Nominal Equational Reasoning

Mauricio Ayala-Rincón ${ }^{(\dagger),(\ddagger)}$

Joint work with: Maribel Fernández ${ }^{(*)}$, Gabriel Ferreira Silva ${ }^{(\dagger)}$, and Daniele Nantes Sobrinho ${ }^{(\ddagger)}$

Salvador/Brasília/On-line, August 26th, 2020
http://nominal.cic.unb.br

Table of contents

1. Motivation
2. Nominal Syntax
3. Nominal E-Unification and equational reasoning
4. Conclusion and Future Work

Motivation

Equational Problems

- Equality check:
- Matching:
- Unification:

$$
s=t ?
$$

There exists σ such that $s \sigma=t$?
There exists σ such that $s \sigma=t \sigma$?
s and t are terms in some signature and σ is a substitution.

Equational Problems - Syntactic Unification

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$

Equational Problems - Syntactic Unification

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$
- solution $\{x / b, y / a\}$.

Equational Problems - Syntactic unification

- \mathcal{F} set of function symbols.
- \mathcal{V} set of variables.
- x, y, z variables.
- a, b, c constant symbols.
- f, g, h function symbols.
- $\mathcal{T}(\mathcal{F}, \mathcal{V})$ set of terms over \mathcal{F} and \mathcal{V}.
- s, t, u terms.
- $\sigma, \gamma, \delta: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ set of substitutions.

Substitutions have finite domain: $\{v \mid v \sigma \neq v\}$ is finite.

Equational Problems - Syntactic Unification

Example:

- Solution $\sigma=\{x / b\}$ for $f(x, y)=f(b, y)$ is more general than solution $\gamma=\{x / b, y / b\}$.
σ is more general than γ :
there exists δ such that $\sigma \delta=\gamma$;

$$
\delta=\{y / b\} .
$$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution: $\{x / f(w, w)\}$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution:
$\{x / f(w, w)\}$
- $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{z})=$ $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))), ~}$ partial solution: $\{x / f(w, w), y / f(f(w, w), f(w, w))\}$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution:
$\{x / f(w, w)\}$
- $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{z})=$ $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))), ~}$ partial solution: $\{x / f(w, w), y / f(f(w, w), f(w, w))\}$
- $h(f(w, w), f(f(w, w), f(w, w)), f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w))))=$ $h(f(w, w), f(f(w, w), f(w, w)), f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w))))$,
solution: $\{x / f(w, w), y / f(f(w, w), f(w, w)), z / f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))\}$.

Equational Problems - Syntactic Unification

Interesting questions:

- Correctness and Completeness.
- Complexity.
- With adequate data structures, there are linear solutions (Huet, Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.

Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- $f(x, y)=f(a, b)$?

The unification problem is of type finitary.

Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- $f(x, y)=f(a, b)$?
- Solutions: $\{x / a, y / b\}$ and $\{x / b, y / a\}$.

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- $f(x, a)=f(a, x)$?

The unification problem is of type infinitary.

Equational Problems - Unification Modulo

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- $f(x, a)=f(a, x)$?
- Solutions: $\{x / a\},\{x / f(a, a)\},\{x / f(a, f(a, a))\}, \ldots$

The unification problem is of type infinitary.

Equational Problems - Unification Modulo

Example: for f AC with unity $(U), f(x, e) \approx x$:

- $f(x, y)=f(a, b)$?

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f AC with unity $(U), f(x, e) \approx x$:

- $f(x, y)=f(a, b)$?
- Solutions: $\{x / e, y / f(a, b)\},\{x / f(a, b), y / e\},\{x / a, y / b\}$, and $\{x / b, y / a\}$.

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f A, and idempotent $(\mathrm{I}), f(x, x) \approx x$:

- $f(x, f(y, x))=f(f(x, z), x))$?

The unification problem is of type zero (Schmidt-Schauß 1986, Baader 1986).

Equational Problems - Unification Modulo

Example: for f A, and idempotent $(\mathrm{I}), f(x, x) \approx x$:

- $f(x, f(y, x))=f(f(x, z), x))$?
- Solutions: $\{y / f(u, f(x, u)), z / u\}, \ldots$

The unification problem is of type zero (Schmidt-Schauß 1986, Baader 1986).

