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Motivation



Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

s and t are terms in some signature and σ is a substitution.
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Equational Problems - Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.
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Equational Problems - Syntactic unification

• F set of function symbols.

• V set of variables.

• x , y , z variables.

• a, b, c constant symbols.

• f , g , h function symbols.

• T (F ,V) set of terms over F and V.

• s, t, u terms.

• σ, γ, δ : V → T (F ,V) set of substitutions.

Substitutions have finite domain: {v | vσ 6= v} is finite.
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Equational Problems - Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.
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Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.

Example:

• h( x︸︷︷︸, y , z) = h(f (w ,w)︸ ︷︷ ︸, f (x , x), f (y , y))

• h(f (w ,w), y︸︷︷︸, z) =

h(f (w ,w), f (f (w ,w), f (w ,w))︸ ︷︷ ︸, f (y , y)), partial solution:

{x/f (w ,w)}
• h(f (w ,w), f (f (w ,w), f (w ,w)), z︸︷︷︸) =

h(f (w ,w), f (f (w ,w), f (w ,w)), f (f (f (w ,w), f (w ,w)), f (f (w ,w), f (w ,w)))︸ ︷︷ ︸),
partial solution: {x/f (w ,w), y/f (f (w ,w), f (w ,w))}

• h(f (w,w), f (f (w,w), f (w,w)), f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))) =

h(f (w,w), f (f (w,w), f (w,w)), f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))),

solution: {x/f (w,w), y/f (f (w,w), f (w,w)), z/f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))}.
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Equational Problems - Syntactic Unification

Interesting questions:

• Correctness and Completeness.

• Complexity.

• With adequate data structures, there are linear solutions (Huet,

Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.
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Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is

not as simple.

Example: for f commutative (C), f (x , y) ≈ f (y , x):

• f (x , y) = f (a, b)?

• Solutions: {x/a, y/b} and {x/b, y/a}.

The unification problem is of type finitary.
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Equational Problems - Unification Modulo

Example: for f associative (A), f (f (x , y), z) ≈ f (x , f (y , z)):

• f (x , a) = f (a, x)?

• Solutions: {x/a}, {x/f (a, a)}, {x/f (a, f (a, a))}, . . .

The unification problem is of type infinitary.
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Equational Problems - Unification Modulo

Example: for f AC with unity (U), f (x , e) ≈ x :

• f (x , y) = f (a, b)?

• Solutions: {x/e, y/f (a, b)}, {x/f (a, b), y/e}, {x/a, y/b}, and

{x/b, y/a}.

The unification problem is of type finitary.
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Equational Problems - Unification Modulo

Example: for f A, and idempotent (I), f (x , x) ≈ x :

• f (x , f (y , x)) = f (f (x , z), x))?

• Solutions: {y/f (u, f (x , u)), z/u}, . . .

The unification problem is of type zero (Schmidt-Schauß 1986,

Baader 1986).
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Equational Problems - Unification Modulo

Example: for + AC, and h homomorphism (h),

h(x + y) ≈ h(x) + h(y):

• h(y) + a = y + z?

• Solutions: {y/a, z/h(a)}, {y/h(a) + a, z/h2(a)}, . . . ,
{y/hk(a) + . . .+ h(a) + a, z/hk+1(a)}, . . .

The unification problem is of type zero and undecidable (Narendran

1996). The same happens for ACUh (Nutt 1990, Baader 1993).
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Synthesis Unification modulo i

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related

work

Syntactic 1 O(n) O(n) O(n)

R65

MM76

PW78

C ω O(n2) NP-comp. NP-comp.
BKN87

KN87

A ∞ O(n) NP-comp. NP-hard
M77

BKN87

AU ∞ O(n) NP-comp. decidable
M77

KN87

AI 0 O(n) NP-comp. NP-comp.

Kĺıma02

SS86

Baader86
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Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related

work

AC ω O(n3) NP-comp. NP-comp.

BKN87

KN87

KN92

ACU ω O(n3) NP-comp. NP-comp. KN92

AC(U)I ω - - NP-comp.
KN92

BMMO20

D ω - NP-hard NP-hard TA87

ACh 0 - - undecidable

B93

N96

EL18

ACUh 0 - - undecidable
B93

N96
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Nominal Syntax

Nominal syntax extends first-order syntax by bringing mechanisms

to deal with bound and free variables in a natural manner.

