
Nominal AC-Matching

Mauricio Ayala-Rincón1[0000−0003−0089−3905], Maribel
Fernández2[0000−0002−1959−8730], Gabriel Ferreira Silva1[0000−0003−1679−3597],

Temur Kutsia3[0000−0003−4084−7380], and Daniele
Nantes-Sobrinho1,4[000−0002−1959−8730]

1 University of Brasília, Brazil
ayala@unb.br, and gabrielfsilva1995@gmail.com

2 King’s College London, U.K. maribel.fernandez@kcl.ac.uk
3 Johannes Kepler University Linz, Austria kutsia@risc.jku.at

4 Imperial College London, U.K dnantess@ic.ac.uk

Abstract. The nominal syntax is an extension of the first-order syn-
tax that smoothly represents languages with variable bindings. Nominal
matching is first-order matching modulo alpha-equivalence. This work
extends a certified first-order AC-unification algorithm to solve nominal
AC-matching problems. To our knowledge, this is the first mechanically-
verified nominal AC-matching algorithm. Its soundness and completeness
were verified using the proof assistant PVS. The formalisation enriches
the first-order AC-unification algorithm providing structures and mech-
anisms to deal with the combinatorial aspects of nominal atoms, permu-
tations and abstractions. Furthermore, by adding a parameter for “pro-
tected variables” that cannot be instantiated during the execution, it en-
ables nominal matching. Such a general treatment of protected variables
also gives rise to a verified nominal AC-equality checker as a byproduct.

Keywords: Nominal Matching · Nominal AC-Matching · Formal Meth-
ods · PVS

1 Introduction

The nominal approach to the specification of systems with binders [20,25] ex-
tends first-order syntax with notions of name and binding that allow us to rep-
resent systems with binders smoothly. Such systems frequently appear in the
formalisation of mathematics and when reasoning about the properties of pro-
gramming languages. Taking into account α-equivalence is essential to represent
bindings correctly. For example, the formulas ∀x : x+ 1 > 0 and ∀y : y + 1 > 0
should be considered equivalent despite being syntactically different. From the
user point of view it is easier to use systems with variable names than systems
with indices. Hence, instead of using indices to represent bound variables, as
in explicit substitution calculi à la de Bruijn, the nominal theory uses atoms,
atom permutations and freshness constraints to represent binders more natu-
rally [25,19].



2 M. Ayala-Rincón et al.

Given terms t and s, syntactic unification is the problem of finding a sub-
stitution σ such that σt = σs and syntactic matching is the problem of finding
a substitution σ such that σt = s. Algorithms to solve matching problems are
an essential component of functional languages and equational theorem provers:
matching is used to decide if an equation can be applied to a term. The problem
of syntactic matching can be generalised to consider an equational theory E. In
this case, called E-matching, we must find a substitution σ such that σt and s are
equal modulo E, which we denote σt ≈E s. For example, if the system includes
associative and commutative (AC) operators, such as + in the example above,
then the matching algorithm should consider the AC axioms. Furthermore, equa-
tional programming languages, such as Maude, require efficient implementations
of AC-matching to deal with AC-theories (see [16]).

If the system under study includes binders and AC operators, then α-equiva-
lence should also be considered: for example, ∀x : x+1 > 0 should be considered
equivalent to ∀y : 1 + y > 0. This paper focuses on the matching problem for
languages that include binders and AC operators.

Nominal matching is the extension of first-order matching to the nominal syn-
tax, replacing the notion of syntactic equality by α-equivalence. It has applica-
tions in rewriting, functional programming, and metaprogramming. For instance,
various versions of matching modulo α-equivalence are used in functional pro-
gramming languages that provide constructs for manipulating abstract syntax
trees involving binders (e.g. [29,26]). In this work, we specify a nominal matching
algorithm modulo AC function symbols (nominal AC-matching, for short) and
prove its correctness and completeness using the proof assistant PVS.

Related Work. Nominal syntactic (i.e. modulo α-equivalence) equality-check,
matching and unification were solved since the beginning of the development of
the nominal approach; more than twenty years ago, Urban et al. [34] developed
the first rule-based algorithm for nominal syntactic unification and further, Ur-
ban mechanised its correctness and completeness in Isabelle/HOL as part of the
formalisation of the nominal approach in this proof assistant [32,33]. Further-
more, different approaches were designed to deal with nominal syntactic uni-
fication efficiently. Calvès and Fernández [12,11] and Levy and Villaret [22,23]
developed efficient nominal syntactic unification algorithms to solve nominal
unification problems. Furthermore, Ayala-Rincón et al. [6] developed a nominal
syntactic unification algorithm specified as a functional program and verified
it in the proof assistant PVS. Enriching the nominal equational analysis with
equational theories started with developing rule-based techniques for commuta-
tive operators. Such developments were initially checked in the proof assistant
Coq and further in PVS [1,4]. Remarkable differences between nominal unifi-
cation and nominal C-unification were discovered, such as the fact that when
expressing solutions as pairs consisting of a freshness context and substitutions,
nominal unification is unitary whereas nominal C-unification is not finitary [2,3].

Avoiding freshness constraints through a fixed-point approach was also stud-
ied as a mechanism to obtain finite complete sets of solutions [5]. Such fixed-point



Nominal AC-Matching 3

equations also appear in nominal techniques designed to deal with higher-order
recursive let operators [27,28].

First-order AC-unification algorithms were proposed almost half a century
ago, when Stickel [30,31] showed the connection between solving this problem
and computing solutions to linear Diophantine equations until a certain bound.
Almost a decade later, Fages [17,18] fixed a mistake in Stickel’s proof of termi-
nation. Since then, ideas to obtain more efficient AC-unification algorithms have
been proposed, either by using a smaller bound when computing the solutions
to the linear Diophantine equation [14], or by solving those equations more effi-
ciently [14], or even by solving whole systems of linear Diophantine equations and
using suitable data structures to represent the problem [10,8]. First-order AC-
unification algorithms were not formalised until recently when a version of Fages’
AC-unification algorithm was proved correct and complete using the proof assis-
tant PVS [7]. This mechanisation applies the linear-Diophantine AC unification
method discovered and fixed in works by Stickel and Fages [30,31,17,18], and can
easily be adapted to deal with AC-equality and AC-matching problems as well.
It is important to stress that such mechanisation was not a routine-formalisation
effort; before this formalisation, only a formalisation of AC-matching (which has
simpler combinatorics) was reported in the proof assistant Coq [15].

Contributions. Adapting first-order syntactic AC unification to the nominal set-
ting is challenging since the new variables included in the Diophantine systems
(used to generate new possible AC combinations) give rise to new AC-unification
problems of the same complexity as the input problems. This paper shows that
such cyclicity is not possible when only nominal AC-matching problems are con-
sidered. We present a novel nominal AC-matching algorithm adapted from the
Stickel-Fages linear-Diophantine approach and prove its termination, correctness
and completeness in the proof assistant PVS.

Organisation. Section 2 recalls the main concepts and notations needed in the
paper. In Section 3, we present and explain the pseudocode for the algorithm
specified in PVS. Section 4 discusses the main features of the formalisation,
while Section 5 discusses the challenges in adapting our approach to nominal
AC-unification. Finally, in Section 6, we conclude the paper and suggest possi-
ble paths for future work. We assume familiarity with PVS (see [24]) and include
hyperlinks (with the  icon) to specific points of interest of the PVS formali-
sation. This paper is an extended version of a paper presented in CICM 2023.

2 Background

2.1 Nominal Terms, Permutations and Substitutions

Assume disjoint countable sets of atoms A = {a, b, c, . . .} and of variables X =
{X,Y, Z, . . .}, and a signature Σ of function symbols which contains associative-
commutative function symbols. A permutation π is a bijection of the form π :
A → A such that the domain of π (i.e., the set of atoms modified by π) is

https://github.com/gabriel951/nominal_ac_match_CICM
https://github.com/gabriel951/nominal_ac_match_CICM


4 M. Ayala-Rincón et al.

finite. Permutations are usually represented as a list of swappings, where the
swapping (a b) exchanges atoms a and b and fixes all the other atoms. Therefore,
a permutation is represented as π = (a1 b1) :: ... :: (an bn) :: nil. The inverse
of this permutation, denoted by π−1, can be computed simply by reversing the
list. The identity permutation is denoted by id.

Definition 1 (Nominal Terms ). The set T (Σ,A,X) of nominal terms is
generated according to the grammar:

s, t ::= a | π ·X | ⟨⟩ | [a]t | ⟨s, t⟩ | f t | fAC t (1)

where ⟨⟩ is the unit, a is an atom term, π·X is a moderated variable or suspension
(the permutation π is suspended on the variable X), [a]t is an abstraction (a term
with the atom a abstracted), ⟨s, t⟩ is a pair, f t is a function application and
fAC t is an associative-commutative function application.