Equational Problems - Unification Modulo

Example: for +AC , and h homomorphism (h), $h(x+y) \approx h(x)+h(y):$

- $h(y)+a=y+z$?

The unification problem is of type zero and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Equational Problems - Unification Modulo

Example: for +AC , and h homomorphism (h),
$h(x+y) \approx h(x)+h(y):$

- $h(y)+a=y+z$?
- Solutions: $\{y / a, z / h(a)\},\left\{y / h(a)+a, z / h^{2}(a)\right\}, \ldots$,

$$
\left\{y / h^{k}(a)+\ldots+h(a)+a, z / h^{k+1}(a)\right\}, \ldots
$$

The unification problem is of type zero and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Synthesis Unification modulo i

		Synthesis Unification modulo			
Theory	Unif. type	Equality- checking	Matching	Unification	Related work
Syntactic	1	$\mathrm{O}(n)$	$\mathrm{O}(n)$	$\mathrm{O}(n)$	R65 MM76 PW78
C	ω	$\mathrm{O}\left(n^{2}\right)$	NP-comp.	NP-comp.	BKN87 KN87
A	∞	$\mathrm{O}(n)$	NP-comp.	NP-hard	M77 BKN87
AU	∞	$\mathrm{O}(n)$	NP-comp.	decidable	M77 KN87
AI	0	$\mathrm{O}(n)$	NP-comp.	NP-comp.	SS86 Slíma02
Baader86					

Synthesis Unification modulo

		Synthesis Unification modulo			
Theory	Unif. type	Equality- checking	Matching	Unification	Related work
AC	ω	$\mathrm{O}\left(n^{3}\right)$	NP-comp.	NP-comp.	BKN87 KN87 KN92
ACU	ω	$\mathrm{O}\left(n^{3}\right)$	NP-comp.	NP-comp.	KN92
AC(U)I	ω	-	-	NP-comp.	KN92 BMMO20
D	ω	-	NP-hard	NP-hard	TA87
ACh	0	-	-	undecidable	B93 N96 EL18
ACUh	0	-	-	undecidable	B93 N96

Nominal Syntax

Nominal syntax extends first-order syntax by bringing mechanisms to deal with bound and free variables in a natural manner.

Profiting from the nominal paradigm implies adapting basic notions (substitution, rewriting, equality, ...) to it.

Purpose of Presentation

- We revisit the contributions on nominal equational reasoning modulo associative and commutative operators and related work.
- We briefly comment about our work in progress on nominal AC-unification and its formalisation in PVS.

Nominal Syntax

Nominal Syntax

Nominal Terms, Permutations and
Substitutions

Atoms and Variables

Consider a set of variables $\mathbb{V}=\{X, Y, Z, \ldots\}$ and a set of atoms $\mathbb{A}=\{a, b, c, \ldots\}$.

Permutations

An atom permutation π represents an exchange of a finite amount of atoms in \mathbb{A} and is presented by a list of swappings:

$$
\pi=\left(a_{1} b_{1}\right):: \ldots::\left(a_{n} b_{n}\right):: \text { nil }
$$

Nominal Terms

Definition (Nominal Terms)

Nominal terms are inductively generated according to the grammar:

$$
s, t::=\langle \rangle|a| \pi \cdot X|[a] t|\langle s, t\rangle|f t| f^{E} t
$$

The symbols denote respectively: unit, atom term, suspended variable, abstraction, pair, function application and E-function application (E may be for A, C, AC, etc).

Examples of Permutation Actions

Permutations act on atoms and terms:

- $(a b) \cdot a=b$;
- $(a b) \cdot b=a$;
- $(a b) \cdot f(a, c)=f(b c)$;
- $(a b)::(b c) \cdot[a]\langle a, c\rangle=(b c)[b]\langle b, c\rangle=[c]\langle c, b\rangle$.

Nominal Syntax

Freshness and α-Equality

Intuition Behind the Concepts

Two important predicates are the freshness predicate \#, and the α-equality predicate \approx_{α}.

- $a \# t$ means that if a occurs in t then it must do so under an abstractor [a].
- $s \approx_{\alpha} t$ means that s and t are α-equivalent.

