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Motivation



Equational Problems

• Equality check: s = t?

• Matching: There exists σ such that sσ = t?

• Unification: There exists σ such that sσ = tσ?

s and t are terms in some signature and σ is a substitution.
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Equational Problems - Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

4 / 76



Equational Problems - Syntactic Unification

• Goal: to identify two expressions.

• Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function

symbol,

• Identify f (x , a) and f (b, y)

• solution {x/b, y/a}.

4 / 76



Equational Problems - Syntactic unification

• F set of function symbols.

• V set of variables.

• x , y , z variables.

• a, b, c constant symbols.

• f , g , h function symbols.

• T (F ,V) set of terms over F and V.
• s, t, u terms.

• σ, γ, δ : V → T (F ,V) set of substitutions.

Substitutions have finite domain: {v | vσ ̸= v} is finite.
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Equational Problems - Syntactic Unification

Example:

• Solution σ = {x/b} for f (x , y) = f (b, y) is more general than

solution γ = {x/b, y/b}.

σ is more general than γ:

there exists δ such that σδ = γ;

δ = {y/b}.
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Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.

Example:

• h( x︸︷︷︸, y , z) = h(f (w ,w)︸ ︷︷ ︸, f (x , x), f (y , y))

• h(f (w ,w), y︸︷︷︸, z) =
h(f (w ,w), f (f (w ,w), f (w ,w))︸ ︷︷ ︸, f (y , y)), partial solution:
{x/f (w ,w)}

• h(f (w ,w), f (f (w ,w), f (w ,w)), z︸︷︷︸) =
h(f (w ,w), f (f (w ,w), f (w ,w)), f (f (f (w ,w), f (w ,w)), f (f (w ,w), f (w ,w)))︸ ︷︷ ︸),
partial solution: {x/f (w ,w), y/f (f (w ,w), f (w ,w))}

• h(f (w,w), f (f (w,w), f (w,w)), f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))) =

h(f (w,w), f (f (w,w), f (w,w)), f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))),

solution: {x/f (w,w), y/f (f (w,w), f (w,w)), z/f (f (f (w,w), f (w,w)), f (f (w,w), f (w,w)))}.
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Equational Problems - Syntactic Unification

Interesting questions:

• Correctness and Completeness.

• Complexity.

• With adequate data structures, there are linear solutions (Huet,

Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.
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Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is

not as simple.

Example: for f commutative (C), f (x , y) ≈ f (y , x):

• f (x , y) = f (a, b)?

• Solutions: {x/a, y/b} and {x/b, y/a}.

The unification problem is of type finitary.
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Equational Problems - Unification Modulo

Example: for f associative (A), f (f (x , y), z) ≈ f (x , f (y , z)):

• f (x , a) = f (a, x)?

• Solutions: {x/a}, {x/f (a, a)}, {x/f (a, f (a, a))}, . . .
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Equational Problems - Unification Modulo

Example: for f AC with unity (U), f (x , e) ≈ x :

• f (x , y) = f (a, b)?

• Solutions: {x/e, y/f (a, b)}, {x/f (a, b), y/e}, {x/a, y/b}, and
{x/b, y/a}.
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Equational Problems - Unification Modulo

Example: for f A, and idempotent (I), f (x , x) ≈ x :

• f (x , f (y , x)) = f (f (x , z), x))?

• Solutions: {y/f (u, f (x , u)), z/u}, . . .

The unification problem is of type zero (Schmidt-Schauß 1986,

Baader 1986).
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Equational Problems - Unification Modulo

Example: for + AC, and h homomorphism (h),

h(x + y) ≈ h(x) + h(y):

• h(y) + a = y + z?

• Solutions: {y/a, z/h(a)}, {y/h(a) + a, z/h2(a)}, . . . ,
{y/hk(a) + . . .+ h(a) + a, z/hk+1(a)}, . . .

The unification problem is of type zero and undecidable (Narendran

1996). The same happens for ACUh (Nutt 1990, Baader 1993).
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Motivation

Synthesis on Unification modulo



Synthesis Unification modulo i

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

Syntactic 1 O(n) O(n) O(n)

R65

MM76

PW78

C ω O(n2) NP-comp. NP-comp.
BKN87

KN87

A ∞ O(n) NP-comp. NP-hard
M77

BKN87

AU ∞ O(n) NP-comp. decidable
M77

KN87

AI 0 O(n) NP-comp. NP-comp.