Remark 1. We represent moderated variables of the form id ·X simply as X. We
follow Gabbay’s name convention, which says that atoms differ in their names.
Therefore, if we consider atoms a and b, it is redundant to say a ̸= b.

Definition 2 (Well-formed Terms ). We say that a term t is well-formed
if t is not a pair and every AC-function application that is a subterm of t has at
least two arguments.

As was done in [7], we have restricted the terms that our algorithm receives
to well-formed terms to ease our formalisation (more details in Appendix E).
Excluding pairs is a natural decision since they are used to encode a list of
arguments to a function.

Definition 3 (Permutation Action). The action of permutations on atoms
 is defined recursively: nil · c = c and ((a b) :: π) · c = a, if π · c = b;
((a b) :: π) · c = b, if π · c = a; ((a b) :: π) · c = π · c otherwise. The action of
permutations on terms  is defined recursively:

π · ⟨⟩ = ⟨⟩ π · (π′ ·X) = (π :: π′) ·X π · [a]t = [π · a]π · t
π · ⟨s, t⟩ = ⟨π · s, π · t⟩ π · f t = f π · t π · fACt = fACπ · t

Notation 1 When convenient, we may mention that a function symbol f is an
AC-function symbol, omit the superscript and write simply f instead of fAC .

A substitution σ is a function from variables to terms, such that σX ̸= id ·X
only for a finite set of variables, called the domain of σ and denoted as dom(σ).
The image of σ is then defined as im(σ) = {σX | X ∈ dom(σ)}. We denote the
identity substitution by id. From now on, when composing substitution σ with
δ we may omit the composition symbol and write σδ instead of σ ◦ δ.

A well-formed substitution  only instantiates variables to well-formed terms.
In the proofs of soundness and completeness of the algorithm, we restrict our-
selves to well-formed substitutions. Let V be a set of variables. If dom(σ) ⊆ V
and Vars(im(σ)) ⊆ V we write σ ⊆ V . In our PVS code, substitutions are rep-
resented by a list, where each entry of the list is called a nuclear substitution
and is of the form {X → t}.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L1-L11
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L638-L643
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/atoms.pvs#L13-L23
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/atoms.pvs#L13-L23
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L669-L680
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L669-L680
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L127-L130


Nominal AC-Matching 5

Definition 4 (Nuclear substitution action on terms ). A nuclear sub-
stitution {X → t} acts over a term by induction as shown below:

{X → t}⟨⟩ = ⟨⟩ {X → t}⟨s1, s2⟩ =
{X → t}([a]s) = [a]({X → t}s) ⟨{X → t}s1, {X → t}s2⟩

{X → t}(f s) = f ({X → t}s) {X → t}π · Y =

{
π · Y if X ̸= Y
π · t otherwise

{X → t}a = a {X → t}(fAC s) = fAC ({X → t}s)

Definition 5 (Substitution acting on terms ). Since a substitution σ is
a list of nuclear substitutions, the action of a substitution is defined as:

– nil t = t, where nil is the null list, used to represent the identity substitution.
– cons({X → s}, σ) t = {X → s}(σt).

Remark 2. The notion of substitution used here differs from the more traditional
view of a substitution as a simultaneous application of nuclear substitutions,
although both are correct. The way we defined substitution here is closer to tri-
angular substitutions [21]. In the definition of action of substitutions the nuclear
substitution in the head of the list is applied last. This lets us, given substitutions
σ and δ, obtain the substitution σ ◦ δ in our code simply as append(σ, δ).

2.2 Freshness and α-equality

Freshness and α-equality are two valuable notions in nominal theory and are
represented by the predicates # and ≈α. Intuitively, a#t means that if a occurs
in t then it does so under an abstractor [a], and s ≈α t means that s and t
are α-equivalent, that is, they are equal modulo the renaming of bound atoms.
These concepts are given in Definitions 6 and 7.

Definition 6 (Freshness ). A freshness context ∇ is a set of constraints of
the form a#X. We denote contexts by letters ∆,Γ,∇, . . . An atom a is said to
be fresh on t under a context ∇, denoted by ∇ ⊢ a#t, if it is possible to build a
proof using the rules:

(#⟨⟩)
∇ ⊢ a#⟨⟩

(#atom)∇ ⊢ a#b
(π−1 · a#X) ∈ ∇

(#X)∇ ⊢ a#π ·X

(#[a]a)
∇ ⊢ a#[a]t

∇ ⊢ a#t
(#[a]b)

∇ ⊢ a#[b]t

∇ ⊢ a#s ∇ ⊢ a#t
(#pair)

∇ ⊢ a#⟨s, t⟩

∇ ⊢ a#t
(#app)∇ ⊢ a#f t

∇ ⊢ a#t
(#AC)

∇ ⊢ a#fAC t

Definition 7 (α-equality with AC operators ). Let f be an AC function
symbol, Sn(f t) be an operator that selects the nth argument of f t (considering
the flattened form) and Dn(f t) be an operator that deletes the nth argument of f t
(considering the flattened form). If there exist i and j such that ∆ ⊢ Si(f

ACs) ≈α

Sj(f
ACt) and ∆ ⊢ Di(f

ACs) ≈α Dj(f
ACt), then ∆ ⊢ fACs ≈α fACt. In other

words, the rule of α-equality for an AC-function application is:

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L25-L40
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/substitution.pvs#L49-L58
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L15-L29
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/equality.pvs#L16-L45


6 M. Ayala-Rincón et al.

∆ ⊢ Si(f
ACs) ≈α Sj(f

ACt) ∆ ⊢ Di(f
ACs) ≈α Dj(f

ACt)
(≈α AC)

∆ ⊢ fACs ≈α fACt

Two terms t and s are said to be α-equivalent under the freshness context ∆
(∆ ⊢ t ≈α s) if it is possible to build a proof using rule (≈α AC) and the rules:

(≈α ⟨⟩)
∆ ⊢ ⟨⟩ ≈α ⟨⟩

(≈α atom)
∆ ⊢ a ≈α a

∆ ⊢ s ≈α t
(≈α app)

∆ ⊢ f s ≈α f t

∆ ⊢ s ≈α t
(≈α [a]a)

∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, ∆ ⊢ a#t
(≈α [a]b)

∆ ⊢ [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ⊢ π ·X ≈α π′ ·X
∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)

∆ ⊢ ⟨s0, s1⟩ ≈α ⟨t0, t1⟩

Notation 2 We define the difference set between two permutations π and π′ as
ds(π, π′) = {a ∈ A|π ·a ̸= π′ ·a}. By extension, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

2.3 Solution to Quintuples and Additional Notation

For the proofs of soundness and completeness of the algorithm, we need the
notion of a solution to a quintuple (Definition 9). This definition depends on a
parameter X , a set of “protected variables”, i.e., variables that cannot be instan-
tiated.

In order to define a nominal AC-matching solution and to check whether
a nominal AC-equality is valid , we first define a general notion of unification
problem (Definition 8) and a solution to a unification problem (Definition 10).
Then, the definitions for nominal AC-matching and AC-equality checking are ob-
tained immediately from the corresponding definitions of unification by correctly
setting the parameter X .

Definition 8 (Unification Problem). A unification problem is a triple (∇, P,X )
where ∇ is a freshness context; P is a finite set of equational and freshness con-
straints of the form t ≈? s and a#?t, respectively; and X is a set of variables.

When X = Vars(rhs(P )), Definition 8 corresponds to an AC-matching prob-
lem and when X = Vars(P ) the mentioned definition corresponds to an AC-
equality checking problem.

Notation 3 (Vars) We denote the set of variables of a term t by Vars(t) .
Let P be a finite set of equational constraints. The set of variables in P is denoted
as Vars(P )  and the set of variables in the terms that are in the right-hand
side of P is denoted as Vars(rhs(P )). The set of variables in t ≈? s is denoted
as Vars(t, s) . Finally, if Γ is a context then we denote by Vars(Γ )  the set
{X | a#X ∈ Γ, for some atom a}.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L481-L492
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L68-L74
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L64-L66
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L123-L128


Nominal AC-Matching 7

Notation 4 (lhs(P )  and rhs(P ) ) Let P be a finite set of equational con-
straints of the form t ≈? s. Do we define the left-hand side of P (denoted as
lhs(P )) as the set of left-hand terms of the equational constraints in P , i.e.,
lhs(P ) = {t | t ≈? s ∈ P}. The right-hand side of P (denoted as rhs(P )) is
defined similarly.

Notation 5 Let ∇ and ∇′ be freshness contexts and σ and σ′ substitutions. We
need the following notation to define a solution to a quintuple:

– ∇′ ⊢ σ∇ denotes that ∇′ ⊢ a#σX holds for each (a#X) ∈ ∇.
– ∇ ⊢ σ ≈V σ′ denotes that ∇ ⊢ σX ≈α σ′X for all X in V . When V is the

set of all variables X, we write ∇ ⊢ σ ≈ σ′.