Contexts

A context is a set of constraints of the form $a \# X$. Contexts are denoted by the letters Δ, ∇ or Γ.

Advantages of the name binding nominal approach

Freshness conditions $a \# s$, and atom permutations $\pi \cdot s$.

Example

β and η rules as nominal rewriting rules:

$$
\begin{align*}
& \operatorname{app}\langle\operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{subs}\langle[a] M, N\rangle \\
& a \# M \vdash \operatorname{lam}[a] \operatorname{app}\langle M, a\rangle \rightarrow M
\end{align*}
$$

Some substitution rules:

$$
\begin{aligned}
& b \# M \vdash \operatorname{subs}\langle[b] M, N\rangle \rightarrow M \\
& a \# N \vdash \operatorname{subs}\langle[b] \operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{lam}[a] \operatorname{sub}\langle[b] M, N\rangle \\
& c \# M, c \# N \vdash \operatorname{subs}\langle[b] \operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{lam}[c] \operatorname{sub}\langle[b](a \quad c) \cdot M, N\rangle
\end{aligned}
$$

Advantages of the name binding nominal approach

- First-order terms with binders and implicit atom dependencies.
- Easy syntax to present name binding predicates as $a \in \operatorname{Free} \operatorname{Var}(M), a \in \operatorname{Bound} \operatorname{Var}([a] s)$, and operators as renaming: $(a b) \cdot s$.
- Built-in α-equivalence and first-order implicit substitution.
- Feasible syntactic equational reasoning: efficient equality-check, matching and unification algorithms.

Derivation Rules for Freshness

$$
\begin{gathered}
\frac{\Delta \vdash a \#\rangle}{\Delta}(\#\rangle) \\
\frac{\left(\pi^{-1}(a) \# X\right) \in \Delta}{\Delta \vdash a \# \pi \cdot X}(\# X) \\
\frac{\Delta \vdash a \# t}{\Delta \vdash a \#[b] t}(\#[a] b) \\
\frac{\Delta \vdash a \# t}{\Delta \vdash a \# f t}(\# a p p)
\end{gathered}
$$

Derivation Rules for α-Equivalence

$$
\begin{array}{cc}
\frac{\Delta \vdash\left\rangle \approx_{\alpha}\langle \rangle\right.}{}\left(\approx_{\alpha}\langle \rangle\right) & \frac{\Delta \vdash a \approx_{\alpha} a}{}\left(\approx_{\alpha} \text { atom }\right) \\
\frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash f s \approx_{\alpha} f t}\left(\approx_{\alpha} a p p\right) & \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash[a] s \approx_{\alpha}[a] t}\left(\approx_{\alpha}[a] a\right) \\
\frac{\Delta \vdash s \approx_{\alpha}(a b) \cdot t, a \# t}{\Delta \vdash[a] s \approx_{\alpha}[b] t}\left(\approx_{\alpha}[a] b\right) & \frac{d s\left(\pi, \pi^{\prime}\right) \# X \subseteq \Delta}{\Delta \vdash \pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X}\left(\approx_{\alpha} \text { var }\right) \\
\frac{\Delta \vdash s_{0} \approx_{\alpha} t_{0}, \Delta \vdash s_{1} \approx_{\alpha} t_{1}}{\Delta \vdash\left\langle s_{0}, s_{1}\right\rangle \approx_{\alpha}\left\langle t_{0}, t_{1}\right\rangle}\left(\approx_{\alpha} \text { pair }\right) &
\end{array}
$$

Additional Rule for α-Equivalence with C Functions

Let f be a C function symbol.
We add rule ($\approx_{\alpha} c$-app) for dealing with C functions:

$$
\frac{\Delta \vdash s_{2} \approx_{\alpha} t_{1} \quad \Delta \vdash s_{1} \approx_{\alpha} t_{2}}{\Delta \vdash f^{C}\left\langle s_{1}, s_{2}\right\rangle \approx_{\alpha} f^{C}\left\langle t_{1}, t_{2}\right\rangle}
$$

Additional Rule for α-Equivalence with AC Functions

Let f be an AC function symbol.
We add rule $\left(\approx_{\alpha} a c-a p p\right)$ for dealing with AC functions:

$$
\frac{\Delta \vdash S_{i}\left(f^{A C} s\right) \approx_{\alpha} S_{j}\left(f^{A C} t\right) \quad \Delta \vdash D_{i}\left(f^{A C} s\right) \approx_{\alpha} D_{j}\left(f^{A C} t\right)}{\Delta \vdash f^{A C} s \approx_{\alpha} f^{A C} t}
$$

$S_{n}(f *)$ selects the $n^{\text {th }}$ argument of the flattened subterm $f *$.
$D_{n}(f *)$ deletes the $n^{t h}$ argument of the flattened subterm $f *$.