Kĺıma02

SS86

Baader86
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Synthesis Unification modulo

Synthesis Unification modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

AC ω O(n3) NP-comp. NP-comp.

BKN87

KN87

KN92

ACU ω O(n3) NP-comp. NP-comp. KN92

AC(U)I ω - - NP-comp.
KN92

BMMO20

D ω - NP-hard NP-hard TA87

ACh 0 - - undecidable

B93

N96

EL18

ACUh 0 - - undecidable
B93

N96
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Bindings and Nominal Syntax



Systems with Bindings

Systems with bindings frequently appear in mathematics and

computer science, but are not captured adequately in first-order

syntax.

For instance, the formulas

∀x1, x2 : x1 + 1 + x2 > 0 and ∀y1, y2 : 1 + y2 + y1 > 0

are not syntactically equal, but should be considered equivalent in a

system with binding and AC operators.
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Nominal

The nominal setting extends first-order syntax, replacing the

concept of syntactical equality by α-equivalence, which let us

represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic notions

(substitution, rewriting, equality) to it.
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Atoms and Variables

Consider a set of variables X = {X ,Y ,Z , . . .} and a set of atoms

A = {a, b, c , . . .}.
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Nominal Terms

Definition 1 (Nominal Terms )
Nominal terms are inductively generated according to the grammar:

s, t ::= a | π · X | ⟨⟩ | [a]t | ⟨s, t⟩ | f t | f AC t

where π is a permutation that exchanges a finite number of atoms.

To guarantee that AC function applications have at least two

arguments, we have the notion of well-formed terms
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Freshness predicate

a#t means that if a occurs in t then it does so under an abstractor

[a].

A context is a set of constraints of the form a#X . Contexts are

denoted as ∆, Γ or ∇.
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Permutations

An atom permutation π represents an exchange of a finite amount

of atoms in A and is presented by a list of swappings:

π = (a1 b1) :: ... :: (an bn) :: nil
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Examples of Permutation Actions

Permutations act on atoms and terms:

• (a b) · a = b;

• (a b) · b = a;

• (a b) · f (a, c) = f (b c);

• (a b) :: (b c) · [a]⟨a, c⟩ = (b c)[b]⟨b, c⟩ = [c]⟨c , b⟩.
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Intuition Behind the Concepts

Two important predicates are the freshness predicate #, and the

α-equality predicate ≈α.

• a#t means that if a occurs in t then it must do so under an

abstractor [a].

• s ≈α t means that s and t are α-equivalent.
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Contexts

A context is a set of constraints of the form a#X . Contexts are

denoted by the letters ∆, ∇ or Γ.
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Advantages of the name binding nominal approach

Freshness conditions a#s, and atom permutations π · s.

Example

β and η rules as nominal rewriting rules:

app⟨lam[a]M,N⟩ → subs⟨[a]M,N⟩ (β)

a#M ⊢ lam[a]app⟨M, a⟩ → M (η)

Some substitution rules:

b#M ⊢ subs⟨[b]M,N⟩ → M

a#N ⊢ subs⟨[b]lam[a]M,N⟩ → lam[a]sub⟨[b]M,N⟩

c#M, c#N ⊢ subs⟨[b]lam[a]M,N⟩ → lam[c]sub⟨[b](a c) ·M,N⟩
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Advantages of the name binding nominal approach

• First-order terms with binders and implicit atom dependencies.

• Easy syntax to present name binding predicates as

a ∈ FreeVar(M), a ∈ BoundVar([a]s), and operators as

renaming: (a b) · s.
• Built-in α-equivalence and first-order implicit substitution.

