XIV Summer Workshop in Mathematics MAT/UnB Formalizing Theorems with PVS

Section 3: Pen and paper proofs versus formal proofs

Thaynara Arielly de Lima (IME) UFG Mauricio Ayala-Rincón (CIC-MAT) UnB

Funded by FAPDF DE grant 00193.0000.2144/2018-81, CNPq Research Grant 307672/2017-4

$$
\text { Jan } 17-21,2021
$$

Talk's Plan

(1) Section 3

- Formalizing a simple remark in Hungerford's abstract algebra textbook

Hungerford's remark

Thomas W. Hungerford
Algebra
Definition 3.5. An integral domain R is a unique factorization domain provided that:
(i) every nonzero nonunit element a of R can be written $\mathrm{a}=\mathrm{c}_{1} \mathrm{c}_{2} \cdots \mathrm{c}_{\mathrm{n}}$, with $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ irreducible.
(ii) If $\mathrm{a}=\mathrm{c}_{1} \mathrm{c}_{2} \cdots \mathrm{c}_{\mathrm{n}}$ and $\mathrm{a}=\mathrm{d}_{1} \mathrm{~d}_{2} \cdots \mathrm{~d}_{\mathrm{n}}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right.$ irreducible), then $\mathrm{n}=\mathrm{m}$ and for some permutation σ of $\{1,2, \ldots, \mathrm{n}\}, \mathrm{c}_{\mathrm{i}}$ and $\mathrm{d}_{\sigma(\mathrm{i})}$ are associates for every i .

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).

Hungerford's remark - Ring definition

Thomas W. Hungerford Algebra

Definition 1.1. A ring is a nonempty set R together with two binary operations (usually denoted as addition (+) and multiplication) such that:
(i) $(\mathrm{R},+)$ is an abelian group;
(ii) (ab)c $=\mathrm{a}(\mathrm{bc})$ for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \varepsilon \mathrm{R}$ (associative multiplication);
(iii) $\mathrm{a}(\mathrm{b}+\mathrm{c})=\mathrm{ab}+\mathrm{ac}$ and $(\mathrm{a}+\mathrm{b}) \mathrm{c}=\mathrm{ac}+\mathrm{bc}$ (left and right distributive laws).

If in addition:
(iv) $\mathrm{ab}=\mathrm{ba}$ for all $\mathrm{a}, \mathrm{b} \varepsilon \mathrm{R}$,
then R is said to be a commutative ring. If R contains an element $\mathrm{1}_{\mathrm{R}}$ such that
(v) $1_{\mathrm{R}} \mathrm{a}=\mathrm{a} 1_{\mathrm{R}}=\mathrm{a}$ for all $\mathrm{a} \varepsilon \mathrm{R}$,
then R is said to be a ring with identity.

See the file ring_def.pvs in https://github.com/nasa/pvslib/tree/master/algebra

Hungerford's remark - Ring examples

$$
\begin{aligned}
& (\mathbb{Z},+, \cdot, 0,1) \\
& (m \mathbb{Z}=\{m \cdot z ; z \in \mathbb{Z} \text { and } m \text { is a natural number }\},+, \cdot, 0) \\
& (\{f: \mathbb{R} \rightarrow \mathbb{R}\},+:(f+g)(x)=f(x)+g(x), \cdot:(f \cdot g)(x)=f(x) \cdot g(x), 0,1) \\
& \left(M_{2}(\mathbb{R})=\left\{\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) ; a_{i j} \in \mathbb{R}\right\},+: M_{2}(\mathbb{R}), \cdot: M_{2}(\mathbb{R}),\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right) \\
& \left(\mathbb{Z}_{m}=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\},+: \bar{a}+\bar{b}=\overline{a+b}, \cdot: \bar{a} \cdot \bar{b}=\overline{a \cdot b}, \overline{0}\right)
\end{aligned}
$$

Hungerford's remark

GraduateTexts inMathenatics

Thomas W. Hungerford
Algebra

Definition 1.3. A nonzero element a in a ring R is said to be a left [resp. right] zero divisor if there exists a nonzero $\mathrm{b} \varepsilon \mathrm{R}$ such that $\mathrm{ab}=0$ [resp. ba $=0$]. A zero divisor is an element of R which is both a left and a right zero divisor.