The Operators S_{n} and D_{n}

Let f be an AC function:

- $S_{2}(f\langle f\langle a, b\rangle, f\langle[a] X, \pi \cdot Y\rangle\rangle)$ is equal to b.
- $\left.D_{2}(f\langle f\langle a, b\rangle, f\langle[a] X, \pi \cdot Y\rangle\rangle\rangle\right)$ is equal to $f\langle f a, f\langle[a] X, \pi \cdot Y\rangle\rangle\rangle)$.

Derivation Rules as a Sequent Calculus

Deriving $\vdash \forall[a] \oplus\langle a, f a\rangle \approx_{\alpha} \forall[b] \oplus\langle f b, b\rangle$, where \oplus is C :

Nominal E-Unification and equational reasoning

Nominal E-Unification and equational reasoning

Nominal C-unification

Nominal C-unification

Unification problem: $\left\langle\Gamma,\left\{s_{1} \approx_{\alpha}{ }^{?} t_{1}, \ldots s_{n} \approx_{\alpha}{ }^{?} t_{n}\right\}\right\rangle$
Unification solution: $\langle\Delta, \sigma\rangle$, such that

- $\Delta \vdash \Gamma \sigma$;
- $\Delta \vdash s_{i} \sigma \approx_{\alpha} t_{i} \sigma, 1 \leq i \leq n$.

We introduced nominal (equality-check, matching) and unification algorithms that provide solutions given as triples of the form:

$$
\langle\Delta, \sigma, F P\rangle
$$

where $F P$ is a set of fixed-point equations of the form $\pi \cdot X \approx_{\alpha}{ }^{?} X$.
This provides a finite representation of the infinite set of solutions that may be generated from such fixed-point equations.

Nominal C-unification

Fixed point equations such as $\pi \cdot X \approx_{\alpha}^{?} X$ may have infinite independent solutions.

For instance, in a signature in which \oplus and \star are C , the unification problem: $\left\langle\emptyset,\left\{(a b) X \approx_{\alpha}^{?} X\right\}\right\rangle$
has solutions: $\left\{\begin{array}{l}\langle\{a \# X, b \# X\}, i d\rangle, \\ \langle\emptyset,\{X / a \oplus b\}\rangle,\langle\emptyset,\{X / a \star b\}\rangle, \ldots \\ \langle\{a \# Z, b \# Z\},\{X /(a \oplus b) \oplus Z\}\rangle, \ldots \\ \langle\emptyset,\{X /(a \oplus b) \star(b \oplus a)\}\rangle, \ldots\end{array}\right.$

Nominal E-Unification and equational reasoning

Contextualisation of results

Contextualisation of results

Synthesis of results on Nominal Unification Modulo

		Synthesis Unification Nominal Modulo					
Theory	$\begin{array}{c}\text { Unif. } \\ \text { type }\end{array}$	$\begin{array}{c}\text { Equality- } \\ \text { checking }\end{array}$	Matching	Unification	$\begin{array}{c}\text { Related } \\ \text { work }\end{array}$		
\approx_{α}	1	$O(n \log n)$	$O(n \log n)$	$O\left(n^{2}\right)$	$\begin{array}{c}\text { UPG04 LV10 } \\ \text { CF08 CF10 } \\ \text { LSFA2015 }\end{array}$		
C	∞	$O\left(n^{2} \log n\right)$	NP-comp.	NP-comp.	$\begin{array}{c}\text { FroCoS2017 } \\ \text { TCS2019 } \\ \text { LOPSTR2019 }\end{array}$		
sub2020						$]$	NOPSTR2017
:---:							
A							
∞							

More on Nominal Reasoning

Also:

- Overlaps in Nominal Rewriting [LSFA 2015]
- Nominal Narrowing [FSCD 2016]
- Nominal Intersection Types [TCS 2018]
- Nominal Disequations [LSFA 2019]
- Nominal Syntax with Permutation Fixed Points [LMCS2020]

Co-authors: Washington R. de Carvalho, Ana Cristina Rocha Oliveira, Deivid Vale, Daniel Lima Ventura, Murdoch Gabbay.