• Feasible syntactic equational reasoning: efficient equality-check,

matching, and unification algorithms.
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Derivation Rules for Freshness

(#⟨⟩)
∆ ⊢ a#⟨⟩ (#atom)

∆ ⊢ a#b

(π−1(a)#X ) ∈ ∆
(#X )

∆ ⊢ a#π · X
(#[a]a)

∆ ⊢ a#[a]t

∆ ⊢ a#t
(#[a]b)

∆ ⊢ a#[b]t

∆ ⊢ a#s ∆ ⊢ a#t
(#pair)

∆ ⊢ a#⟨s, t⟩

∆ ⊢ a#t
(#app)

∆ ⊢ a#f t
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Derivation Rules for alpha-Equivalence

(≈α ⟨⟩)
∆ ⊢ ⟨⟩ ≈α ⟨⟩ (≈α atom)

∆ ⊢ a ≈α a

∆ ⊢ s ≈α t
(≈α app)

∆ ⊢ fs ≈α ft

∆ ⊢ s ≈α t
(≈α [a]a)

∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, a#t
(≈α [a]b)

∆ ⊢ [a]s ≈α [b]t

ds(π, π′)#X ⊆ ∆
(≈α var)

∆ ⊢ π · X ≈α π′ · X

∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)
∆ ⊢ ⟨s0, s1⟩ ≈α ⟨t0, t1⟩
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Additional Rule for alpha-Equivalence with C Functions

Let f be a C function symbol.

We add rule (≈α c-app) for dealing with C functions:

∆ ⊢ s2 ≈α t1 ∆ ⊢ s1 ≈α t2

∆ ⊢ f C ⟨s1, s2⟩ ≈α f C ⟨t1, t2⟩
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Additional Rule for alpha-Equivalence with AC Functions

Let f be an AC function symbol.

We add rule (≈α ac-app) for dealing with AC functions:

∆ ⊢ Si (f
AC s) ≈α Sj(f

AC t) ∆ ⊢ Di (f
AC s) ≈α Dj(f

AC t)

∆ ⊢ f AC s ≈α f AC t

Sn(f ∗) selects the nth argument of the flattened subterm f ∗.
Dn(f ∗) deletes the nth argument of the flattened subterm f ∗.
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Derivation Rules as a Sequent Calculus

Deriving ⊢ ∀[a]⊕ ⟨a, fa⟩ ≈α ∀[b]⊕ ⟨fb, b⟩, where ⊕ is C:

(≈α atom)a ≈α a

(≈α atom)a ≈α a
(≈α app)

fa ≈α fa
(≈α c-app)

⊕⟨a, fa⟩ ≈α (a b) · ⊕⟨fb, b⟩

(#atom)
a#b

(#app)
a#fb

(#atom)
a#b

(#pair)
a#⟨fb, b⟩

(#app)
a#⊕ ⟨fb, b⟩

(≈α [a]b)
[a]⊕ ⟨a, fa⟩ ≈α [b]⊕ ⟨fb, b⟩

(≈α app)
∀[a]⊕ ⟨a, fa⟩ ≈α ∀[b]⊕ ⟨fb, b⟩
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Nominal C-unification



Nominal C-unification

Unification problem: ⟨Γ, {s1 ≈α
? t1, . . . sn ≈α

? tn}⟩

Unification solution: ⟨∆, σ⟩, such that

• ∆ ⊢ Γσ;

• ∆ ⊢ siσ ≈α tiσ, 1 ≤ i ≤ n.

We introduced nominal (equality-check, matching) and unification

algorithms that provide solutions given as triples of the form:

⟨∆, σ,FP⟩

where FP is a set of fixed-point equations of the form π · X ≈α
? X .

This provides a finite representation of the infinite set of solutions

that may be generated from such fixed-point equations.
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Nominal C-unification

Fixed point equations such as π · X ≈α
? X may have infinite

independent solutions.

For instance, in a signature in which ⊕ and ⋆ are C, the unification

problem: ⟨∅, {(a b)X ≈α
? X}⟩

has solutions:


⟨{a#X , b#X}, id⟩,
⟨∅, {X/a⊕ b}⟩, ⟨∅, {X/a ⋆ b}⟩, . . .
⟨{a#Z , b#Z}, {X/(a⊕ b)⊕ Z}⟩, . . .
⟨∅, {X/(a⊕ b) ⋆ (b ⊕ a)}⟩, . . .
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Issues Adapting First-Order to

Nominal AC-Unification



Our Work in First-Order AC-Unification in a Nutshell

We modified Stickel-Fages’s seminal AC-unification algorithm to

avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm’s termination, soundness, and

completeness [AFSS22].
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An Example

Let f be an AC function symbol. The solutions that come to mind

when unifying:

f (X ,Y ) ≈? f (a,W )

are:

{X → a,Y → W } and {X → W ,Y → a}

Are there other solutions?
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An Example

Yes!