Definition 9 (Solution for a Quintuple ). Suppose that Γ is a context, P
is a set of freshness constraints (of the form a#?t) and equational constraints
(of the form t ≈? s), σ is a substitution, V is a set of variables and X is a
set of protected variables that cannot be instantiated. A solution for a quintuple
(Γ, P, σ, V,X ) is a pair (∆, δ), where the following conditions are satisfied:

1. ∆ ⊢ δΓ .
2. if a#?t ∈ P then ∆ ⊢ a#δt.
3. if t ≈? s ∈ P then ∆ ⊢ δt ≈α δs.

4. there exists λ such that
∆ ⊢ λσ ≈V δ.

5. dom(δ) ∩ X = ∅.

Remark 3. Note that if (∆, δ) is a solution of (Γ,nil, σ,X,X ) this corresponds to
the notion of (∆, δ) being an instance of (Γ, σ) that does not instantiate variables
in X .

Definition 10 (Solution for an AC-unification/matching/equality prob-
lem). A solution for an AC-unification problem with protected variables (Γ, P,X )
is a solution for the associated quintuple (Γ, P, id,Vars(P ),X ). When X =
Vars(rhs(P )), we have the definition for an AC-matching problem and when
X = Vars(P ) we have the definition of solution to an AC-equality checking
problem.

3 Algorithm

We present the algorithm’s pseudocode instead of the actual PVS code for read-
ability. We developed a nominal algorithm (Algorithm 1 ) for matching terms
t and s. The algorithm is recursive and needs to keep track of the current con-
text Γ , the equational constraints P that we have to unify, the substitution σ
computed so far, the set of variables V that are/were in the problem and the
set of protected variables X . Hence, its input is a quintuple (Γ, P, σ, V,X ). The
output is a list of solutions, each of the form (Γ1, σ1). The freshness constraints
are treated by auxiliary functions (see Section 3.1 ), and the equational con-
straints P are represented as a list in our PVS code, where each element of the
list is a pair (ti, si) that represents an equation ti ≈? si. The first call to the
algorithm, in order to match t to s, is done with P = {t ≈? s}; Γ = ∅ and
σ = id (because we have not computed any freshness constraint or substitution
yet); V = Vars(t, s) and X = Vars(s).

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L54-L54
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L55-L55
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L132-L136
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93


8 M. Ayala-Rincón et al.

Algorithm 1 Nominal AC-Matching Algorithm 1

1: procedure ACMatch(Γ, P, σ, V,X )
2: if nil?(P ) then cons((Γ, σ),nil)
3: else
4: let ((t, s), P1) = chooseEq(P ) in
5: if t matches a and s matches a then ACMatch(Γ, P1, σ, V,X )
6: else if t matches π ·X and X ̸∈ Vars(s) and X ̸∈ X then
7: let σ1 = {X 7→ π−1s},
8: (Γ1,flag) = freshSubs?(σ1, Γ ) in
9: if flag then ACMatch(Γ1 ∪ Γ, σ1P1, σ1σ, V,X )

10: else nil
11: else if t matches π ·X and s matches π′ ·X then
12: let Γ1 = ds(π, π′)#X ∪ Γ in ACMatch(Γ1, P1, σ, V,X )
13: else if t matches ⟨⟩ and s matches ⟨⟩ then ACMatch(Γ, P1, σ, V,X )
14: else if t matches f t1 and s matches f s1 then
15: let (P2,flag) = decompose(t1, s1) in
16: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X )
17: else nil
18: else if t matches [a] t1 and s = [a] s1 then
19: let (P2,flag) = decompose(t1, s1) in
20: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X )
21: else nil
22: else if t matches [a] t1 and s = [b]s1 then
23: let (Γ1,flag1) = fresh?(a, s1),
24: (P2,flag2) = decompose(t1, (a b) · s1) in
25: if flag1 and flag2 then ACMatch(Γ ∪ Γ1, P2 ∪ P1, σ, V,X )
26: else nil
27: else if t matches fAC t1 and s matches fAC s1 then
28: let InputLst = applyACStep (Γ, cons((t, s), P1), σ, V,X ),
29: LstResults = map(ACMatch, InputLst) in flatten(LstResults)
30: else nil

Remark 4. In the PVS code, this means that the initial call is done with param-
eters P = cons((t, s),nil), Γ = nil, σ = nil, V = Vars(t, s) and X = Vars(s).

Although extensive, Algorithm 1 is simple. It starts by analysing the list P of
terms to match. If it is empty (line 2), it has finished and can return the answer
computed so far, a list with a unique element: (Γ, σ). Otherwise, the algorithm
calls the auxiliary function chooseEq (line 4), which returns a pair (t, s) and
a list of equational constraints P1 such that P = {t ≈? s} ∪ P1. Then, P is
updated by simplifying {t ≈? s} and it does so by seeing the form of t (an atom,
a moderated variable, a unit, and so on).

3.1 Functions chooseEq and decompose

The function chooseEq(P )  selects an equational constraint t ≈? s in P ,
picking the equation with the biggest size. This heuristic aims to aid us in the
proof of termination (see Section 4.2).

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification_alg.pvs#L24-L93
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L65-L73


Nominal AC-Matching 9

The function decompose  (lines 15, 19 and 24) receives two terms t and
s, and if they are both pairs, it recursively tries to decompose them, returning a
tuple (P,flag), where P is a list of equational constraints and flag is a boolean
that is True if the decomposition was successful. If neither t nor s is a pair, the
unification problem returned is just P = {t ≈? s} and flag = True. If one of
the terms is a pair and the other is not, the function returns (nil, False). In
Algorithm 1, we call decompose(t1, s1) when we encounter equations such as
ft1 ≈? fs1 to guarantee that all the terms in the unification problem remain
well-formed. Although it would have been correct to simplify an equation of the
form ft1 ≈? fs1 to t1 ≈? s1, if t1 or s1 were pairs, we would not respect our
restriction that only well-formed terms are in the matching problem.

Example 1. Examples of the function decompose are given below.

– decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨X,Y ⟩⟩) = ({a ≈? c, b ≈? X, c ≈? Y }, True).
– decompose(a, Y ) = ({a ≈? Y }, True).
– decompose(X, ⟨c, d⟩) = (nil, False).

3.2 Handling Freshness Constraints - Functions freshSubs? and
fresh?

Following the approach of [6], freshness constraints are handled separately by the
auxiliary functions fresh?  and freshSubs? . These functions were already
implemented in [6], and extending them to handle AC-functions is straightfor-
ward. freshSubs?(σ, Γ ) returns the minimal context (Γ1 in Algorithm 1) in
which a#?σX holds, for every a#X in the context Γ . fresh?(a, t) computes
and returns the minimal context (Γ1 in Algorithm 1) in which a is fresh for t.
Both functions also return a boolean (flag in Algorithm 1), indicating if it was
possible to find the aimed context.

3.3 The Function applyACStep

The function applyACStep  was adapted from the formalisation of first-
order AC-unification (see [7]). It handles equations t ≈? s, where t and s are
rooted by the same AC function symbol. This function returns a list (InputLst
in line 28 of Algorithm 1) with each entry in this list corresponding to a branch
ACMatch will explore. ACMatch explores every branch generated by calling
itself recursively on every input in InputLst (line 29 of the algorithm). The
algorithm’s output is a list of solutions of the form (Γ, σ), where Γ is a con-
text and σ is a substitution. In addition, the result of calling map(ACMatch,
InputLst), LstResults in line 29 of Algorithm 1, is a list of lists of solutions.
Hence, LstResults is flattened and then returned.

Remark 5 ( solveAC and instantiateStep). applyACStep relies on two func-
tions: solveAC  and instantiateStep , which are fully described in [7].
In synthesis, the function solveAC finds the linear Diophantine equational sys-
tem associated with the AC-matching equational constraint, generates the basis

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L231-L242
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/freshness.pvs#L78-L91
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/fresh_subs.pvs#L19-L32
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L242-L256
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/aux_unification.pvs#L196-L210
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/inst_step.pvs#L89-L117


10 M. Ayala-Rincón et al.

of solutions, and uses these solutions to generate the new AC-matching equa-
tional constraints. The function instantiateStep instantiates the moderated
variables that it can.

3.4 An Example of First-order AC-Unification and How We
Adapted It to the Nominal Setting

We give a very high-level example (taken from [31] and more detailed in Ap-
pendix A) of how we would solve the first-order AC-unification problem

{f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)}.