Nominal reasoning with permutation fixed-point constraints

Instead of using freshness constraints ($a \# s$, for all $a \in \operatorname{dom}(\pi)$), one uses permutation fixed-point constraints:

$$
\pi \curlywedge s \text { means that " } \pi \text { fixes " } s \text { " }
$$

Solutions of the unification problem

$$
(a b) \cdot X \oplus a \approx_{\alpha}^{?} Y \oplus X
$$

using freshness constraints are:

$$
\langle\emptyset,\{X / a, Y / b\}, \emptyset\rangle \text { and }\left\langle\emptyset,\{Y / a\},\left\{(a b) \cdot X \approx_{\alpha} X\right\}\right\rangle
$$

while using fixed-point constraints are:

$$
\langle\emptyset,\{X / a, Y / b\}\rangle \text { and }\langle\emptyset,\{Y / a,(a b) \curlywedge X\}\rangle .
$$

Fixed-point constraints avoid infinite solutions as those related with fixed-point equations in the standard nominal approach.

Nominal E-Unification and equational reasoning

Progress on AC-unification

Example of Unification Problem and Solution

f is an AC function symbol.
One possible solution for

$$
\langle\emptyset, f\langle f\langle X, Y\rangle, c\rangle\rangle \approx ? f\langle c, f\langle a, b\rangle\rangle\rangle
$$

is:

$$
\langle\emptyset,\{X \rightarrow a, Y \rightarrow b\}\rangle
$$

What Is Tricky About AC? An Example

Let f be an AC function symbol.

- The solutions that come to mind when unifying

$$
f(x, y) \approx^{?} f(a, z)
$$

are: $\{x / a, y / z\}$ and $\{x / z, y / a\}$.

What Is Tricky About AC? An Example

Let f be an AC function symbol.

- The solutions that come to mind when unifying

$$
f(x, y) \approx^{?} f(a, z)
$$

are: $\{x / a, y / z\}$ and $\{x / z, y / a\}$.
Are there other solutions?

What Is Tricky About AC? An Example

Let f be an AC function symbol.

- The solutions that come to mind when unifying

$$
f(x, y) \approx^{?} f(a, z)
$$

are: $\{x / a, y / z\}$ and $\{x / z, y / a\}$.
Are there other solutions?
Yes!

What Is Tricky About AC? An Example

Let f be an AC function symbol.

- The solutions that come to mind when unifying

$$
f(x, y) \approx ? f(a, z)
$$

are: $\{x / a, y / z\}$ and $\{x / z, y / a\}$.
Are there other solutions?
Yes!

- For instance,

$$
\begin{aligned}
& \left\{x / f\left(a, z_{1}\right), y / f\left(z_{2}\right), z / f\left(z_{1}, z_{2}\right)\right\} \text { and } \\
& \left\{x / f\left(z_{1}\right), y / f\left(a, z_{2}\right), z / f\left(z_{1}, z_{2}\right)\right\} .
\end{aligned}
$$

What is Tricky About AC? New Variables and Termination

In the last example, new variables z_{1} and z_{2} were introduced.
Termination of syntactic unification relies on the decrease of the number of variables in the problem (while the domain of the substitution being built increases).

In a given step of AC-unification, the number of new variables introduced can be greater than the number of eliminated variables (did not happen in our example, but there are cases in which this happens).

The proof of termination is harder in AC-unification.

What is Tricky About AC? The Combinatory

If $s \equiv f^{A C}\left(s_{1}, \ldots, s_{m}\right)$ and $t \equiv f^{A C}\left(t_{1}, \ldots, t_{n}\right)$ are in flattened form:

- Equality-Checking: if $s=t$ then $m=n$ and for every s_{i}, there should be a corresponding t_{j}, such that $s_{i}=t_{j}$.
- Matching: if $s \sigma=t$, this does not mean that $s_{i} \sigma$ should correspond to some t_{j}.
- Unification: if $s \sigma=t \sigma$, this does not mean that $s_{i} \sigma$ should correspond to some $t_{j} \sigma$.