Profiting from the nominal paradigm implies adapting basic notions

(substitution, rewriting, equality, ...) to it.
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Purpose of Presentation

• We revisit the contributions on nominal equational reasoning

modulo associative and commutative operators and related

work.

• We briefly comment about our work in progress on nominal

AC-unification and its formalisation in PVS.

16



Nominal Syntax



Nominal Syntax

Nominal Terms, Permutations and

Substitutions



Atoms and Variables

Consider a set of variables V = {X ,Y ,Z , . . . } and a set of atoms

A = {a, b, c , . . . }.
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Permutations

An atom permutation π represents an exchange of a finite amount

of atoms in A and is presented by a list of swappings:

π = (a1 b1) :: ... :: (an bn) :: nil
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Nominal Terms

Definition (Nominal Terms)
Nominal terms are inductively generated according to the grammar:

s, t ::= 〈〉 | a | π · X | [a]t | 〈s, t〉 | f t | f E t

The symbols denote respectively: unit, atom term, suspended

variable, abstraction, pair, function application and E-function

application (E may be for A, C, AC, etc).
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Examples of Permutation Actions

Permutations act on atoms and terms:

• (a b) · a = b;

• (a b) · b = a;

• (a b) · f (a, c) = f (b c);

• (a b) :: (b c) · [a]〈a, c〉 = (b c)[b]〈b, c〉 = [c]〈c , b〉.
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Nominal Syntax

Freshness and α-Equality



Intuition Behind the Concepts

Two important predicates are the freshness predicate #, and the

α-equality predicate ≈α.

• a#t means that if a occurs in t then it must do so under an

abstractor [a].

• s ≈α t means that s and t are α-equivalent.
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Contexts

A context is a set of constraints of the form a#X . Contexts are

denoted by the letters ∆, ∇ or Γ.
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Advantages of the name binding nominal approach

Freshness conditions a#s, and atom permutations π · s.

Example
β and η rules as nominal rewriting rules:

app〈lam[a]M,N〉 → subs〈[a]M,N〉 (β)

a#M ` lam[a]app〈M, a〉 → M (η)

Some substitution rules:

b#M ` subs〈[b]M,N〉 → M

a#N ` subs〈[b]lam[a]M,N〉 → lam[a]sub〈[b]M,N〉

c#M, c#N ` subs〈[b]lam[a]M,N〉 → lam[c]sub〈[b](a c) ·M,N〉
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Advantages of the name binding nominal approach

• First-order terms with binders and implicit atom dependencies.

• Easy syntax to present name binding predicates as

a ∈ FreeVar(M), a ∈ BoundVar([a]s), and operators as

renaming: (a b) · s.

• Built-in α-equivalence and first-order implicit substitution.

• Feasible syntactic equational reasoning: efficient equality-check,

matching and unification algorithms.
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Derivation Rules for Freshness

(#〈〉)
∆ ` a#〈〉 (#atom)

∆ ` a#b

(π−1(a)#X ) ∈ ∆
(#X )

∆ ` a#π · X
(#[a]a)

∆ ` a#[a]t

∆ ` a#t
(#[a]b)

∆ ` a#[b]t

∆ ` a#s ∆ ` a#t
(#pair)

∆ ` a#〈s, t〉

∆ ` a#t
(#app)

∆ ` a#f t
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Derivation Rules for α-Equivalence

(≈α 〈〉)
∆ ` 〈〉 ≈α 〈〉

(≈α atom)
∆ ` a ≈α a

∆ ` s ≈α t
(≈α app)

∆ ` fs ≈α ft

∆ ` s ≈α t
(≈α [a]a)

∆ ` [a]s ≈α [a]t

∆ ` s ≈α (a b) · t, a#t
(≈α [a]b)

∆ ` [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ` π · X ≈α π′ · X

∆ ` s0 ≈α t0, ∆ ` s1 ≈α t1 (≈α pair)
∆ ` 〈s0, s1〉 ≈α 〈t0, t1〉
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Additional Rule for α-Equivalence with C Functions

Let f be a C function symbol.