The first step is to eliminate common arguments. Next we associate our unifi-
cation problem with a linear Diophantine equation (2U1 + U2 + U3 = 2V1 + V2

in our case) and generate a basis of solutions to this equation, associating a
new variable (Z1, Z2, . . . , Z7 in our case) to each solution. The algorithm may
branch into (possibly) many unification problems and these new variables will be
the building blocks for these unification problems. Finally, before proceeding to
unify the new unification problems, we can drop the cases where a variable term
is paired with an AC-function application. In the end, the solutions computed
are:

σ1={Y 7→ f(b, b), Z 7→ f(a,X,X)} σ2={Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}
σ3={X 7→ b, Z 7→ f(a, Y )} σ4={X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}

With this example in mind, there are four main modifications (more details
in Appendix A) when moving from first-order AC-unification to nominal AC-
matching. When eliminating common arguments we do not eliminate arguments
ti and sj of t and s if they are equal modulo AC, we eliminate them if they
are α-equivalent (modulo AC) under the context Γ that we are working with.
Regarding the new variables introduced: the permutation suspended on them is
always the identity. Additionally, we drop the cases where a moderated variable
π · X, with X ∈ X , is paired with an AC-function application. Finally, we
must guarantee that the new variables Zis introduced by the algorithm can be
instantiated, i.e. Zi ̸∈ X .

4 Formalisation

As is done in [7], to help us in the proofs of termination (Section 4.2), sound-
ness (Section 4.3) and completeness (Section 4.4) we define the notion of a nice
input (Section 4.1). More details about the PVS formalisation can be found in
Appendix B.

4.1 Nice Inputs

Nice inputs are invariant under the action of the ACMatch function with valu-
able properties. Notice that Item 7 of Definition 11 would need to be removed for
the proofs of termination, soundness, and completeness to be used in unification.



Nominal AC-Matching 11

Definition 11 (Nice input ). An input (Γ, P, σ, V,X ) is said to be nice if:
1. σ is idempotent.
2. Vars(P ) ∩ dom(σ) = ∅.
3. σ ⊆ V .
4. Vars(P ) ⊆ V .

5. Vars(Γ ) ⊆ V .
6. X ⊆ V .
7. Vars(rhs(P )) ⊆ X .

Itens 1 to 4 were present in the definition of nice input for the formalisation
of first-order AC-unification, while itens 5 to 7 were added. Item 5 of Defini-
tion 11 was expected, since we already have similar hypotheses for P and σ.
Item 6 guarantees that the new variables introduced by the algorithm can be
instantiated (see Appendix A).

4.2 Termination

For the lexicographic measure used in the proof of termination, we need the
definition of the size of an equational constraint t ≈? s (Definition 12).

Definition 12 (Size of an Equational Constraint ). The size of an equa-
tional constraint t ≈? s is size(t) + size(s), where the size of a term t  is
recursively defined as follows:

– size(a) = 1.
– size(π ·X) = 1.
– size(⟨⟩) = 1.

– size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).
– size(f t1) = 1 + size(t1).
– size(fAC t1) = 1 + size(t1).
– size([a]t1) = 1 + size(t1)

Although the nominal AC-matching algorithm is based on the first-order
AC-unification algorithm ([7]), the proof of termination was much easier for
nominal AC-matching than for first-order AC-unification. Instead of the intricate
lexicographic measure used in [7] (which came from the work of [17]), it was
possible to prove that for the particular case of matching (unlike unification)
all the new moderated variables introduced by solveAC are instantiated by
instantiateStep.

Hence, the lexicographic measure used has as its first component the number
of variables in the equational constraints P and as a second component the
multiset order of the size of each equation t ≈? s ∈ P . Although PVS does not
directly implement multiset orders, this part can be emulated easily by analysing
the maximum size n of all equations t ≈? s in P and the number of equations
t ≈? s in P with maximal size (in this order). The algorithm selects an equation
with maximal size to simplify (the heuristic selection is enforced by the function
chooseEq).

Let MS(P ) be the maximum size n of all equations t ≈? s in P and let
NMS(P ) be the number of equations s ≈? t whose size is equal to MS(P ).
The lexicographic measure in then lex = (|Vars(P )|,MS(P ), NMS(P )). Ta-
ble 1 shows which component do not increase (represented by ≤) and which
components strictly decrease (represented by <).

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/ac_step.pvs#L33-L38
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/unification.pvs#L154-L156
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L48-L59


12 M. Ayala-Rincón et al.

Table 1. Decrease of the components of the lexicographic measure.

Recursive Call |Vars(P )| MS(P ) NMS(P )

line 5, 12, 13, 16, 20, 25, 29 (case 1) ≤ ≤ <

line 5, 12, 13, 16, 20, 25, 29 (case 2) ≤ <

line 9 <

4.3 Soundness

As mentioned, to match terms t and s we first call the Algorithm 1 with pa-
rameters Γ = ∅, P = {t ≈? s}, σ = id, V = Vars(t, s) and X = Vars(s).
However, since the parameters of ACMatch change after recursive calls, the
proof of soundness (Corollary 1) cannot be done directly by induction, and we
must instead prove first the Theorem 1 with generic parameters Γ , P , σ, V and
X . Once the Theorem 1 is proved, it is also immediate to adapt the algorithm
to solve nominal AC-equality checking and to prove its soundness (Corollary 2).

Theorem 1 (Soundness for Nice Inputs ). Let the pair (Γ1, σ1) an out-
put of ACMatch(Γ, P, σ, V,X ) and suppose that (Γ, P, σ, V,X ) is a nice in-
put. If (∆, δ) is a solution to (Γ1,nil, σ1,X,X ) then (∆, δ) is a solution to
(Γ, P, σ,X,X ).

Corollary 1 (Soundness for AC-Matching ). Let the pair (Γ1, σ1) an
output of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(s)). If (∆, δ) is an instance
of (Γ1, σ1) that does not instantiate the variables in s, then (∆, δ) is a solution
to (∅, {t ≈? s}, id,X,Vars(s)).

Corollary 2 (Soundness for AC-Equality Checking ). Let (Γ1, σ1) be
an output of ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(t, s)). If (∆, δ) is an
instance of (Γ1, σ1) that does not instantiate the variables in t or s, then (∆, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)).

Remark 6. An interpretation of Corollary 1 is that if (∆, δ) is an AC-matching
instance to one of the outputs of ACMatch, then (∆, δ) is an AC-matching so-
lution to the original problem. Corollary 2 has a similar interpretation, replacing
AC-matching with AC-equality checking.

The proof of soundness was mainly a straightforward adaptation from the
proof of soundness of first-order AC-unification ([7]). The soundness of fresh?
and freshSubs? was a straightforward adaptation from the work of [6] since
the only case not covered in [6] (the case of AC-functions) is similar to the case
of syntactic functions.

4.4 Completeness

Completeness of Algorithm 1 is given by the Corollary 3 and similarly to the
soundness proof, it is derived easily after proving the Theorem 2.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L24-L29
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L32-L36
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L38-L42


Nominal AC-Matching 13

Theorem 2 (Completeness for Nice Inputs ). Let (Γ, P, σ, V,X ) be a
nice input. Suppose that (∆, δ) is a solution to (Γ, P, σ,X,X ), that δ ⊆ V and
that Vars(∆) ⊆ V . Then, there exists (Γ1, σ1) ∈ ACMatch(Γ, P, σ, V,X ) such
that (∆, δ) is an instance (restricted to the variables of V ) of (Γ1, σ1) that does
not instantiate the variables in X .

Corollary 3 (Completeness for AC-Matching ). Suppose that (∆, δ) is
a solution to (∅, {t ≈? s}, id,X,Vars(s)), that δ ⊆ V and that Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(s)) such that
(∆, δ) is an instance (restricted to the variables of V ) of (Γ1, σ1) that does not
instantiate the variables of s.

Corollary 4 (Completeness for AC-equality Checking ). Suppose (∆, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)) satisfying δ ⊆ V and Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(t, s)) such that
(∆, δ) is an instance (restricted to the variables of V ) of (Γ1, σ1) that does not
instantiate the variables of t or s.

Remark 7. An interpretation of Corollary 3 is that if (∆, δ) is an AC-matching
solution to the initial problem, then (∆, δ) is an AC-matching instance of one
of the outputs of ACMatch. Corollary 4 has a similar interpretation, replacing
AC-matching with AC-equality checking.

As was the case for first-order AC-unification (see [7]), the hypothesis δ ⊆ V
in the proof of completeness is merely a technicality that was put in order to
guarantee the new variables introduced by the algorithm in the AC-part do not
clash with the variables in dom(δ) or in the terms in im(δ). This mechanism
could be replaced by a different one that assures that the variables introduced
by the AC-part of ACMatch are indeed new. When going from the first-order
setting to the nominal setting, we go from having a unifier δ to a pair (∆, δ) and
hence we must add the hypothesis Vars(∆) ⊆ V .

