraries as div and rem: for a ∈ Z,b ∈ Z \ {0}, div(a,b) computes the
integer division of a by b, and, for b ∈ Z+ \{0}, rem(b)(a) computes the remainder of a by b.

The correctness of the Euclidean algorithm for the ring of integers is specified as the corollary
Euclidean_gcd_alg_correctness_in_Z W . It states that for the Euclidean ring of integers Z, and
any i, j ∈ Z, j 6= 0, the parameterized abstract algorithm, Euclidean_gcd_algorithm[int,+,*,0,1]
satisfies the relation gcd?[int,+,*,0]:

gcd?[int,+,∗,0](Z)({i, j},
Euclidean_gcd_algorithm[int,+,∗,0,1](Z,φZ, fφZ)(i, j))

The formalization of this corollary follows from the theorem of correctness for the abstract Euclidean
algorithm, Euclidean_gcd_alg_correctness theorem (Specification 7), which essentially requires
proving that the chosen Euclidean measure φZ, and the associated function fφZ fulfill the conditions
in the definition of Euclidean rings. The latter is formalized as lemma phi_Z_and_f_phi_Z_ok W :
Euclidean_f_phi?[int,+,∗,0](Z,φZ)( fφZ).

The Specification 10 presents the formalization of correctness of the Euclidean algorithm for the Eu-
clidean ring Z[i] of Gaussian integers. The Euclidean norm of a Gaussian integer x = (Re(x)+ iIm(x)) ∈
Z[i], φZ[i](x), is selected as the natural given by the multiplication of x by its conjugate (conjugate(x) =
Re(x)− iIm(x)): Re(x)2 +Im(x)2. The construction of an adequate associated function fφZ[i] (f_phi_Zi
in Specification 10) requires additional explanations and is specified through the auxiliary function
div_rem_appx W . For a pair of integers (a,b), b 6= 0, this function computes the pair of integers
(q,r) such that a = qb+ r, and |r| ≤ |b|/2; thus, qb is the integer closest to a. The equality a = qb+ r
is formalized as lemma div_rev_appx_correctness W . Several properties on the field of complex
numbers are imported from the PVS complex theory.

Now, we explain the construction of the function fφZ[i] W . For y, a Gaussian integer and x, a positive
integer, let Re(y) = q1x+ r1 and Im(y) = q2x+ r2, where (q1,r1) and (q2,r2) are computed with the

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_gcd_def.pvs#L23-L45
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L72-L98
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L94-L96
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L90-L90
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L154-L157
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L161-L164
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L171-L173
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Specification 10: Correctness of the parameterization of the abstract Euclidean algorithm for Z[i] - sub-
theory ring_euclidean_gcd_algorithm_Zi W

Zi: set[complex] = {z : complex | EXISTS (a,b:int): a = Re(z) AND b = Im(z)}

Zi_is_ring: LEMMA ring?[complex ,+,*,0](Zi)

Zi_is_integral_domain_w_one: LEMMA integral_domain_w_one?[complex ,+,*,0,1](Zi)

phi_Zi(x:(Zi) | x /= 0): nat = x * conjugate(x)

phi_Zi_is_multiplicative: LEMMA
FORALL ((x: (Zi) | x /= 0), (y: (Zi) | y /= 0)):

phi_Zi(x * y) = phi_Zi(x) * phi_Zi(y)

div_rem_appx(a: int , (b: int | b /= 0)) : [int , int] =
LET r = rem(abs(b))(a),

q = IF b > 0 THEN ndiv(a,b) ELSE -ndiv(a,-b) ENDIF IN
IF r <= abs(b)/2 THEN (q,r)
ELSE IF b > 0 THEN (q+1, r - abs(b))

ELSE (q-1, r - abs(b))
ENDIF

ENDIF

div_rev_appx_correctness : LEMMA
FORALL (a: int , (b: int | b /= 0)) :

abs(div_rem_appx(a,b)‘2) <= abs(b)/2 AND
a = b * div_rem_appx(a,b)‘1 + div_rem_appx(a,b)‘2

f_phi_Zi(y: (Zi), (x: (Zi) | x /= 0)): [(Zi),(Zi)] =
LET q = div_rem_appx(Re(y * conjugate(x)), x * conjugate(x))‘1 +

div_rem_appx(Im(y * conjugate(x)), x * conjugate(x))‘1 * i,
r = y - q * x IN (q,r)

phi_Zi_and_f_phi_Zi_ok: LEMMA
Euclidean_f_phi?[complex ,+,*,0](Zi,phi_Zi)(f_phi_Zi)

Euclidean_gcd_alg_in_Zi: COROLLARY
FORALL(x: (Zi), (y: (Zi) | y /= 0) ) :

gcd?[complex ,+,*,0](Zi)({z :(Zi) | z = x OR z = y},
Euclidean_gcd_algorithm[complex ,+,*,0,1](Zi, phi_Zi,f_phi_Zi)(x,y))

auxiliary function div_rem_appx (with respective inputs (Re(y),x) and (Im(y),x)). Let q = q1+ iq2 and
r = r1 + ir2, then y = qx+ r. Also, notice that if r 6= 0 then φZ[i](r)≤ φZ[i](x), since r2

1 + r2
2 ≤ x2/2≤ x2.