For instance, {X → f (a,Z1), Y → Z2, W → f (Z1,Z2)} and

{X → Z1, Y → f (a,Z2), W → f (Z1,Z2)}.

36 / 76



Stickel-Fages AC-unification - the AC Step

Example

the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c,Z )
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Stickel-Fages AC-unification - eliminating Common Arguments

Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

f (X ,X ,Y , a) ≈? f (b, b,Z )
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Stickel-Fages AC-unification - introducing a Linear equation

According to the number of times each argument appears, transform

the unification problem into a linear equation on N:

2X1 + X2 + X3 = 2Y1 + Y2,

Above, variable X1 corresponds to argument X , variable X2

corresponds to argument Y , and so on.
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Stickel-Fages AC-unification - building a basis of solutions

Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2

0 0 1 0 1 1 1

0 1 0 0 1 1 1

0 0 2 1 0 2 2

0 1 1 1 0 2 2

0 2 0 1 0 2 2

1 0 0 0 2 2 2

1 0 0 1 0 2 2
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Stickel-Fages AC-unification - associating new variables

Associate new variables with each solution.

Table 2: Solutions for the Equation 2X1 + X2 + X3 = 2Y1 + Y2

X1 X2 X3 Y1 Y2 2X1 + X2 + X3 2Y1 + Y2
New

Variables

0 0 1 0 1 1 1 Z1

0 1 0 0 1 1 1 Z2

0 0 2 1 0 2 2 Z3

0 1 1 1 0 2 2 Z4

0 2 0 1 0 2 2 Z5

1 0 0 0 2 2 2 Z6

1 0 0 1 0 2 2 Z7
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Stickel-Fages AC-unification - old and new variables

Observing the previous Table, relate the “old” variables and the

“new” ones:

X1 ≈? Z6 + Z7

X2 ≈? Z2 + Z4 + 2Z5

X3 ≈? Z1 + 2Z3 + Z4

Y1 ≈? Z3 + Z4 + Z5 + Z7

Y2 ≈? Z1 + Z2 + 2Z6
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Stickel-Fages AC-unification - all the possible cases

Decide whether we will include (set to 1) or not (set to 0) every

“new” variable. Every “old” variable must be different than zero.

In our example, we have 27 possibilities of including/excluding the

variables Z1, . . . ,Z7, but after observing that X1,X2,X3,Y1,Y2

cannot be set to zero, only 69 cases remain.
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Stickel-Fages AC-unification - dropping impossible cases

Drop the cases where the variables representing constants or

subterms headed by a different AC function symbol are assigned to

more than one of the “new” variables.

For instance, the potential new unification problem

{X1 ≈? Z6,X2 ≈? Z4,X3 ≈? f (Z1,Z4),

Y1 ≈? Z4,Y2 ≈? f (Z1,Z6,Z6)}

should be discarded as the variable X3, which represents the

constant a, cannot unify with f (Z1,Z4).
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Stickel-Fages AC-unification - dropping more cases

Replace “old” variables by the original terms they substituted and

proceed with the unification.

Some new unification problems may be unsolvable and will be

discarded later. For instance:

{X ≈? Z6,Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f (Z6,Z6)}
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Stickel-Fages AC-unification - solutions

In our example,

f (X ,X ,Y , a, b, c) ≈? f (b, b, b, c,Z )

the solutions are:
σ1 = {Y → f (b, b),Z → f (a,X ,X )}
σ2 = {Y → f (Z2, b, b),Z → f (a,Z2,X ,X )}
σ3 = {X → b,Z → f (a,Y )}
σ4 = {X → f (Z6, b),Z → f (a,Y ,Z6,Z6)}
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Adapting first-order AC-unification to nominal AC-unification

We found a loop while solving nominal AC-unification problems

using Stickel-Fages’ Diophantine-based algorithm.