We add rule (≈α c-app) for dealing with C functions:

∆ ` s2 ≈α t1 ∆ ` s1 ≈α t2

∆ ` f C 〈s1, s2〉 ≈α f C 〈t1, t2〉
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Additional Rule for α-Equivalence with AC Functions

Let f be an AC function symbol.

We add rule (≈α ac-app) for dealing with AC functions:

∆ ` Si (f
AC s) ≈α Sj(f

AC t) ∆ ` Di (f
AC s) ≈α Dj(f

AC t)

∆ ` f AC s ≈α f AC t

Sn(f ∗) selects the nth argument of the flattened subterm f ∗.
Dn(f ∗) deletes the nth argument of the flattened subterm f ∗.
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The Operators Sn and Dn

Let f be an AC function:

• S2(f 〈f 〈a, b〉, f 〈[a]X , π · Y 〉〉) is equal to b.

• D2(f 〈f 〈a, b〉, f 〈[a]X , π · Y 〉〉〉) is equal to

f 〈f a, f 〈[a]X , π · Y 〉〉〉).
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Derivation Rules as a Sequent Calculus

Deriving ` ∀[a]⊕ 〈a, fa〉 ≈α ∀[b]⊕ 〈fb, b〉, where ⊕ is C:

(≈α atom)a ≈α a

(≈α atom)a ≈α a
(≈α app)

fa ≈α fa
(≈α c-app)

⊕〈a, fa〉 ≈α (a b) · ⊕〈fb, b〉

(#atom)
a#b

(#app)
a#fb

(#atom)
a#b

(#pair)
a#〈fb, b〉

(#app)
a#⊕ 〈fb, b〉

(≈α [a]b)
[a]⊕ 〈a, fa〉 ≈α [b]⊕ 〈fb, b〉

(≈α app)
∀[a]⊕ 〈a, fa〉 ≈α ∀[b]⊕ 〈fb, b〉

30



Nominal E-Unification and

equational reasoning



Nominal E-Unification and

equational reasoning

Nominal C-unification



Nominal C-unification

Unification problem: 〈Γ, {s1 ≈α? t1, . . . sn ≈α? tn}〉

Unification solution: 〈∆, σ〉, such that

• ∆ ` Γσ;

• ∆ ` siσ ≈α tiσ, 1 ≤ i ≤ n.

We introduced nominal (equality-check, matching) and unification

algorithms that provide solutions given as triples of the form:

〈∆, σ,FP〉

where FP is a set of fixed-point equations of the form π · X ≈α? X .

This provides a finite representation of the infinite set of solutions

that may be generated from such fixed-point equations.

31



Nominal C-unification

Fixed point equations such as π · X ≈α? X may have infinite

independent solutions.

For instance, in a signature in which ⊕ and ? are C, the unification

problem: 〈∅, {(a b)X ≈α? X}〉

has solutions:


〈{a#X , b#X}, id〉,
〈∅, {X/a⊕ b}〉, 〈∅, {X/a ? b}〉, . . .
〈{a#Z , b#Z}, {X/(a⊕ b)⊕ Z}〉, . . .
〈∅, {X/(a⊕ b) ? (b ⊕ a)}〉, . . .
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Nominal E-Unification and

equational reasoning

Contextualisation of results



Contextualisation of results
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Synthesis of results on Nominal Unification Modulo

Synthesis Unification Nominal Modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related

work

≈α 1 O(n log n) O(n log n) O(n2)

UPG04 LV10

CF08 CF10

LSFA2015

C ∞ O(n2 log n) NP-comp. NP-comp.

LOPSTR2017

FroCoS2017

TCS2019

LOPSTR2019

sub2020

A ∞ O(n log n) NP-comp. NP-hard
LSFA2016

TCS2019

AC ω O(n3 log n) NP-comp. NP-comp.
LSFA2016

TCS2019
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More on Nominal Reasoning

Also:

• Overlaps in Nominal Rewriting [LSFA 2015]

• Nominal Narrowing [FSCD 2016]

• Nominal Intersection Types [TCS 2018]

• Nominal Disequations [LSFA 2019]

• Nominal Syntax with Permutation Fixed Points [LMCS2020]

Co-authors: Washington R. de Carvalho, Ana Cristina Rocha

Oliveira, Deivid Vale, Daniel Lima Ventura, Murdoch Gabbay.