Remark 8 (High-level description of how to remove hypotheses δ ⊆ V and
Vars(∆) ⊆ V ). The critical step to prove a variant of Corollary 3 with V =
Vars(t, s) and without the hypothesis δ ⊆ V and Vars(∆) ⊆ V is to prove that
the outputs computed when we call ACMatch with input (Γ, P, σ, V,X ) “differ
only by the name of the new variables” from the outputs computed when we call
ACMatch with input (Γ, P, σ, V ′,X ). However, this cannot be proved directly
by induction because if V and V ′ differ and ACMatch enters in the AC-part,
the new variables introduced for each input may “differ only by a renaming”
and once we instantiate those variables, it may happen that the substitutions
computed so far (the third component in the input quintuple) will also “differ
only by the name of the new variables”. Similar to what was done in first-order
AC-unification, the solution is to prove the more general statement that if the
inputs (Γ, P, σ, V,X ) and (Γ, P, σ′, V ′,X ′) “differ only by the name of the new
variables”, then the output of ACMatch with the first input “differ only by
the name of the new variables” from the output of ACMatch with the second
input.

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L45-L52
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L54-L61
https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/paper_theorems.pvs#L63-L70


14 M. Ayala-Rincón et al.

5 Towards a Nominal AC-Unification Algorithm

Stickel’s AC-unification algorithm relies on solving Diophantine equations where
new variables are used to represent arguments of AC operators. Using the same
approach to solve nominal AC-unification problems leads to non-termination in
cases where the same variable occurs as an argument of an AC operator multiple
times with different suspended permutations.

As an example, suppose that we are working under an empty context (i.e. Γ =
∅) and want to solve the equational constraint f(X,W ) ≈? f(π ·X,π · Y ), with
X = ∅. Additionally, assume that we apply Stickel’s AC-unification algorithm
to this equational constraints and let Z1,W1, Y1, X1 be the name of the new
variables introduced (we choose these names deliberately to make the loop in
nominal AC-unification clearer). Then, 7 branches (more details in Appendix C)
are generated and one of them is:

{X ≈? Y1 +X1,W ≈? Z1 +W1, π ·X ≈? W1 +X1, π · Y ≈? Z1 + Y1}

After instantiating the variables we obtain

σ = {X 7→ f(Y1, X1), W 7→ f(Z1,W1), Y 7→ f(π−1 · Z1, π
−1 · Y1)}

and one equational constraint remain: f(X1,W1) ≈? f(π ·X1, π ·Y1). Notice that
our final problem is essentially a renaming of our initial problem:

f(X,W ) ≈? f(π ·X,π · Y )

f(X1,W1) ≈? f(π ·X1, π · Y1)

This problem does not arise in first-order AC-unification because, in the
corresponding first-order problem, we would not have two different permutations
(id and π in this case) suspended on the same variable (X in this case). Instead,
we would have the same variable X as an argument to both terms and eliminate
it. Finally, this problem also does not arise in nominal AC-matching because X
would be a protected variable. Hence, we would not compute the substitution
σ = {X 7→ f(Y1, X1),W 7→ W1, Y 7→ π−1 · Y1}, we would instead discard
this branch. In future work, we will consider the alternative approach to AC-
unification proposed by Boudet, Contejean and Devie [10,8], which was used
to define AC higher-order pattern unification [9]. To our knowledge, this AC
unification approach has not been formalised yet. However, it has the advantage
of generating simpler Diophantine systems, which could simplify the task of
nominal AC-unification.

6 Conclusion and Future Work

We propose the first (to the best of our knowledge) nominal AC-matching al-
gorithm, together with proofs of its termination, soundness and completeness.
All proofs were formalised in the proof assistant PVS. As a byproduct, we also



Nominal AC-Matching 15

obtained a formalised nominal AC-equality checking algorithm. Nominal AC-
matching has applications for nominal AC-rewriting, being the first step towards
a nominal AC-unification algorithm.

Our formalisation extends the formalisation of first-order AC-unification by
Ayala-Rincón et al. [7] to nominal terms and uses the functions that deal with
freshness constraints from [6], extending them to deal with AC-function sym-
bols. Furthermore, by adding a parameter X for protected variables, it enables
both AC-matching and AC-equality checking, according to whether X is the set
of variables in the right-hand side of the problem or the set of variables in the
problem. The .pvs files have a combined size of 290 KB and contain the speci-
fication of functions and the statements of the theorems. The .prf files contain
the proofs of the theorems and have a combined size of 22 MB.

Future work will explore ways to define a nominal AC-unification algorithm,
avoiding the loop described in Section 5. We will consider alternative AC-unifi-
cation algorithms as a starting point [10,9] and explore the connection between
higher-order pattern unification and nominal unification (e.g., [13,23]).

A nominal AC-unification algorithm would have applications in logic pro-
gramming languages that employ the nominal paradigm, such as α-Prolog. A
second possible future work path is to use this formalisation to formalise a more
efficient nominal AC-matching algorithm. Finally, a third future work path would
be formalising matching/unification algorithms for different equational theories
and a fourth path would be investigating if/how nominal unification algorithms
can be used for term indexing.

Acknowledgments. Partially supported by the Austrian Science Fund (FWF)
Project P 35530, Brazilian FAP-DF Project DE 00193.00001175/2021-11, Brazil-
ian CNPq Project Universal 409003/2021-2, and Georgian Rustaveli National
Science Foundation Project FR-21-16725. First author was partially funded by
a CNPq productivity research grant 313290/2021-0.

References

1. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho,
D.: Nominal C-Unification. In: Logic-Based Program Synthesis and Transforma-
tion - 27th International Symposium, LOPSTR, Revised Selected Papers. LNCS,
vol. 10855, pp. 235–251. Springer (2017). https://doi.org/10.1007/978-3-319-94460-
9_14

2. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho, D.:
On Solving Nominal Fixpoint Equations. In: Frontiers of Combining Systems -
11th International Symposium, FroCoS. LNCS, vol. 10483, pp. 209–226. Springer
(2017). https://doi.org/10.1007/978-3-319-66167-4_12

3. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-Sobrinho,
D., Oliveira, A.C.R.: A formalisation of nominal α-equivalence with A,
C, and AC function symbols. Theor. Comput. Sci. 781, 3–23 (2019).
https://doi.org/10.1016/j.tcs.2019.02.020

https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.tcs.2019.02.020


16 M. Ayala-Rincón et al.

4. Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Silva, G.F.,
Nantes-Sobrinho, D.: Formalising Nominal C-Unification Generalised with
Protected Variables. Math. Struct. Comput. Sci. 31(3), 286–311 (2021).
https://doi.org/10.1017/S0960129521000050

5. Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D.: On Nominal Syntax
and Permutation Fixed Points. Log. Methods Comput. Sci. 16(1) (2020).
https://doi.org/10.23638/LMCS-16(1:19)2020

6. Ayala-Rincón, M., Fernández, M., Oliveira, A.C.R.: Completeness in PVS of a
Nominal Unification Algorithm. In: Proc. of the 10th Workshop on Logical and
Semantic Frameworks, with Applications, LSFA. ENTCS, vol. 323, pp. 57–74. El-
sevier (2015). https://doi.org/10.1016/j.entcs.2016.06.005

7. Ayala-Rincón, M., Fernández, M., Silva, G.F., Sobrinho, D.N.: A Certi-
fied Algorithm for AC-Unification. In: 7th International Conference on For-
mal Structures for Computation and Deduction, FSCD. LIPIcs, vol. 228,
pp. 8:1–8:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022).
https://doi.org/10.4230/LIPIcs.FSCD.2022.8

8. Boudet, A.: Competing for the AC-Unification Race. J. of Autom. Reasoning 11(2),
185–212 (1993). https://doi.org/10.1007/BF00881905

9. Boudet, A., Contejean, E.: AC-Unification of Higher-Order Patterns. In:
Third International Conference on Principles and Practice of Constraint
Programming CP97. LNCS, vol. 1330, pp. 267–281. Springer (1997).
https://doi.org/10.1007/BFb0017445

10. Boudet, A., Contejean, E., Devie, H.: A New AC Unification Algorithm with an Al-
gorithm for Solving Systems of Diophantine Equations. In: Proc. of the 5th Annual
Symposium on Logic in Computer Science, LICS. pp. 289–299. IEEE Computer
Society (1990). https://doi.org/10.1109/LICS.1990.113755

11. Calvès, C.F., Fernández, M.: Matching and Alpha-Equivalence Check for Nom-
inal Terms. J. of Computer and System Sciences 76(5), 283–301 (2010).
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2009.10.003

12. Calvès, C., Fernández, M.: A polynomial nominal unification algorithm. Theor.
Comput. Sci. 403(2-3), 285–306 (2008). https://doi.org/10.1016/j.tcs.2008.05.012

13. Cheney, J.: Relating nominal and higher-order pattern unification. In: Proc. of the
19th international workshop on Unification, UNIF. pp. 104–119 (2005)

14. Clausen, M., Fortenbacher, A.: Efficient Solution of Linear Diophantine Equations.
J. of Sym. Computation 8(1-2), 201–216 (1989). https://doi.org/10.1016/S0747-
7171(89)80025-2