For instance

f (X ,W ) ≈? f (π · X , π · Y )

Variables are associated as below:

U1 is associated with argument X ,

U2 is associated with argument W ,

V1 is associated with argument π · X , and

V2 is associated with argument π · Y .
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Table of Solutions

The Diophantine equation associated is U1 + U2 = V1 + V2.

The table with the solutions of the Diophantine equations is shown

below. The name of the new variables was chosen to make clearer

the loop we will fall into.

Table 3: Solutions for the Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2
New

variables

0 1 0 1 1 1 Z1

0 1 1 0 1 1 W1

1 0 0 1 1 1 Y1

1 0 1 0 1 1 X1
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After solveAC

{X ≈? X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? W1, π · X ≈? W1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? W1, π · X ≈? W1 + X1, π · Y ≈? Y1}
{X ≈? Y1 + X1,W ≈? Z1, π · X ≈? X1, π · Y ≈? Z1 + Y1}
{X ≈? X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1}
{X ≈? Y1,W ≈? Z1 +W1, π · X ≈? W1, π · Y ≈? Z1 + Y1}
{X ≈? Y1 + X1,W ≈? Z1 +W1, π · X ≈? W1 + X1, π · Y ≈? Z1 + Y1}
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After instantiateStep

Seven branches are generated:

B1− {π · X ≈? X}, σ = {W 7→ π · Y }
B2− σ = {W 7→ π2 · Y ,X 7→ π · Y }
B3− {f (π2 · Y , π · X1) ≈? f (W ,X1)}, σ = {X 7→ f (π · Y ,X1)}
B4− No solution

B5− No solution

B6− σ = {W 7→ f (Z1, π · X ),Y 7→ f (π−1 · Z1, π
−1 · X )}

B7− {f (π · Y1, π · X1) ≈? f (W1,X1)},
σ = {X 7→ f (Y1,X1), W 7→ f (Z1,W1),Y 7→ f (π−1 · Z1, π

−1 · Y1)}
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The Loop <

Focusing on Branch 7, notice that the problem before the AC Step

and the problem after the AC Step and instantiating the variables

are, respectively:

P = {f (X ,W ) ≈? f (π · X , π · Y )}

<

P1 = {f (X1,W1) ≈? f (π · X1, π · Y1)}
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Issues Adapting First-Order to

Nominal AC-Unification

An Algorithm for Nominal AC-Matching



Nominal AC-matching

Nominal AC-matching is matching in the nominal setting in the

presence of associative-commutative function symbols.

We proposed (to the best of our knowledge) the first nominal

AC-matching algorithm, and formalised it in the PVS proof assistant

([AFFKS23]�).
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From unification to matching using protected variables

Given an algorithm of unification, one can adapt it by adding as a

parameter a set of protected variables X , which cannot be

instantiated.

The adapted algorithm can then be used for:

• Unification - By putting X = ∅.
• Matching - By putting X as the set of variables in the

right-hand side.

• α-Equivalence - By putting X as the set of variables that

appear in the problem.
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From First-Order AC-Unification to Nominal AC-Matching

We modify our first-order AC-unification formalisation to obtain a

formalised algorithm for nominal AC-matching.
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Input

The algorithm is recursive and needs to keep track of

• the current context Γ,

• the equational constraints we must unify P,

• the substitution σ computed so far,

• the set of variables V that are/were in the problem, and

• the set of protected variables X .

Hence, it’s input is a quintuple ⟨Γ,P, σ,V ,X⟩.
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Set of protected variables for matching problems

We assume the input satisfies Vars(rhs(P)) ⊆ X (notice that to

obtain a nominal AC-unification algorithm, we would have to

eliminate this hypothesis from the proofs).
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Output

The output is a list of solutions, each of the form ⟨Γ1, σ1⟩.
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applyACStep

The AC part of the algorithm (ACMatch ) is handled by function

applyACStep , which relies on two functions: solveAC and

instantiateStep.