35

https://doi.org/10.1016/j.entcs.2016.06.004
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.1016/j.tcs.2018.05.008
https://doi.org/10.1016/j.entcs.2020.02.002
https://doi.org/10.23638/LMCS-16(1:19)2020


Nominal reasoning with permutation fixed-point constraints

Instead of using freshness constraints (a#s, for all a ∈ dom(π)),

one uses permutation fixed-point constraints:

π f s means that “π fixes “s”

Solutions of the unification problem

(a b) · X ⊕ a ≈α? Y ⊕ X

using freshness constraints are:

〈∅, {X/a,Y /b}, ∅〉 and 〈∅, {Y /a}, {(a b) · X ≈α X}〉,

while using fixed-point constraints are:

〈∅, {X/a,Y /b}〉 and 〈∅, {Y /a, (a b) f X}〉.

Fixed-point constraints avoid infinite solutions as those related with

fixed-point equations in the standard nominal approach.
36



Nominal E-Unification and

equational reasoning

Progress on AC-unification



Example of Unification Problem and Solution

f is an AC function symbol.

One possible solution for

〈∅, f 〈f 〈X ,Y 〉, c〉〉 ≈? f 〈c , f 〈a, b〉〉〉

is:

〈∅, {X → a,Y → b}〉
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What Is Tricky About AC? An Example

Let f be an AC function symbol.

• The solutions that come to mind when unifying

f (x , y) ≈? f (a, z)

are: {x/a, y/z} and {x/z , y/a}.

Are there other solutions?

Yes!

• For instance,

{x/f (a, z1), y/f (z2), z/f (z1, z2)} and

{x/f (z1), y/f (a, z2), z/f (z1, z2)}.
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What is Tricky About AC? New Variables and Termination

In the last example, new variables z1 and z2 were introduced.

Termination of syntactic unification relies on the decrease of the

number of variables in the problem (while the domain of the

substitution being built increases).

In a given step of AC-unification, the number of new variables

introduced can be greater than the number of eliminated variables

(did not happen in our example, but there are cases in which this

happens).

The proof of termination is harder in AC-unification.
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What is Tricky About AC? The Combinatory

If s ≡ f AC (s1, ..., sm) and t ≡ f AC (t1, ..., tn) are in flattened form:

• Equality-Checking: if s = t then m = n and for every si ,

there should be a corresponding tj , such that si = tj .

• Matching: if sσ = t, this does not mean that siσ should

correspond to some tj .

• Unification: if sσ = tσ, this does not mean that siσ should

correspond to some tjσ.
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AC-Unification and Solving Linear Equations in N

[Stickel 1975], [Stickel 1981], and [Fages 1987] propose an

algorithm that uses a correspondence between unifying AC-functions

and solving linear equations in N.

Example (Stickel):

• Unification problem: f (x , x , y , a, b, c) ≈? f (b, b, b, c , z) ;

f (x , x , y , a) ≈? f (b, b, z) ; f (x1, x1, x2, x3) ≈? f (y1, y1, y2)

• Equation: 2x1 + x2 + x3 = 2y1 + y2 ; linear Diophantine

system with new variables ;

Solutions:


{y/f (b, b), z/f (a, x , x)},
{y/f (z2, b, b), z/f (a, z2, x , x)},
{x/b, z/f (a, y)},
{x/f (z6, b), z/f (a, y , z6, z6)}
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Our Current Work

• Stickel and Fages’ approach computes solutions in such a

manner that the generation of redundancies is avoided building

a minimal complete set of AC-unifiers.

• In UNIF 2019 we presented a functional specification for

nominal AC-unification that was formalised sound in PVS. The

algorithm follows a combinatorial approach that was redundant

and unable to provide a minimal complete set of AC-unifiers.

Currently, we are following Stickel and Fages’ method to

guarantee also minimality and completeness.

http://nominal.cic.unb.br
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Conclusion and Future Work



Conclusion - Formalisations

• Functional nominal α-unification was formalised (PVS).

• Nominal A-, C-, and AC- equality-check were formalised and

implemented (Coq, OCaml).

• Nominal C-matching and C-unification were formalised and

implemented (Coq, PVS, OCaml, Python, LISP)

• Nominal AC-matching and AC-unification formalisation is

under development (PVS).
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Future Work

Future work:

• There is a lot to be done to develop and formalise Nominal

Equational Reasoning: not only to deal with unification modulo

other theories as ACh and ACUh, AI, AUCUN, etc, but also to

establish nominal anti-unification, disunification, symmetric

unification, etc.

