Formalisation of Nominal Equational Reasoning

Mauricio Ayala-Rincón

37th International Workshop on Unification - UNIF (FSCD 2023) Sapienza Università di Roma, July 2nd, 2023

Mathematics and Computer Science Departments

[†] Research supported by the Brazilian agencies CAPES, CNPq, and FAPDF

Joint Work With

Ana C. Rocha Oliveira

Washington L. de Carvalho

Gabriel Ferreira Silva

Maribel Fernández

Daniele Nantes-Sobrinho

Temur Kutsia

Outline

1. Motivation

Synthesis on Unification modulo

- 2. Bindings and Nominal Syntax
- 3. Nominal C-unification
- Issues Adapting First-Order to Nominal AC-Unification
 An Algorithm for Nominal AC-Matching
- 5. Synthesis on Nominal Equational Modulo
- 6. Work in Progress and Future Work

Motivation

- Equality check: s = t? • Matching: There exists σ such that $s\sigma = t$? • Unification: There exists σ such that $s\sigma = t\sigma$?
- s and t are terms in some signature and σ is a substitution.

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

• Identify f(x, a) and f(b, y)

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify f(x, a) and f(b, y)
- solution $\{x/b, y/a\}$.

- \mathcal{F} set of function symbols.
- \mathcal{V} set of variables.
- x, y, z variables.
- *a*, *b*, *c* constant symbols.
- *f*, *g*, *h* function symbols.
- $\mathcal{T}(\mathcal{F}, \mathcal{V})$ set of terms over \mathcal{F} and \mathcal{V} .
- *s*, *t*, *u* terms.
- $\sigma, \gamma, \delta: \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V})$ set of substitutions.

Substitutions have finite domain: $\{v \mid v\sigma \neq v\}$ is finite.

Example:

- Solution σ = {x/b} for f(x, y) = f(b, y) is more general than solution γ = {x/b, y/b}.
- σ is more general than γ :

there exists δ such that $\sigma \delta = \gamma$; $\delta = \{y/b\}.$

Goal: *algorithm* that *unifies* terms.

Example:

• $h(\underline{x}, y, z) = h(\underbrace{f(w, w)}, f(x, x), f(y, y))$

Goal: *algorithm* that *unifies* terms.

Example:

- h(x, y, z) = h(f(w, w), f(x, x), f(y, y))• h(f(w, w), y, z) = h(f(w, w), f(f(w, w), f(w, w)), f(y, y)), partial solution: $\{x/f(w, w)\}$

Goal: *algorithm* that *unifies* terms.

Example:

- $h(\underline{x}, y, z) = h(\underline{f(w, w)}, f(x, x), f(y, y))$
- h(f(w, w), y, z) =h(f(w, w), f(f(w, w), f(w, w)), f(y, y)), partial solution: $\{x/f(w, w)\}$
- h(f(w,w), f(f(w,w), f(w,w)), z) =
 h(f(w,w), f(f(w,w), f(w,w)), f(f((w,w), f(w,w)), f(f((w,w), f((w,w))))),
 partial solution: {x/f(w,w), y/f(f((w,w), f((w,w)))}

Goal: algorithm that unifies terms.

Example:

- $h(\underline{x}, y, z) = h(\underline{f(w, w)}, f(x, x), f(y, y))$
- h(f(w, w), y, z) =h(f(w, w), f(f(w, w), f(w, w)), f(y, y)), partial solution: $\{x/f(w, w)\}$
- $h(f(w, w), f(f(w, w), f(w, w)), \underline{z}) =$ $h(f(w, w), f(f(w, w), f(w, w)), \underline{f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))}),$ partial solution: $\{x/f(w, w), y/f(f(w, w), f(w, w))\}$
- h(f(w, w), f(f(w, w), f(w, w)), f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))) =
 h(f(w, w), f(f(w, w), f(w, w)), f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))),
 solution: {x/f(w, w), y/f(f(w, w), f(w, w)), z/f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))}.

Interesting questions:

- Correctness and Completeness.
- Complexity.
- With adequate data structures, there are linear solutions (Huet, Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type *unary* and linear.

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

• f(x, y) = f(a, b)?

The unification problem is of type *finitary*.