AC-Unification and Solving Linear Equations in \mathbb{N}

[Stickel 1975], [Stickel 1981], and [Fages 1987] propose an algorithm that uses a correspondence between unifying AC-functions and solving linear equations in \mathbb{N}.

Example (Stickel):

- Unification problem: $f(x, x, y, a, b, c) \approx^{?} f(b, b, b, c, z) \sim$

$$
f(x, x, y, a) \approx^{?} f(b, b, z) \sim f\left(x_{1}, x_{1}, x_{2}, x_{3}\right) \approx^{?} f\left(y_{1}, y_{1}, y_{2}\right)
$$

- Equation: $2 x_{1}+x_{2}+x_{3}=2 y_{1}+y_{2} \leadsto$ linear Diophantine system with new variables \sim

$$
\text { Solutions: }\left\{\begin{array}{l}
\{y / f(b, b), z / f(a, x, x)\} \\
\left\{y / f\left(z_{2}, b, b\right), z / f\left(a, z_{2}, x, x\right)\right\}, \\
\{x / b, z / f(a, y)\} \\
\left\{x / f\left(z_{6}, b\right), z / f\left(a, y, z_{6}, z_{6}\right)\right\}
\end{array}\right\}
$$

Our Current Work

- Stickel and Fages' approach computes solutions in such a manner that the generation of redundancies is avoided building a minimal complete set of AC-unifiers.
- In UNIF 2019 we presented a functional specification for nominal AC-unification that was formalised sound in PVS. The algorithm follows a combinatorial approach that was redundant and unable to provide a minimal complete set of AC-unifiers. Currently, we are following Stickel and Fages' method to guarantee also minimality and completeness.
http://nominal.cic.unb.br

Conclusion and Future Work

Conclusion - Formalisations

- Functional nominal α-unification was formalised (PVS).
- Nominal A-, C-, and AC- equality-check were formalised and implemented (Coq, OCaml).
- Nominal C-matching and C-unification were formalised and implemented (Coq, PVS, OCaml, Python, LISP)
- Nominal AC-matching and AC-unification formalisation is under development (PVS).

Future Work

Future work:

- There is a lot to be done to develop and formalise Nominal Equational Reasoning: not only to deal with unification modulo other theories as ACh and ACUh, AI, AUCUN, etc, but also to establish nominal anti-unification, disunification, symmetric unification, etc.
- Developing nominal rewriting and nominal type systems.
- Such nominal mechanisms are indeed relevant in practice in frameworks such as the PVS and Isabelle/HOL nominal developments, and computational programming and deductive tools such as α Prolog, α-Check, $\mathrm{C} \alpha \mathrm{ml}$, etc.

Thank You

Thank you! Any questions?

Appendix - Example of Stickel's
Algorithm for AC-Unification

Example

How do we generate all solutions to solve:

$$
f(X, X, Y, a, b, c) \approx ? f(b, b, b, c, Z)
$$

1. Eliminate common arguments

$$
\begin{aligned}
f(X, X, Y, a, b, k) & \approx^{?} f(\not b, b, b, \not, Z, Z) \\
& \sim f(X, X, Y, a) \approx^{?} f(b, b, Z)
\end{aligned}
$$

2. Generalise substituting distinct arguments by new variables:

$$
\leadsto f\left(X_{1}, X_{1}, X_{2}, X_{3}\right) \approx^{?} f\left(Y_{1}, Y_{1}, Y_{2}\right)
$$

Example - Auxiliar Algorithm

3. Apply an auxiliar algorithm that unifies AC-function symbols with only variables as arguments.

After this big step (detailed in the next slides) we will have 69 cases.