• Developing nominal rewriting and nominal type systems.

• Such nominal mechanisms are indeed relevant in practice in

frameworks such as the PVS and Isabelle/HOL nominal

developments, and computational programming and deductive

tools such as αProlog, α-Check, Cαml, etc.
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Thank You

Thank you! Any questions?
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Appendix - Example of Stickel’s

Algorithm for AC-Unification



Example

How do we generate all solutions to solve:

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c,Z )

1. Eliminate common arguments

f (X ,X ,Y , a, 6 b, 6 c) ≈? f (6 b, b, b, 6 c ,Z )

; f (X ,X ,Y , a) ≈? f (b, b,Z )

2. Generalise substituting distinct arguments by new variables:

; f (X1,X1,X2,X3) ≈? f (Y1,Y1,Y2)

.



Example - Auxiliar Algorithm

3. Apply an auxiliar algorithm that unifies AC-function symbols with

only variables as arguments.

After this big step (detailed in the next slides) we will have 69 cases.



Example - Introducing Diophantine Equations

3.1. Transform the unification problem into a linear Diophantine

equation.

After this step, our equation is

; 2X1 + X2 + X3 = 2Y1 + Y2



Example - Basis of Solutions

3.2. Generate a basis of solutions to the system of Diophantine

equations.

After this step we have Table 3:

Table 1: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 0 2 1 0 2 2

0 1 1 1 0 2 2

0 2 0 1 0 2 2

1 0 0 0 2 2 2

1 0 0 1 0 2 2



Example - Associating New Variables

3.3. Associate new variables with each solution.

After this step we have:

Table 2: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2 New Variables

0 0 1 0 1 1 1 Z1

0 1 0 0 1 1 1 Z2

0 0 2 1 0 2 2 Z3

0 1 1 1 0 2 2 Z4

0 2 0 1 0 2 2 Z5

1 0 0 0 2 2 2 Z6

1 0 0 1 0 2 2 Z7



Example - Old and New Variables

3.4. Relate the “old” and the “new” variables.

After this step, we obtain:

X1 = Z6 + Z7

X2 = Z2 + Z4 + 2Z5

X3 = Z1 + 2Z3 + Z4

Y1 = Z3 + Z4 + Z5 + Z7

Y2 = Z1 + Z2 + 2Z6



Example - All the Possible Cases

3.5 Decide whether we will include (set to 0) or not (set to 1) every

“new” variable. Observe that every “old” variable must be different

than zero.

In our example, we have 27 = 128 possibilities of

including/excluding the new variables Z1, . . . ,Z7, but after

observing that the old variables X1,X2,X3,Y1,Y2 cannot be set to

0, only 69 cases remain.



Example - Dropping Impossible Cases

4. The fourth step is to drop the cases where the variables that in

fact represent constants and subterms headed by a different AC

function symbol are assigned to more than one of the “new”

variables.

For instance, the potential solution

σwrong = {X1 → Z6,X2 → Z4,X3 → f (Z1,Z4),

Y1 → Z4,Y2 → f (Z1,Z6,Z6)}

should be discarded as the variable X3, which represents the

constant a, must not be assigned to f (Z1,Z4).



Example - Dropping More Cases

5. Replace variables by the original terms they substituted. Drop

cases where a “new” variable is being mapped to two or more “old”

variables that in fact represent different constants.

In our example, the potential solution

σ = {X1 → Z6,X2 → Z4,X3 → Z4,Y1 → Z4,Y2 → f (Z6,Z6)}

shoud be discarded, as the variables X3 and Y1, representing the

constants a and b, cannot be mapped to the same “new” variable

Z4.



Example - Normalising Solutions

6. Normalise remaining cases by replacing the variables in the image

of the substitution that also happen in the domain. Output the

solutions.

In our example, the solutions are:


{Y → f (b, b),Z → f (a,X ,X )}

{Y → f (Z2, b, b),Z → f (a,Z2,X ,X )}
{X → b,Z → f (a,Y )}

{X → f (Z6, b),Z → f (a,Y ,Z6,Z6)}
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