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- f(x, y) = f(a, b)?
- Solutions: $\{x/a, y/b\}$ and $\{x/b, y/a\}$.

The unification problem is of type *finitary*.

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

• f(x, a) = f(a, x)?

The unification problem is of type *infinitary*.

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- f(x, a) = f(a, x)?
- Solutions: {x/a}, {x/f(a,a)}, {x/f(a,f(a,a))},...

The unification problem is of type *infinitary*.

Example: for f AC with unity (U), $f(x, e) \approx x$:

• f(x, y) = f(a, b)?

The unification problem is of type *finitary*.

Example: for f AC with unity (U), $f(x, e) \approx x$:

- f(x, y) = f(a, b)?
- Solutions: $\{x/e, y/f(a, b)\}$, $\{x/f(a, b), y/e\}$, $\{x/a, y/b\}$, and $\{x/b, y/a\}$.

The unification problem is of type *finitary*.

Example: for f A, and *idempotent* (I), $f(x, x) \approx x$:

• f(x, f(y, x)) = f(f(x, z), x))?

The unification problem is of type *zero* (Schmidt-Schauß 1986, Baader 1986).

Example: for f A, and *idempotent* (I), $f(x, x) \approx x$:

- f(x, f(y, x)) = f(f(x, z), x))?
- Solutions: $\{y/f(u, f(x, u)), z/u\}, \ldots$

The unification problem is of type *zero* (Schmidt-Schauß 1986, Baader 1986).

Example: for + AC, and *h* homomorphism (h), $h(x + y) \approx h(x) + h(y)$:

• h(y) + a = y + z?

The unification problem is of type *zero* and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Example: for + AC, and *h* homomorphism (h), $h(x + y) \approx h(x) + h(y)$:

- h(y) + a = y + z?
- Solutions: $\{y/a, z/h(a)\}, \{y/h(a) + a, z/h^2(a)\}, \dots, \{y/h^k(a) + \dots + h(a) + a, z/h^{k+1}(a)\}, \dots$

The unification problem is of type *zero* and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Motivation

Synthesis on Unification modulo

Synthesis Unification modulo i

		Synthesis Unification modulo				
Theory	Unif. type	Equality- checking	Matching	Unification	Related work	
Syntactic	1	O(<i>n</i>)	O(<i>n</i>)	O(<i>n</i>)	R65 MM76 PW78	
С	ω	O(<i>n</i> ²)	NP-comp.	NP-comp.	BKN87 KN87	
A	∞	O(<i>n</i>)	NP-comp.	NP-hard	M77 BKN87	
AU	∞	O(<i>n</i>)	NP-comp.	decidable	M77 KN87	
AI	0	O(<i>n</i>)	NP-comp.	NP-comp.	Klíma02 SS86 Baader86	

Synthesis Unification modulo

		Synthesis Unification modulo					
Theory	Unif. type	Equality- checking	Matching	Unification	Related work		
					BKN87		
AC	ω	O(<i>n</i> ³)	NP-comp.	NP-comp.	KN87		
					KN92		
ACU	ω	O(<i>n</i> ³)	NP-comp.	NP-comp.	KN92		
AC(U)I	ω	-	-	NP-comp.	KN92		
					BMMO20		
D	ω	-	NP-hard	NP-hard	TA87		
ACh	0	-	-	undecidable	B93		
					N96		
					EL18		
ACUh	0	-	-	undecidable	B93		
					N96		

Bindings and Nominal Syntax

Systems with bindings frequently appear in mathematics and computer science, but are not captured adequately in first-order syntax.

For instance, the formulas

 $\forall x_1, x_2 : x_1 + 1 + x_2 > 0$ and $\forall y_1, y_2 : 1 + y_2 + y_1 > 0$

are not syntactically equal, but should be considered equivalent in a system with binding and AC operators.

The nominal setting extends first-order syntax, replacing the concept of syntactical equality by α -equivalence, which let us represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic notions (substitution, rewriting, equality) to it.

Consider a set of variables $\mathbb{X} = \{X, Y, Z, ...\}$ and a set of atoms $\mathbb{A} = \{a, b, c, ...\}$.

Definition 1 (Nominal Terms \mathbf{C})

Nominal terms are inductively generated according to the grammar:

```
s,t ::= a \mid \pi \cdot X \mid \langle \rangle \mid [a]t \mid \langle s,t \rangle \mid ft \mid f^{AC}t
```

where π is a permutation that exchanges a finite number of atoms.