• solveAC  builds the linear Diophantine equational system

associated with the AC-matching equational constraint,

generates the basis of solutions, and uses these solutions to

generate the new AC-matching equational constraints.

• instantiateStep  instantiates the moderated variables

that it can.
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Formalisation Nominal AC-matching - Termination

Idea: for the particular case of matching (unlike unification) all the

new moderated variables introduced by solveAC are instantiated by

instantiateStep.
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Formalisation Nominal AC-matching - Termination is Easier

Hence, termination is much easier in nominal AC-matching than in

first-order AC-unification.
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Notation

∇′ ⊢ ∇σ denotes that ∇′ ⊢ a#Xσ holds for each (a#X ) ∈ ∇.

∇ ⊢ σ ≈V σ′ denotes that ∇ ⊢ Xσ ≈α Xσ′ for all X in V . When

V is the set of all variables X, we write ∇ ⊢ σ ≈ σ′.
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Solution to a Quintuple i

Our algorithm receives as input quintuples. Hence, to state the

theorems of soundness and completeness, we need the definition of

a solution ⟨∆, δ⟩ to a quintuple ⟨Γ,P, σ,V ,X⟩.
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Solution to a Quintuple ii

Definition 2 (Solution for a Quintuple )

A solution to a quintuple ⟨Γ,P, σ,V ,X⟩ is a pair ⟨∆, δ⟩, where the

following conditions are satisfied:

1. ∆ ⊢ Γδ.

2. if a#?t ∈ P then ∆ ⊢ a#tδ.

3. if t ≈? s ∈ P then ∆ ⊢ tδ ≈α sδ.

4. there exists λ such that ∆ ⊢ λ ◦ σ ≈V δ.

5. dom(δ) ∩ X = ∅.
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Solution to a Quintuple iii

Note that if ⟨∆, δ⟩ is a solution of ⟨Γ, ∅, σ,X,X⟩ this corresponds to
the notion of ⟨∆, δ⟩ being an instance of ⟨Γ, σ⟩ that does not
instantiate variables in X .
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Formalisation Nominal AC-matching - Soundness

Theorem 3 (Soundness for AC-Matching )

Let the pair ⟨Γ1, σ1⟩ be an output of

ACMatch(⟨∅, {t ≈? s}, id ,Vars(t, s),Vars(s)⟩).

If ⟨∆, δ⟩ is an instance of ⟨Γ1, σ1⟩ that does not instantiate the

variables in s, then

⟨∆, δ⟩is a solution to ⟨∅, {t ≈? s}, id ,X,Vars(s)⟩.
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Interpretation for Soundness

An interpretation of the previous Theorem is that if ⟨∆, δ⟩ is an
AC-matching instance to one of the outputs of ACMatch, then

⟨∆, δ⟩ is an AC-matching solution to the original problem.
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Formalisation Nominal AC-matching - Completeness

Theorem 4 (Completeness for AC-Matching )

Suppose that ⟨∆, δ⟩ is a solution to ⟨∅, {t ≈? s}, id ,X,Vars(s)⟩,
that δ ⊆ V and that Vars(∆) ⊆ V .

Then, there exists

(⟨Γ, σ⟩ ∈ ACMatch(⟨∅, {t ≈? s}, id ,V ,Vars(s)⟩)

such that ⟨∆, δ⟩ is an instance (restricted to the variables of V ) of

⟨Γ, σ⟩ that does not instantiate the variables of s.
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Interpretation for Completeness

An interpretation of the previous Theorem is that if ⟨∆, δ⟩ is an
AC-matching solution to the initial problem, then ⟨∆, δ⟩ is an
AC-matching instance of one of the outputs of ACMatch.
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Formalisation Nominal AC-matching - The hypotheses on vari-

ables

The hypotheses δ ⊆ V and Vars(∆) ⊆ V are just a technicality

that was put to guarantee that the new variables introduced by the

algorithm in the AC-part do not clash with the variables in dom(δ)

or in the terms in im(δ) or in Vars(∆).
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Synthesis on Nominal Equational

Modulo



Synthesis on Nominal Equational Modulo

First-order syntax Nominal logic, Nominal Reasoning, · · ·

Stickel
AC-Unif.