For the case in which x is a non zero Gaussian integer, φZ[i](x)> 0 holds.
Then, we can compute div_rem_appx(yconjugate(x),xconjugate(x)), obtaining q,r′ ∈Z[i] such

that yconjugate(x) = q(xconjugate(x))+ r′, and r′ = 0 or φZ[i](r′)< φZ[i](xconjugate(x)).
By selecting r = y−qx, we obtain y = qx+ r and rconjugate(x) = r′.
Finally, when r 6= 0, since φZ[i](rconjugate(x)) < φZ[i](xconjugate(x)), by application of the

lemma phi_Zi_is_multiplicative W , we conclude that φZ[i](r)< φZ[i](x).
The formalization of correctness of the Euclidean algorithm for Gaussian integers obtained by pa-

rameterizations with Z[i], its Euclidean norm φZ[i] and associated function fφZ[i] follows as the simple
corollary Euclidean_gcd_alg_ in_Zi W in Specification 10. This is proved using the correctness
of the abstract Euclidean algorithm (Specification 7) and lemma phi_Zi_and_f_phi_Zi_ok W . The
latter states that the Euclidean norm φZ[i] and its associated function fφZ[i] are adequate for the Euclidean
ring Z[i]: Euclidean_f_phi?[complex,+,∗,0](Z[i],φZ[i])( fφZ[i]).

https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L108-L190
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L145-L146
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L186-L188
https://github.com/mayalarincon/algebraITP2023/blob/main/ring_euclidean_algorithm.pvs#L177-L177


T.A. de Lima, A.B. Avelar, A.L. Galdino and M. Ayala-Rincón 13

4 Related Work, and work in progress

4.1 Related work

Several formalizations focus on specific ring structures as the ring of integers. Such developments range
from simple formalization exercises, such as correctness proofs of gcd algorithms for Z, to elaborated
mechanical proofs of the Chinese Remainder theorem for Z. The latter started from Zhang and Hua’s
RRL (Rewrite Rule Laboratory) mechanization [29], followed by different approaches in Mizar, HOL
Light, hol98, Coq [27], ACL2 [25], and VeriFun [28]. Nevertheless, the general algebraic abstract
approach is followed by a few developments. In particular, such an approach is followed in the Is-
abelle/HOL Algebra Library (see [2], [1], and [3]); a library that provides a wide range of theorems on
mathematical structures, including results on rings, groups, factorization over ideals, rings of integers
and polynomial rings, as well as formalization of an algorithm to compute echelon forms over Euclidean
domains, and so characteristic polynomials of matrices. Also, the Lean mathlib library [8] specifies
unique factorization domains, prime and irreducible elements in commutative rings, and relations with
principal ideal domains. In addition, it specifies the notion of gcd for Euclidean domains and formal-
izes several properties as the correctness of the extended Euclidean algorithm by applying Bézout’s gcd
lemma. The library mathlib formalizes that a Euclidean domain is a principal ideal domain and a princi-
pal ideal domain is a unique factorization domain. The former is given as formally verified construction
from a definition. From this instance, it is possible to infer that the Gaussian integers are a Euclidean
domain and thus a principal ideal. Also, the Euclidean algorithm can be adapted to structures as the
Gaussian integers. A recent extension of mathlib specifies the ring of Witt vectors and formalizes the
isomorphism between the ring of Witt vectors over Z/pZ and the ring of p-adic integers Zp, for a prime
p [7].

In Coq, results about groups, rings, and ordered fields were formalized as part of the FTA project [14];
this work gave rise to the formalization of the Feit and Thompson’s proof of the Odd Order Theorem
[15]. Also, there are formalizations in Coq of real ordered fields [6], finite fields [24], and rings with
explicit divisibility [5]. In Nuprl and Mizar, there are proofs of the Binomial Theorem for rings in [18]
and [26], respectively, and a Mizar formalization of the First Isomorphism Theorem for rings [19]. In
ACL2, there exists a hierarchy of algebraic structures ranging from setoids to vector spaces that aims the
formalization of computer algebra systems [16].