To guarantee that AC function applications have at least two arguments, we have the notion of well-formed terms \square

a#t means that if *a* occurs in *t* then it does so under an abstractor [*a*].

A context is a set of constraints of the form a#X. Contexts are denoted as Δ , Γ or ∇ .

An atom permutation π represents an exchange of a finite amount of atoms in A and is presented by a list of swappings:

 $\pi = (a_1 \ b_1) :: \ldots :: (a_n \ b_n) :: nil$

Permutations act on atoms and terms:

- $(a b) \cdot a = b;$
- $(a b) \cdot b = a;$
- $(a \ b) \cdot f(a, c) = f(b \ c);$
- $(a \ b) :: (b \ c) \cdot [a] \langle a, c \rangle = (b \ c) [b] \langle b, c \rangle = [c] \langle c, b \rangle.$

Two important predicates are the *freshness* predicate #, and the α -equality predicate \approx_{α} .

- a#t means that if a occurs in t then it must do so under an abstractor [a].
- $s \approx_{\alpha} t$ means that s and t are α -equivalent.
A *context* is a set of constraints of the form a#X. Contexts are denoted by the letters Δ , ∇ or Γ .

Advantages of the name binding nominal approach

Freshness conditions a#s, and atom permutations $\pi \cdot s$.

Example

eta and η rules as nominal rewriting rules:

 $app\langle lam[a]M, N \rangle \to subs\langle [a]M, N \rangle \qquad (\beta)$ $a\#M \vdash lam[a]app\langle M, a \rangle \to M \qquad (\eta)$

Some substitution rules:

 $\begin{array}{l} b\#M\vdash subs\langle [b]M,N\rangle \to M\\ a\#N\vdash subs\langle [b]Iam[a]M,N\rangle \to Iam[a]sub\langle [b]M,N\rangle\\ c\#M,c\#N\vdash subs\langle [b]Iam[a]M,N\rangle \to Iam[c]sub\langle [b](a\ c)\cdot M,N\rangle\end{array}$

- First-order terms with binders and *implicit* atom dependencies.
- Easy syntax to present name binding predicates as a ∈ FreeVar(M), a ∈ BoundVar([a]s), and operators as renaming: (a b) · s.
- Built-in α -equivalence and first-order *implicit substitution*.
- Feasible syntactic equational reasoning: efficient equality-check, matching, and unification algorithms.

$$\Delta \vdash a \# \langle \rangle \qquad (\# \langle \rangle)$$

$$\Delta \vdash a \# b$$
 (#atom)

$$rac{(\pi^{-1}(a)\#X)\in\Delta}{\Deltadash a\#\pi\cdot X}\,(\#X)$$

$$\frac{\Delta \vdash a \# t}{\Delta \vdash a \# [b] t} (\# [a] b)$$

$$\frac{\Delta \vdash a \# t}{\Delta \vdash a \# f \ t} (\# a p p)$$

$$\frac{1}{\Delta \vdash a \#[a]t} (\#[a]a)$$

$$\frac{\Delta \vdash a \# s \quad \Delta \vdash a \# t}{\Delta \vdash a \# \langle s, t \rangle} (\# pair)$$

Δ

$$\frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash fs \approx_{\alpha} ft} (\approx_{\alpha} app) \qquad \frac{\Delta \vdash s \approx_{\alpha} a}{\Delta \vdash fs \approx_{\alpha} ft} (\approx_{\alpha} app) \qquad \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash [a]s \approx_{\alpha} [a]t} (\approx_{\alpha} [a]a)$$

$$\frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash [a]s \approx_{\alpha} [b]t} (\approx_{\alpha} [a]b) \qquad \frac{ds(\pi, \pi') \# X \subseteq \Delta}{\Delta \vdash \pi \cdot X \approx_{\alpha} \pi' \cdot X} (\approx_{\alpha} var)$$

$$\frac{\Delta \vdash s_{0} \approx_{\alpha} t_{0}, \ \Delta \vdash s_{1} \approx_{\alpha} t_{1}}{\Delta \vdash \langle s_{0}, s_{1} \rangle \approx_{\alpha} \langle t_{0}, t_{1} \rangle} (\approx_{\alpha} pair)$$

Let f be a C function symbol.