IJCAR 1975
J.ACM 1981

Fages
AC-unif.

CADE 1984
JSC 1987

Pitts& Gabbay
Nominal
Logic

Inf.&C. 2003

Urban et al.
Form. Nominal

Unif.
Isabelle/HOL
TCS 2004

Contejean
Form.

AC-Match.
Coq

RTA 2004

Calvès&Fernández
Nom. Unif.

Poly
WoLLIC 2008

Levy&Villaret
Nom. Unif.

O(n2)
RTA 2010

Silva et al.
Form.

AC-Unif.
PVS

FSCD 2022

Oliveira et al.
Form.

Nom.-Unif.
PVS

LSFA 2016

Carvalho et al.
Form.

Nom. C-Unif.
Coq

FroCoS 2017
TCS 2019

Carvalho et al.
Form.

Nom. C-Match.
Coq

LoPSTR 2017

Silva et al.
Form.

Nom. C-Unif.
PVS

LoPSTR 2019
MSCS 2021

Silva et al.
Form.

Nom. AC-Match.
PVS

CICM 2023

Timeline on the formalisation of nominal equational reasoning

1975 1985 2000 2005 2010 2015 2020
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Synthesis of results on Nominal Unification Modulo

Synthesis Unification Nominal Modulo

Theory
Unif.
type

Equality-
checking

Matching Unification
Related
work

≈α 1 O(n log n) O(n log n) O(n2)

UPG04 LV10

CF08 CF10

LSFA2015

C ∞ O(n2 log n) NP-comp. NP-comp.

LOPSTR2017

FroCoS2017

TCS2019

LOPSTR2019

MSCS2021

A ∞ O(n log n) NP-comp. NP-hard
LSFA2016

TCS2019

AC ω O(n3 log n) NP-comp. NP-comp.

LSFA2016

TCS2019

CICM2023
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https://mat.unb.br/~ayala/Nominal_AC_matchingExtendedVer.pdf


More on Nominal Reasoning

Also:

• Overlaps in Nominal Rewriting [LSFA 2015]

• Nominal Narrowing [FSCD 2016]

• Nominal Intersection Types [TCS 2018]

• Nominal Disequations [LSFA 2019]

• Nominal Syntax with Permutation Fixed Points [LMCS2020]
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Work in Progress and Future Work



Work in Progress 3

Removing the hypotheses δ ⊆ V and Vars(∆) ⊆ V in the

statement of completeness.

Table 4: Quantitative Data.

Theory Theorems TCCs Size (.pvs) Size (.prf) Size (%)

[AFFKS23]� 6 4 2.8 kB 0.02 MB < 1%

unification alg 11 19 6.9 kB 2.1 MB 9%

ac step 45 11 15.8 kB 1.6 MB 7%

inst step 75 17 20.3 kB 2 MB 9%

aux unification 140 52 44.9 kB 6.9 MB 30%

Diophantine 77 44 23.5 kB 1 MB 4%

unification 119 13 28.0 kB 1.7 MB 8%

fresh subs 37 5 10.9 kB 0.6 MB 3%

substitution 166 34 30.1 kB 2.5 MB 11%

equality 83 20 15.1 kB 1.6 MB 7%

freshness 15 10 4.5 kB 0.1 MB < 1%

terms 147 53 29.1 kB 1.1 MB 5 %

atoms 14 3 3.7 kB 0.03 MB < 1 %

list 265 113 54.9 kB 1.4 MB 6 %

Total 1200 398 290.5 kB 22.6MB 100%

The approach in

progress is similar to

the one applied for

removing variables

to the first-order

AC-unification algo-

rithm formalization in

[FSCD2022]�.
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Future Work ü

ü Study how to avoid the circularity in nominal AC-unification.

? How circularity enriches the set of computed solutions?

? Under which conditions can circularity be avoided?

⋔ Consider the alternative approach to AC-unification proposed

by Boudet, Contejean and Devie [BCD90, Bou93], which was

used to define AC higher-order pattern unification.

 Explore the connection between nominal and higher-order

patterns to obtain a nominal AC-unification algorithm.
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Thank You

Thank you!
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