See the file ring_nz_closed_def.pvs in
https://github.com/nasa/pvslib/tree/master/algebra

Hungerford's remark

Thomas W. Hungerford
Algebra

Definition 1.5. A commutative ring R with identity $1_{\mathrm{R}} \neq 0$ and no zero divisors is called an integral domain. A ring D with identity $\mathrm{1}_{\mathrm{D}} \neq 0$ in which every nonzero element is a unit is called a division ring. A field is a commutative division ring.

See the file integral_domain_with_one_def.pvs in
https://github.com/nasa/pvslib/tree/master/algebra

Hungerford's remark

Thomas W. Hungerford Algebra

Definition 1.4. An element a in a ring R with identity is said to be left [resp. right] invertible if there exists $\mathrm{c} \varepsilon \mathrm{R}[$ resp, $\mathrm{b} \in \mathrm{R}]$ such that $\mathrm{ca}=1_{\mathrm{R}}\left[\right.$ resp. $\left.\mathrm{ab}=1_{\mathrm{R}}\right]$. The element c [resp. b] is called a left [resp. right] inverse of a . An element $\mathrm{a} \varepsilon \mathrm{R}$ that is both left and right invertible is said to be invertible or to be a unit.

Definition 3.1. A nonzero element a of a commutative ring R is said to divide an element $\mathrm{b} \in \mathrm{R}$ (notation: $\mathrm{a} \mid \mathrm{b}$) if there exists $\mathrm{x} \in \mathrm{R}$ such that $\mathrm{ax}=\mathrm{b}$. Elements a, b of R are said to be associates if $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{b} \mid \mathrm{a}$.

Definition 3.3. Let R be a commutative ring with identity. An element c of R is irreducible provided that:
(i) c is a nonzero nonunit;
(ii) $\mathrm{c}=\mathrm{ab} \Rightarrow \mathrm{a}$ or b is a unit.

An element p of R is prime provided that:
(i) p is a nonzero nonunit;
(ii) $\mathrm{p}|\mathrm{ab} \Rightarrow \mathrm{p}| \mathrm{a}$ or $\mathrm{p} \mid \mathrm{b}$.

Hungerford's remark

- In \mathbb{Z}, the notions of prime and irreducible elements are equal.
- $\operatorname{In} \mathbb{Z}_{6}, 2$ is a prime element; however 2 is not an irreducible element.

Hungerford's remark

Every prime element in an integral domain R is an irreducible element.

If $p=a b$ then $p \mid a$ or $p \mid b$ since $p \mid p=a b$ and p is prime.
Consider that $p \mid a$. Thus $a=p x$ and $p=a b=p x b$.
Consequently, $p-p x b=p(o n e-x b)=z e r o$. Thus, $x b=o n e$ and b is an unit.

Hungerford's remark

Thomas W. Hungerford
Algebra
Definition 3.5. An integral domain R is a unique factorization domain provided that:
(i) every nonzero nonunit element a of R can be written $\mathrm{a}=\mathrm{c}_{1} \mathrm{c}_{2} \cdots \mathrm{c}_{\mathrm{n}}$, with $\mathrm{c}_{1}, \ldots, \mathrm{c}_{\mathrm{n}}$ irreducible.
(ii) If $\mathrm{a}=\mathrm{c}_{1} \mathrm{c}_{2} \cdots \mathrm{c}_{\mathrm{n}}$ and $\mathrm{a}=\mathrm{d}_{1} \mathrm{~d}_{2} \cdots \mathrm{~d}_{\mathrm{n}}\left(\mathrm{c}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}\right.$ irreducible), then $\mathrm{n}=\mathrm{m}$ and for some permutation σ of $\{1,2, \ldots, \mathrm{n}\}, \mathrm{c}_{\mathrm{i}}$ and $\mathrm{d}_{\sigma(\mathrm{i})}$ are associates for every i .

REMARK. Every irreducible element in a unique factorization domain is necessarily prime by (ii). Consequently, irreducible and prime elements coincide by Theorem 3.4 (iii).