We add rule ($\approx_{\alpha} c$ -app) for dealing with C functions:

$$\frac{\Delta \vdash s_2 \approx_{\alpha} t_1 \quad \Delta \vdash s_1 \approx_{\alpha} t_2}{\Delta \vdash f^{\mathsf{C}}\langle s_1, s_2 \rangle \approx_{\alpha} f^{\mathsf{C}}\langle t_1, t_2 \rangle}$$

Let f be an AC function symbol.

We add rule ($\approx_{\alpha} ac\text{-}app$) for dealing with AC functions:

$$\frac{\Delta \vdash S_i(f^{AC}s) \approx_{\alpha} S_j(f^{AC}t) \quad \Delta \vdash D_i(f^{AC}s) \approx_{\alpha} D_j(f^{AC}t)}{\Delta \vdash f^{AC}s \approx_{\alpha} f^{AC}t}$$

 $S_n(f^*)$ selects the n^{th} argument of the *flattened* subterm f^* . $D_n(f^*)$ deletes the n^{th} argument of the *flattened* subterm f^* . Deriving $\vdash \forall [a] \oplus \langle a, fa \rangle \approx_{\alpha} \forall [b] \oplus \langle fb, b \rangle$, where \oplus is C:

Nominal C-unification

Nominal C-unification

Unification problem: $\langle \Gamma, \{s_1 \approx_{\alpha}^? t_1, \dots s_n \approx_{\alpha}^? t_n\} \rangle$

Unification solution: $\langle \Delta, \sigma \rangle$, such that

- $\Delta \vdash \Gamma \sigma$;
- $\Delta \vdash s_i \sigma \approx_{\alpha} t_i \sigma, 1 \leq i \leq n$.

We introduced nominal (equality-check, matching) and unification algorithms that provide solutions given as triples of the form:

$\langle \Delta, \sigma, FP \rangle$

where *FP* is a set of fixed-point equations of the form $\pi \cdot X \approx_{\alpha}? X$. This provides a finite representation of the infinite set of solutions that may be generated from such fixed-point equations.

Fixed point equations such as $\pi \cdot X \approx_{\alpha} X$ may have infinite independent solutions.

For instance, in a signature in which \oplus and \star are C, the unification problem: $\langle \emptyset, \{(a \ b) X \approx_{\alpha}^{?} X \} \rangle$

has solutions: $\begin{cases} \langle \{a\#X, b\#X\}, id \rangle, \\ \langle \emptyset, \{X/a \oplus b\} \rangle, \langle \emptyset, \{X/a \star b\} \rangle, \dots \\ \langle \{a\#Z, b\#Z\}, \{X/(a \oplus b) \oplus Z\} \rangle, \dots \\ \langle \emptyset, \{X/(a \oplus b) \star (b \oplus a)\} \rangle, \dots \end{cases}$

Issues Adapting First-Order to Nominal AC-Unification

We modified Stickel-Fages's seminal AC-unification algorithm to avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm's termination, soundness, and completeness [AFSS22].

Let f be an AC function symbol. The solutions that come to mind when unifying:

 $f(X, Y) \approx f(a, W)$

are:

$$\{X \rightarrow a, Y \rightarrow W\}$$
 and $\{X \rightarrow W, Y \rightarrow a\}$

Are there other solutions?

Yes!

For instance, $\{X \to f(a, Z_1), Y \to Z_2, W \to f(Z_1, Z_2)\}$ and $\{X \to Z_1, Y \to f(a, Z_2), W \to f(Z_1, Z_2)\}.$

Example

the **AC Step** for AC-unification.

How do we generate a complete set of unifiers for:

 $f(X, X, Y, a, b, c) \approx f(b, b, b, c, Z)$

Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

 $f(X, X, Y, a) \approx^{?} f(b, b, Z)$

According to the number of times each argument appears, transform the unification problem into a linear equation on \mathbb{N} :

$2X_1 + X_2 + X_3 = 2Y_1 + Y_2,$

Above, variable X_1 corresponds to argument X, variable X_2 corresponds to argument Y, and so on.

Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation $2X_1 + X_2 + X_3 = 2Y_1 + Y_2$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	Y ₁	<i>Y</i> ₂	$2X_1 + X_2 + X_3$	$2Y_1 + Y_2$
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	0	2	1	0	2	2
0	1	1	1	0	2	2
0	2	0	1	0	2	2
1	0	0	0	2	2	2
1	0	0	1	0	2	2

Associate new variables with each solution.

Table 2: Solutions for the Equation $2X_1 + X_2 + X_3 = 2Y_1 + Y_2$

<i>X</i> ₁	<i>X</i> ₂	<i>X</i> 3	Y 1	Y ₂	$2X_1 + X_2 + X_3$	$2Y_1 + Y_2$	New Variables
0	0	1	0	1	1	1	Z_1
0	1	0	0	1	1	1	<i>Z</i> ₂
0	0	2	1	0	2	2	<i>Z</i> 3
0	1	1	1	0	2	2	Z4
0	2	0	1	0	2	2	Z_5
1	0	0	0	2	2	2	<i>Z</i> 6
1	0	0	1	0	2	2	Z ₇

Observing the previous Table, relate the "old" variables and the "new" ones:

$$X_{1} \approx^{?} Z_{6} + Z_{7}$$

$$X_{2} \approx^{?} Z_{2} + Z_{4} + 2Z_{5}$$

$$X_{3} \approx^{?} Z_{1} + 2Z_{3} + Z_{4}$$

$$Y_{1} \approx^{?} Z_{3} + Z_{4} + Z_{5} + Z_{7}$$

$$Y_{2} \approx^{?} Z_{1} + Z_{2} + 2Z_{6}$$

Decide whether we will include (set to 1) or not (set to 0) every "new" variable. Every "old" variable must be different than zero.

In our example, we have 2^7 possibilities of including/excluding the variables Z_1, \ldots, Z_7 , but after observing that X_1, X_2, X_3, Y_1, Y_2 cannot be set to zero, only 69 cases remain.

Drop the cases where the variables representing constants or subterms headed by a different AC function symbol are assigned to more than one of the "new" variables.

For instance, the potential new unification problem

{
$$X_1 \approx^? Z_6, X_2 \approx^? Z_4, X_3 \approx^? f(Z_1, Z_4),$$

 $Y_1 \approx^? Z_4, Y_2 \approx^? f(Z_1, Z_6, Z_6)$ }

should be discarded as the variable X_3 , which represents the constant *a*, cannot unify with $f(Z_1, Z_4)$.

Replace "old" variables by the original terms they substituted and proceed with the unification.

Some new unification problems may be unsolvable and **will be discarded later**. For instance:

 $\{X \approx Z_6, Y \approx Z_4, a \approx Z_4, b \approx Z_4, Z \approx f(Z_6, Z_6)\}$

In our example,

$$f(X, X, Y, a, b, c) \approx f(b, b, b, c, Z)$$

the solutions are:

$$\begin{cases} \sigma_1 = \{Y \to f(b, b), Z \to f(a, X, X)\} \\ \sigma_2 = \{Y \to f(Z_2, b, b), Z \to f(a, Z_2, X, X)\} \\ \sigma_3 = \{X \to b, Z \to f(a, Y)\} \\ \sigma_4 = \{X \to f(Z_6, b), Z \to f(a, Y, Z_6, Z_6)\} \end{cases}$$

We found a loop while solving nominal AC-unification problems using Stickel-Fages' Diophantine-based algorithm.

For instance

$$f(X, W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)$$

Variables are associated as below:

 U_1 is associated with argument X, U_2 is associated with argument W, V_1 is associated with argument $\pi \cdot X$, and V_2 is associated with argument $\pi \cdot Y$. The Diophantine equation associated is $U_1 + U_2 = V_1 + V_2$.

The table with the solutions of the Diophantine equations is shown below. The name of the new variables was chosen to make clearer the loop we will fall into.