15. Contejean, E.: A Certified AC Matching Algorithm. In: Proc. of the 15th In-
ternational Conference on Rewriting Techniques and Applications, RTA. LNCS,
vol. 3091, pp. 70–84. Springer (2004). https://doi.org/10.1007/978-3-540-25979-
4_5

16. Eker, S.: Associative-Commutative Rewriting on Large Terms. In: Proc. of the 14th
International Conference on Rewriting Techniques and Applications, RTA. LNCS,
vol. 2706, pp. 14–29. Springer (2003). https://doi.org/10.1007/3-540-44881-0_3

17. Fages, F.: Associative-Commutative Unification. In: 7th International Conference
on Automated Deduction CADE. LNCS, vol. 170, pp. 194–208. Springer (1984).
https://doi.org/10.1007/978-0-387-34768-4_12

18. Fages, F.: Associative-Commutative Unification. J. of Sym. Computation 3(3),
257–275 (1987). https://doi.org/10.1016/S0747-7171(87)80004-4

19. Fernández, M., Gabbay, M.J.: Nominal rewriting. Information and Computation
205(6), 917–965 (2007). https://doi.org/10.1016/j.ic.2006.12.002

https://doi.org/10.1017/S0960129521000050
https://doi.org/10.23638/LMCS-16(1:19)2020
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.4230/LIPIcs.FSCD.2022.8
https://doi.org/10.1007/BF00881905
https://doi.org/10.1007/BFb0017445
https://doi.org/10.1109/LICS.1990.113755
https://doi.org/http://dx.doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1016/j.tcs.2008.05.012
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1016/S0747-7171(89)80025-2
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/978-3-540-25979-4_5
https://doi.org/10.1007/3-540-44881-0_3
https://doi.org/10.1007/978-0-387-34768-4_12
https://doi.org/10.1016/S0747-7171(87)80004-4
https://doi.org/10.1016/j.ic.2006.12.002


Nominal AC-Matching 17

20. Gabbay, M.J., Pitts, A.M.: A New Approach to Abstract Syntax with Vari-
able Binding. Formal Aspects of Computing 13(3), 341–363 (Jul 2002).
https://doi.org/10.1007/s001650200016

21. Kumar, R., Norrish, M.: (nominal) unification by recursive descent with trian-
gular substitutions. In: Interactive Theorem Proving, ITP 2010, Edinburgh, UK,
2010. Lecture Notes in Computer Science, vol. 6172, pp. 51–66. Springer (2010).
https://doi.org/10.1007/978-3-642-14052-5_6

22. Levy, J., Villaret, M.: An Efficient Nominal Unification Algorithm. In: Proc. of the
21st International Conference on Rewriting Techniques and Applications, RTA.
LIPIcs, vol. 6, pp. 209–226. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2010). https://doi.org/10.4230/LIPIcs.RTA.2010.209

23. Levy, J., Villaret, M.: Nominal Unification from a Higher-Order
Perspective. ACM Trans. Comput. Log. 13(2), 10:1–10:31 (2012).
https://doi.org/10.1145/2159531.2159532

24. Owre, S., Shankar, N.: The Formal Semantics of PVS. Tech. Rep. 97-2R, SRI
International Computer Science Laboratory, Menlo Park CA 94025 USA (1997,
revised 1999)

25. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press (2013)

26. Pottier, F.: An Overview of CαML. In: Benton, N., Leroy, X. (eds.)
Proc. of the ACM-SIGPLAN Workshop on ML, ML. Electronic Notes
in Theoretical Computer Science, vol. 148, pp. 27–52. Elsevier (2005).
https://doi.org/10.1016/j.entcs.2005.11.039

27. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal Unifica-
tion of Higher Order Expressions with Recursive Let. In: Logic-Based Pro-
gram Synthesis and Transformation - 26th International Symposium, LOPSTR,
Revised Selected Papers. LNCS, vol. 10184, pp. 328–344. Springer (2016).
https://doi.org/10.1007/978-3-319-63139-4_19

28. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz, Y.D.K.: Nominal Uni-
fication and Matching of Higher Order Expressions with Recursive Let. Fundam.
Informaticae 185(3), 247–283 (2022). https://doi.org/10.3233/FI-222110

29. Shinwell, M.R., Pitts, A.M., Gabbay, M.: FreshML: programming with
binders made simple. In: Proc. of the 8th ACM SIGPLAN International
Conference on Functional Programming, ICFP. pp. 263–274. ACM (2003).
https://doi.org/10.1145/944705.944729

30. Stickel, M.E.: A Complete Unification Algorithm for Associative-Commutative
Functions. In: Advance Papers of the Fourth International Joint Conference on
Artificial Intelligence, IJCAI. pp. 71–76 (1975), http://ijcai.org/Proceedings/75/
Papers/011.pdf

31. Stickel, M.E.: A Unification Algorithm for Associative-Commutative Functions. J.
of the ACM 28(3), 423–434 (1981). https://doi.org/10.1145/322261.322262

32. Urban, C.: Nominal Techniques in Isabelle/HOL. J. Autom. Reason. 40(4), 327–
356 (2008). https://doi.org/10.1007/s10817-008-9097-2

33. Urban, C.: Nominal Unification Revisited. In: Proc. of the 24th Interna-
tional Workshop on Unification, UNIF. EPTCS, vol. 42, pp. 1–11 (2010).
https://doi.org/10.4204/EPTCS.42.1

34. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theor. Comput. Sci.
323(1-3), 473–497 (2004). https://doi.org/10.1016/j.tcs.2004.06.016

https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/978-3-642-14052-5_6
https://doi.org/10.4230/LIPIcs.RTA.2010.209
https://doi.org/10.1145/2159531.2159532
https://doi.org/10.1016/j.entcs.2005.11.039
https://doi.org/10.1007/978-3-319-63139-4_19
https://doi.org/10.3233/FI-222110
https://doi.org/10.1145/944705.944729
http://ijcai.org/Proceedings/75/Papers/011.pdf
http://ijcai.org/Proceedings/75/Papers/011.pdf
https://doi.org/10.1145/322261.322262
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.4204/EPTCS.42.1
https://doi.org/10.1016/j.tcs.2004.06.016


18 M. Ayala-Rincón et al.

A An Example of First-Order AC-Unification and How
to Adapt it to Nominal AC-Matching

Notation 6 (Flattened form of AC-functions) Let f be an AC-function
symbol. When convenient, we may denote in this paper an AC-function in flat-
tened form. For instance, the term f⟨⟨a, b⟩, ⟨c, d⟩⟩ may be denoted simply as
f(a, b, c, d). In our formalisation, when we manipulate an AC-function term t
we are more interested in its arguments than in how they were encoded using
pairs.

Terms such as fAC⟨⟨a, b⟩, fAC⟨c, d⟩⟩, fAC⟨fAC⟨⟩, fAC⟨c, d⟩⟩, and fAC⟨⟨⟩,
fAC⟨c, d⟩⟩ are denoted respectively by f(a, b, c, d), f(⟨⟩, c, d) and f(⟨⟩, c, d).

A.1 An Example

We give an example (taken from the very accessible [31] and also present in [7]) of
how we would solve the first-order AC-unification problem {f(X,X, Y, a, b, c) ≈?

f(b, b, b, c, Z)}, where f is an AC-function symbol. In a high-level view, this
technique converts an AC-unification problem into a linear Diophantine equation
and uses a basis of solutions of the Diophantine equation to get a complete set
of AC-unifiers to our original problem.

The first step is to eliminate common arguments in the terms that we are
trying to unify. The problem is now {f(X,X, Y, a) ≈? f(b, b, Z)}. The second
step is to associate our unification problem with a linear Diophantine equation,
where each argument of our terms corresponds to one variable in the equation
(this process is called variable abstraction) and the coefficient of this variable in
the equation is the number of occurrences of the argument. In our case, the linear
Diophantine equation obtained is: 2X1 +X2 +X3 = 2Y1 + Y2 (variable X1 was
associated with argument X, variable X2 with the argument Y and so on; the
coefficient of variable X1 is two, since argument X occurs twice in f(X,X, Y, a)
and so on).

Table 2. Solutions for the equation 2X1 +X2 +X3 = 2Y1 + Y2.

X1 X2 X3 Y1 Y2 New Variables.
0 0 1 0 1 Z1

0 1 0 0 1 Z2

0 0 2 1 0 Z3

0 1 1 1 0 Z4

0 2 0 1 0 Z5

1 0 0 0 2 Z6

1 0 0 1 0 Z7

The third step is to generate a basis of solutions to the equation and associate
a new variable (the Zis) to each solution. The result is shown on Table 2. As we
will soon see, the unification problem {f(X,X, Y, a) ≈? f(b, b, Z)} may branch



Nominal AC-Matching 19

into (possibly) many unification problems and the new variables Zis will be the
building blocks for the right-hand side of these unification problems. Observing
Table 2 we relate the “old variables” (Xis and Yis) with the “new variables” (Zis):

X1 = Z6 + Z7

X2 = Z2 + Z4 + 2Z5

X3 = Z1 + 2Z3 + Z4

Y1 = Z3 + Z4 + Z5 + Z7

Y2 = Z1 + Z2 + 2Z6.