Regarding the paper-and-pen proofs in [17] and the formalization reported in this paper, the last one
comprises about twenty pages of Hungerford’s textbook. We estimate it took ten months of human labor.
Some results in the book appear as trivial remarks only. Nevertheless, they required the formalization of
a significative sequence of auxiliary lemmas. An excellent example of the lack of details in this respect
is a remark after Definition 3.5. in [17] that we have used in tutorials to motivate mathematicians to deal
with proof assistants. It states that:

“every irreducible element in a unique factorization domain is necessarily prime by Defini-
tion 3.5. Consequently, irreducible and prime elements coincide, by Theorem 3.4.”

Indeed, the formalization of this remark required the application of additional properties related
to bijective functions, the equivalence relation “associates”, and the composition of finite sequences,
among others inherited from the abstract structure integral domain. Also, several particular cases had to
be analyzed to ensure the result in the cases where the elements involved are units or equal to zero.

Finally, we would like to stress that the project is focused on the formalization side, but aspects
related to code extraction can be explored through tools provided by PVS. For instance, PVSio is an ani-
mation tool that extends the ground evaluator of PVS with a predefined library of programming features
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[22]. The evaluation is possible whenever algorithms are specified constructively. For our purposes,
this means that we can run the formalized gcd algorithm with the help of the ground evaluator for any
Euclidean domain for wich the Euclidean norm φ and the associated function fφ are specified construc-
tively, which is the case of our specifications for Z and Z[i]. Elaborated approaches, based on PVSio,
use this animation tool to evaluate the formal models on a set of randomly generated test cases com-
paring the computed results against output values obtained by actual software [10]. After applying such
approaches, performance and comparison with other implementations would be possible.

4.2 Work in progress

Work in progress to be reported in the future includes formalizing the general theory of quaternions built
from any abstract structure of fields specified in PVS as commutative division rings. The specification of
quaternions is given from an abstract type T with binary operators for addition and multiplication, with
constants zero and one, respectively. The type T with addition and zero is an Abelian group, and the
multiplication is associative. The specification includes axioms for quaternion addition, and multiplica-
tion (i2 = a, j2 = b, for some given parameters a and b of T ), associativity for quaternion multiplication,
distributivity of quaternion addition and multiplication, and properties for the scalar product between ele-
ments of the field and of the quaternion. All that is provided in the theory quaternion_def W . Afterward,
in the PVS theory quaternions W , using these axioms, a series of general properties of quaternions are
provided, which range from the characterization of quaternion multiplication to the characterization of
quaternions as division rings. Once again, following the general approach to specifying quaternions from
abstract fields, we can obtain the specific structure of Hamilton’s quaternions, using as the parameter to
build the quaternions the specific field of reals. As far as we know, there are formalizations of Hamilton’s
quaternions in HOL Light and Isabelle/HOL (e.g., [13], [23]). In contrast, some elements of the general
theory of quaternions built over any abstract field, as in our case, were developed as part of the Lean
mathlib library [8].

We do not argue that any proof assistant is a better or worse framework than any other for formal-
izing algebraic notions and properties. However, we are confident that the current formalization work
adequately explores the inductive and higher-order possibilities available in PVS and substantially con-
tributes to completing the theory of the algebraic properties of rings by providing the most general and
abstract possible presentation of such algebraic structures, as also given in some of the previous refer-
ences, mainly as done by the approaches mentioned above in Isabelle/HOL and Lean ([1], [8]).

5 Conclusions and Future Work

In contrast to other works, restricted to specific ring structures, our formalization approach focuses on
the theory of abstract rings, as done in the Lean- and Isabelle-related libraries (cf [8], and [3], respec-
tively) discussed in the related work. Advantages of such an approach include increasing the interest of
mathematicians in formalizations and having practical general presentations of computational algebraic
properties portable to specific ring structures. In particular, in [21], the Chinese Remainder Theorem
was formalized for (non-necessarily commutative) rings, obtaining, as a corollary, the CRT version for
the ring of integers. This work substantially extends the algebra PVS library by specifying Euclidean
rings and factorization domains, and formalizing the correspondence between principal ideal domains
and unique factorization domains. Also, it proved the correctness of a general Euclidean gcd algorithm
for Euclidean domains. The usefulness of such an abstract verified gcd algorithm is evident by its adapta-

https://github.com/mayalarincon/algebraITP2023/blob/main/quaternions_def.pvs#L22-L91
https://github.com/mayalarincon/algebraITP2023/blob/main/quaternions.pvs#L22-L304


T.A. de Lima, A.B. Avelar, A.L. Galdino and M. Ayala-Rincón 15

tion to specific Euclidean domain structures. Indeed, this versatility is illustrated by showing how simple
corollaries establish the correctness of the Euclidean algorithm (parameterized) for the rings of integers
and Gaussian integers (Z and Z[i]).

In future work, we will include the specification of modular arithmetic and verification of generic
versions of Euler’s Theorem and Fermat’s Little Theorem for Euclidean domains.
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