Example - Introducing Diophantine Equations

3.1. Transform the unification problem into a linear Diophantine equation.

After this step, our equation is

$$
\leadsto 2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}
$$

Example - Basis of Solutions

3.2. Generate a basis of solutions to the system of Diophantine equations.

After this step we have Table 3:

Table 1: Solutions for the Equation $2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}$

X_{1}	X_{2}	X_{3}	Y_{1}	Y_{2}	$2 X_{1}+X_{2}+X_{3}$	$2 Y_{1}+Y_{2}$
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	0	2	1	0	2	2
0	1	1	1	0	2	2
0	2	0	1	0	2	2
1	0	0	0	2	2	2
1	0	0	1	0	2	2

Example - Associating New Variables

3.3. Associate new variables with each solution.

After this step we have:

Table 2: Solutions for the Equation $2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}$

X_{1}	X_{2}	X_{3}	Y_{1}	Y_{2}	$2 X_{1}+X_{2}+X_{3}$	$2 Y_{1}+Y_{2}$	New Variables
0	0	1	0	1	1	1	Z_{1}
0	1	0	0	1	1	1	Z_{2}
0	0	2	1	0	2	2	Z_{3}
0	1	1	1	0	2	2	Z_{4}
0	2	0	1	0	2	Z_{5}	
1	0	0	0	2	2	Z_{6}	
1	0	0	1	0	2	2	Z_{7}

Example - Old and New Variables

3.4. Relate the "old" and the "new" variables.

After this step, we obtain:

$$
\begin{aligned}
& X_{1}=Z_{6}+Z_{7} \\
& X_{2}=Z_{2}+Z_{4}+2 Z_{5} \\
& X_{3}=Z_{1}+2 Z_{3}+Z_{4} \\
& Y_{1}=Z_{3}+Z_{4}+Z_{5}+Z_{7} \\
& Y_{2}=Z_{1}+Z_{2}+2 Z_{6}
\end{aligned}
$$

Example - All the Possible Cases

3.5 Decide whether we will include (set to 0) or not (set to 1) every "new" variable. Observe that every "old" variable must be different than zero.

In our example, we have $2^{7}=128$ possibilities of including/excluding the new variables Z_{1}, \ldots, Z_{7}, but after observing that the old variables $X 1, X_{2}, X_{3}, Y_{1}, Y_{2}$ cannot be set to 0 , only 69 cases remain.

Example - Dropping Impossible Cases

4. The fourth step is to drop the cases where the variables that in fact represent constants and subterms headed by a different AC function symbol are assigned to more than one of the "new" variables.

For instance, the potential solution

$$
\begin{array}{r}
\sigma_{\text {wrong }}=\left\{X_{1} \rightarrow Z_{6}, X_{2} \rightarrow Z_{4}, X_{3} \rightarrow f\left(Z_{1}, Z_{4}\right)\right. \\
\\
\left.Y_{1} \rightarrow Z_{4}, Y_{2} \rightarrow f\left(Z_{1}, Z_{6}, Z_{6}\right)\right\}
\end{array}
$$

should be discarded as the variable X_{3}, which represents the constant a, must not be assigned to $f\left(Z_{1}, Z_{4}\right)$.

Example - Dropping More Cases

5. Replace variables by the original terms they substituted. Drop cases where a "new" variable is being mapped to two or more "old" variables that in fact represent different constants.

In our example, the potential solution

$$
\sigma=\left\{X_{1} \rightarrow Z_{6}, X_{2} \rightarrow Z_{4}, X_{3} \rightarrow Z_{4}, Y_{1} \rightarrow Z_{4}, Y_{2} \rightarrow f\left(Z_{6}, Z_{6}\right)\right\}
$$

shoud be discarded, as the variables X_{3} and Y_{1}, representing the constants a and b, cannot be mapped to the same "new" variable Z_{4}.

Example - Normalising Solutions

6. Normalise remaining cases by replacing the variables in the image of the substitution that also happen in the domain. Output the solutions.

In our example, the solutions are:

$$
\left\{\begin{array}{c}
\{Y \rightarrow f(b, b), Z \rightarrow f(a, X, X)\} \\
\left\{Y \rightarrow f\left(Z_{2}, b, b\right), Z \rightarrow f\left(a, Z_{2}, X, X\right)\right\} \\
\{X \rightarrow b, Z \rightarrow f(a, Y)\} \\
\left\{X \rightarrow f\left(Z_{6}, b\right), Z \rightarrow f\left(a, Y, Z_{6}, Z_{6}\right)\right\}
\end{array}\right\}
$$