(2)

In order to explore all possible solutions, we must consider whether we will
include or not each solution on our basis. Since seven solutions compose our
basis (one for each variable Zi), this means that a priori there are 27 cases to
consider. Considering that including a solution of our basis means setting the
corresponding variable Zi to 1 and not including it means setting it to 0, we must
respect the constraint that no original variables (X1, X2, X3, Y1, Y2) receive 0.
Eliminating the cases that do not respect this constraint, we are left with 69
cases.

For example, if we decide to include only the solutions represented by the
variables Z1, Z4 and Z6, the corresponding unification problem, according to the
Equations (2), becomes:

P = {X1 ≈? Z6, X2 ≈? Z4, X3 ≈? f(Z1, Z4),

Y1 ≈? Z4, Y2 ≈? f(Z1, Z6, Z6)}.
(3)

We can also drop the cases where a variable that does not represent a variable
term is paired with an AC-function application. For instance, the unification
problem P should be discarded, since the variable X3 represents the constant a,
and we cannot unify a with f(Z1, Z4). This constraint eliminates 63 of the 69
potential unifiers.

Finally we replace the variables X1, X2, X3, Y1, Y2 by the original arguments
they substituted and proceed with the unification. Some unification problems
that we will explore will be unsolvable and discarded later, as:

{X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}

(we cannot unify both a with Z4 and b with Z4 simultaneously). In the end, the
solutions computed will be:

σ1 = {Y → f(b, b), Z → f(a,X,X)},
σ2 = {Y → f(Z2, b, b), Z → f(a, Z2, X,X)},
σ3 = {X → b, Z → f(a, Y )},
σ4 = {X → f(Z6, b), Z → f(a, Y, Z6, Z6)}.

(4)

Remark 9. When using the technique described in this section to unify f(X,X, Y,
a, b, c) with f(b, b, b, c, Z), we obtained unification problems that only contain



20 M. Ayala-Rincón et al.

the variables X1, X2, X3, Y1, Y2 or AC-functions whose arguments are all vari-
ables (for instance P in Equation 3). However, this does not mean that our
technique cannot be applied to general AC-unification problems, since we even-
tually replace the variables X1, X2, X3, Y1, Y2 by their corresponding arguments
(X,Y, a, b, Z respectively) and proceed with unification.

A.2 Modifications to Adapt the Algorithm to the Nominal Setting

The example describes the process of trying to unify two terms t ≡ f(t1, . . . , tm)
and s ≡ f(s1, . . . , sn), where f is an AC-function symbol. Four modifications
were necessary to adapt this process to the nominal setting.

The first is related to eliminating common arguments: we do not eliminate
arguments ti and sj of t and s if they are equal modulo AC, we eliminate them
if they are α-equivalent (modulo AC) under the context Γ that we are working
with, i.e., if Γ ⊢ ti ≈α sj . If we have as hypothesis that (∆, δ) is the solution to
the quintuple we are working with (see Definition 9), the correctness of this step
boils down to proving that from Γ ⊢ ti ≈α sj we have ∆ ⊢ δti ≈α δsj . This is
possible to prove by using the fact that ∆ ⊢ δΓ (item 1 of Definition 9).

The second change is related with the new variables (Zis in the example of
Section A.1) introduced and the fact that in the nominal setting a moderated
variable π ·X always has a permutation π suspended on the variable X. What
should be the permutation π suspended on the new variables? Since the ultimate
goal of these new variables is to outline the combinatory between the arguments
of t and the arguments of s, we put the identity permutation suspended on
the new variables. For instance, in Example of Section A.1 we would have the
moderated variables id · Z1, . . . , id · Z7, which we would write (see Remark 1)
simply as Z1, . . . , Z7.

In Example of Section A.1, we have variables X1, X2, X3, Y1, Y2 to represent
respectively the arguments X,Y, a, b, Z and we say that when generating the
new unification problems we can discard the ones “where a variable that does
not represent a variable term is paired with an AC-function application”. Here,
we can also discard unification problems where a moderated variable π ·X, with
X ∈ X , is paired with an AC-function application. This is the third change to
adapt to the nominal setting.

Finally, we must guarantee that the new variables Zis introduced by the
algorithm can be instantiated. Since those new variables are not in the set V ,
we ensure that by putting the restriction that X ⊆ V in the definition of nice
inputs (Definition 11).

B More Information About the PVS Formalisation

The functions coded in PVS and the statement of the theorems can be found in
files .pvs, while the proofs of the theorems can be found in the .prf files. Figure
1 shows the dependency diagram for the PVS theories of the formalisation. An



Nominal AC-Matching 21

Fig. 1. Dependency Diagram for PVS Theories.

arrow going from theoryA to theoryB means that theoryA imports definitions
and lemmas from theoryB.

A short description of each of these theories is show below:

– paper_theorem - highlights the most important theorems that appear in
this paper.

– unification_alg - contains the function ACMatch and the lemmas that
directly support the proofs of soundness and completeness.

– ac_step - contains function applyACStep and lemmas about its properties.
– inst_step contains function instantiateStep and related lemmas.
– aux_unification contains functions solveAC (with lemmas about its prop-

erties) and the main functions called by solveAC (with lemmas about its
properties).

– diophantine - definitions and properties about solving linear Diophantine
equations.

– unification - definition of solution to a quintuple and lemmas about uni-
fication.

– fresh_subs - definition and properties of freshSubs?.
– substitution - definition and properties about substitutions.
– equality - definition and properties about nominal AC-equality checking.
– freshness - definition and properties about freshness. Contain function

fresh?
– terms - definition and properties about terms.
– atoms - definition and properties of permutations and their actions on atoms.
– list - this is a set of parametric theories that define generic functions that

operate on lists, not strictly connected to unification.

When specifying theorems and functions, PVS may generate proof obliga-
tions that must be proved by the user. These proof obligations are called Type
Correctness Conditions (TCCs) and the PVS system includes several predefined



22 M. Ayala-Rincón et al.

proof strategies that automatically discharge most of the TCCs. In our specifica-
tion, most TCCs were related to the termination of functions and PVS was able
to prove almost all of them automatically. The number of theorems and TCCs
proved for each theory, along with the approximate size of each theory and their
percentage of the total size is shown in Table 3.

Table 3. Main Information on the Theories of Our Formalisation.

Theory Theorems TCCs Size (.pvs) Size (.prf) Size (%)
paper_theorems 6 4 2.8 kB 0.02 MB < 1%
unification_alg 11 19 6.9 kB 2.1 MB 9%

ac_step 45 11 15.8 kB 1.6 MB 7%
inst_step 75 17 20.3 kB 2 MB 9%

aux_unification 140 52 44.9 kB 6.9 MB 30%
Diophantine 77 44 23.5 kB 1 MB 4%
unification 119 13 28.0 kB 1.7 MB 8%
fresh_subs 37 5 10.9 kB 0.6 MB 3%

substitution 166 34 30.1 kB 2.5 MB 11%
equality 83 20 15.1 kB 1.6 MB 7%
freshness 15 10 4.5 kB 0.1 MB < 1%

terms 147 53 29.1 kB 1.1 MB 5 %
atoms 14 3 3.7 kB 0.03 MB < 1 %
list 265 113 54.9 kB 1.4 MB 6 %
Total 1200 398 290.5 kB 22.6MB 100%

Remark 10. The theory atoms has its definitions and lemmas in the file atoms.pvs
and the proofs of the lemmas in the file atoms.prf. The same happens for all the
theories mentioned in this diagram, except list. In Figure 1, list represents a
set of parametric theories that define generic functions (not strictly connected
to matching) that operate on lists. The theories in list are list_nat_theory,
list_theory, list_theory2, map_theory and more_list_theory_props. How-
ever, since the specifics of each theory in list is not significant to our formali-
sation, we grouped them together in our diagram.

C The Loop in Nominal AC-Unification

Notation 7 From now on, when denoting a suspended variable π · X we may
omit the · symbol and write simply πX.

Suppose that we are working under an empty context (i.e. Γ = ∅) and want
to solve the equational constraint f(X,W ) ≈? f(πX, πY ), with X = ∅. The
linear Diophantine equation associated with this problem U1 + U2 = V1 + V2,
where variable U1 is associated with argument X, variable U2 is associated with
argument W , variable V1 is associated with argument πX and variable V2 is



Nominal AC-Matching 23

Table 4. Solutions for the Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2 New Variables
0 1 0 1 1 1 Z1

0 1 1 0 1 1 W1

1 0 0 1 1 1 Y1

1 0 1 0 1 1 X1

associated with argument πY . A basis of solutions to this linear Diophantine
equation is shown in Table C.

We choose the names of the new variables to be Z1, W1, Y1 and X1 deliber-
ately to make the loop in nominal AC-unification clearer. Finally, we will branch
into new equational constraints, using Table C to construct them. The algo-
rithm bifurcates into 7 branches, shown below along with their corresponding
equational constraints:

branch1 = {X ≈? X1,W ≈? Z1, πX ≈? X1, πY ≈? Z1}
branch2 = {X ≈? Y1,W ≈? W1, πX ≈? W1, πY ≈? Y1}
branch3 = {X ≈? Y1 +X1,W ≈? W1, πX ≈? W1 +X1, πY ≈? Y1}
branch4 = {X ≈? Y1 +X1,W ≈? Z1, πX ≈? X1, πY ≈? Z1 + Y1}
branch5 = {X ≈? X1,W ≈? Z1 +W1, πX ≈? W1 +X1, πY ≈? Z1}
branch6 = {X ≈? Y1,W ≈? Z1 +W1, πX ≈? W1, πY ≈? Z1 + Y1}
branch7 = {X ≈? Y1 +X1,W ≈? Z1 +W1, πX ≈? W1 +X1, πY ≈? Z1 + Y1}

The next step is to instantiate moderated variables. We denote branch i
by Bi, the substitution computed in this branch by σi and show the result
after performing the instantiations. For brevity, when presenting σi we omit
the instantiation of variables X1, W1, Y1, Z1 since they were not in the initial
problem.

B1− {πX ≈? X}, σ1 = {W 7→ πY }
B2− σ2 = {W 7→ π2Y,X 7→ πY }
B3− {f(π2Y, πX1) ≈? f(W,X1)}, σ3 = {X 7→ f(πY,X1)}
B4−No solution

B5−No solution

B6− σ6 = {W 7→ f(Z1, πX), Y 7→ f(π−1Z1, π
−1X)}

B7− {f(πY1, πX1) ≈? f(W1, X1)}, σ7 = {X 7→ f(Y1, X1), W 7→ f(Z1,W1), Y 7→ f(π−1Z1, π
−1Y1)}

Branches 3 and 7 are a renaming of the original problem

f(X,W ) ≈? f(πX, πY ).



24 M. Ayala-Rincón et al.

Regarding Branch 3, notice that if we rewrite σ3 = {X 7→ f(πY,X1)} as σ′
3 =

{Y 7→ π−1Y1, X 7→ f(πY,X1), }, then the equational constraint of the mentioned
branch is simply:

f(X1,W1) ≈? f(πX1, πY1).

Regarding Branch 7, it’s even simpler to see the renaming, as the equational
constraint is:

f(X1,W1) ≈? f(πX1, πY1),

D An Example of ACMatch

In this section we continue the example of Appendix C and show how ACMatch
would solve the matching equational constraint f(X,W ) ≈? f(πX, πY ). Algo-
rithm 1 would be called with parameters Γ = ∅, P = {f(X,W ) ≈? f(πX, πY )},
σ = id, V = {X,W, Y } and X = {X,Y }. We would enter the else if of line 27
and function applyACStep would be called.

Function applyACStep would call solveAC, which would find the corre-
sponding linear Diophantine equation and generate a set of solutions to it, asso-
ciating a new moderated variable to each solution. To simplify our example, we
assume that the solutions computed by solveAC and the new moderated vari-
ables introduced by it are the ones represented in Table C. In the end, solveAC
would construct the new equational constraints and the algorithm would branch.
However, since we discard the branches where a protected variable is paired with
an AC function application, we do not generate all the 7 branches of the example
in Section C, we only generate 2 branches:

branch1 = {X ≈? X1,W ≈? Z1, πX ≈? X1, πY ≈? Z1}
branch2 = {X ≈? Y1,W ≈? W1, πX ≈? W1, πY ≈? Y1}

Next, applyACStep will call instantiateStep, which would instantiate
the moderated variables that it can. When encountering an equation such as
πX ≈? π′X, instantiateStep solves it by adding ds(π, π′)#X to the context
Γ we are working with. This is complete because we are doing matching, not
unification. We denote each branch i by Bi and, as was done in Section C, when
presenting σi we omit the instantiation of variables X1, W1, Y1, Z1 since they
were not in the initial problem. The results are shown below:

B1− Γ1 = ds(π, id)#X,σ1 = {W 7→ πY }
B2− Γ2 = ∅, σ2 = {W 7→ π2Y,X 7→ πY }

When function applyACStep finishes, there is no equational constraint left
and ACMatch also returns. There are two solutions computed in this example:
(Γ1, σ1) = (ds(π, id)#X, {W 7→ πY }) and (Γ2, σ2) = (∅, {W 7→ π2Y,X 7→ πY }).



Nominal AC-Matching 25

E Grammar of Terms and the Need for Well-Formed
Terms

Since the formalisation of nominal AC-match extends the formalisation of first-
order AC-unification and the latter restricts the terms received by the algorithm
to well-formed terms, it is natural that the nominal AC-match formalisation
would also enforce this restriction. In this section we review the motives behind
this decision.

First we explain function Argsf . This function acts recursively on the
structure of a term (see Example 2) and is used to obtain a list of arguments of
an AC-function headed by f .

Example 2. Some examples to illustrate the behaviour of Argsf .
– Argsf (a) = (a).
– Argsf (π · Y ) = (π · Y ).
– Argsf (⟨a, ⟨b, c⟩⟩) = (a, b, c).

– Argsf (f⟨c, b⟩) = (c, b).
– Argsf (f f⟨c, b⟩) = (c, b).
– Argsf (g⟨c, b⟩) = (g⟨c, b⟩).

As mentioned before, terms were defined as shown in Definition 1 in order
to make it easier to eventually adapt the formalisation to the nominal setting.
However, two issues arose in the formalisation that motivated us to define well-
formed terms (Definition 2) and restrict the terms in the unification problem
that our algorithm receive to well-formed terms.

The first issue has to do with AC-functions that receive only one argument,
something allowed in the grammar of terms. Let f be an AC-function symbol and
consider Example 3, which shows that ff⟨a, b⟩ ≈? f⟨a, b⟩. This is problematic in
first-order AC-unification, because it means that P = {X ≈? fX} has a solution,
for instance σ = {X 7→ f⟨a, b⟩}. However, if the algorithm of [7] received this
unification problem P , it would return nil. In the definition of well-formed terms,
we avoid this problem by requiring that every AC-function application fACs that
is a subterm of a well-formed term t does not receive only one argument.

Example 3. Let f be an AC-function symbol. Consider the terms t ≡ ff⟨a, b⟩
and s ≡ f⟨a, b⟩. Two AC function applications are equal (modulo AC) if and
only if their list of arguments are permutations of each other. In our particular
case we have Argsf (t) = (a, b) = Argsf (s) and therefore t ≈ s.

The second issue is with terms that are pairs. As mentioned before, pairs
are to be used inside a term t to encode a tuple of arguments to a function.
If t and s are not pairs and Argsf (t) and Argsf (s) are permutations of each
other then it is possible to prove that t ≈ s. This result we just described was
used in the proof of completeness of solveAC for first-order AC-unification (see
the extended version of [7]), continued being used in the nominal AC-matching
formalisation, and is the reason why we imposed that a well-formed term t is
not a pair.

Example 4. Let f be an AC-function symbol and g be a syntactic function sym-
bol. The following terms are well-formed terms:

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L193-L197


26 M. Ayala-Rincón et al.

– f⟨a, ⟨b, c⟩⟩.
– f f⟨a, ⟨b, c⟩⟩ (here Argsf (f f⟨a, ⟨b, c⟩⟩) = (a, b, c)).
– a.
– g(Y ).

The following terms are not well-formed terms:

– fX.
– ⟨a, b⟩.

E.1 Equal Terms May Not Have the Same Size

A drawback of our grammar of terms is that we can have well-formed terms that
are equal modulo AC that do not have the same size. Let f be an AC-function
symbol and consider for instance the terms t ≡ f⟨f⟨a, b⟩, c⟩ and s ≡ f⟨⟨a, b⟩, c⟩.
These terms are equal modulo AC. Indeed Argsf (t) = (a, b, c) = Argsf (s) but
according to the definition of size we have size(t) = 7 and size(s) = 6. An
alternative definition of size, called size2, that has this property (Theorem 13)
is given below.

Definition 13 (size2 ). We define the size2 of a term t recursively as follows:

– size2(a) = 1
– size2(Y ) = 1
– size2(⟨⟩) = 1
– size2(⟨t1, t2⟩) = size2(t1) + size2(t2)
– size2(ft1) = 1 + size2(t1)
– size2(f

ACt1) =
∑

ti∈Argsf (fACt1)

size2(ti)

https://github.com/gabriel951/nominal_ac_match_CICM/blob/83271bdf4438ecbc8344d5cffa7e241399dded3b/terms.pvs#L625-L636

	Nominal AC-Matching