Table 3:	Solutions	for t	he E	quation	$U_{1} +$	$U_2 =$	$V_1 + V_1$	V_2
----------	-----------	-------	------	---------	-----------	---------	-------------	-------

U_1	U ₂	<i>V</i> 1	<i>V</i> ₂	$U_1 + U_2$	$V_{1} + V_{2}$	New variables
0	1	0	1	1	1	<i>Z</i> ₁
0	1	1	0	1	1	W_1
1	0	0	1	1	1	<i>Y</i> ₁
1	0	1	0	1	1	X ₁

 $\{X \approx^{?} X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} X_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Z_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} Y_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$ $\{X \approx^{?} Y_{1} + X_{1}, W \approx^{?} Z_{1} + W_{1}, \pi \cdot X \approx^{?} W_{1} + X_{1}, \pi \cdot Y \approx^{?} Z_{1} + Y_{1} \}$

After instantiateStep

Seven branches are generated:

$$B1 - \{\pi \cdot X \approx^? X\}, \sigma = \{W \mapsto \pi \cdot Y\}$$

- $B2 \sigma = \{ W \mapsto \pi^2 \cdot Y, X \mapsto \pi \cdot Y \}$
- $B3 \{f(\pi^2 \cdot Y, \pi \cdot X_1) \approx^? f(W, X_1)\}, \sigma = \{X \mapsto f(\pi \cdot Y, X_1)\}$
- B4 No solution
- B5 No solution
- $B6 \sigma = \{W \mapsto f(Z_1, \pi \cdot X), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot X)\}$
- $B7 \{f(\pi \cdot Y_1, \pi \cdot X_1) \approx^? f(W_1, X_1)\},\$

 $\sigma = \{ X \mapsto f(Y_1, X_1), \ W \mapsto f(Z_1, W_1), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot Y_1) \}$

Focusing on Branch 7, notice that the problem before the AC Step and the problem after the AC Step and instantiating the variables are, respectively:

 $P = \{f(X, W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)\}$ \mathbf{D} $P_{1} = \{f(X_{1}, W_{1}) \approx^{?} f(\pi \cdot X_{1}, \pi \cdot Y_{1})\}$

Issues Adapting First-Order to Nominal AC-Unification

An Algorithm for Nominal AC-Matching

Nominal AC-matching is matching in the nominal setting in the presence of associative-commutative function symbols.

We proposed (to the best of our knowledge) the first nominal AC-matching algorithm, and formalised it in the PVS proof assistant ([AFFKS23]^[]).

Given an algorithm of unification, one can adapt it by adding as a parameter a set of *protected variables* \mathcal{X} , which cannot be instantiated.

The adapted algorithm can then be used for:

- Unification By putting $\mathcal{X} = \emptyset$.
- Matching By putting \mathcal{X} as the set of variables in the right-hand side.
- α-Equivalence By putting X as the set of variables that appear in the problem.

We modify our first-order AC-unification formalisation to obtain a formalised algorithm for nominal AC-matching.

The algorithm is recursive and needs to keep track of

- the current context $\boldsymbol{\Gamma},$
- the equational constraints we must unify P,
- the substitution σ computed so far,
- the set of variables V that are/were in the problem, and
- the set of protected variables \mathcal{X} .

Hence, it's input is a quintuple $\langle \Gamma, P, \sigma, V, \mathcal{X} \rangle$.

We assume the input satisfies $Vars(rhs(P)) \subseteq \mathcal{X}$ (notice that to obtain a nominal AC-unification algorithm, we would have to eliminate this hypothesis from the proofs).
The output is a list of solutions, each of the form $\langle \Gamma_1, \sigma_1 \rangle$.

The AC part of the algorithm (ACMatch \square) is handled by function applyACStep \square , which relies on two functions: solveAC and instantiateStep.

- solveAC Solutions builds the linear Diophantine equational system associated with the AC-matching equational constraint, generates the basis of solutions, and uses these solutions to generate the new AC-matching equational constraints.
- instantiateStep instantiates the moderated variables that it can.

Idea: for the particular case of matching (unlike unification) all the new moderated variables introduced by solveAC are instantiated by instantiateStep.

Hence, termination is much easier in nominal AC-matching than in first-order AC-unification.

 $\nabla' \vdash \nabla \sigma$ denotes that $\nabla' \vdash a \# X \sigma$ holds for each $(a \# X) \in \nabla$.

 $\nabla \vdash \sigma \approx_V \sigma'$ denotes that $\nabla \vdash X\sigma \approx_{\alpha} X\sigma'$ for all X in V. When V is the set of all variables X, we write $\nabla \vdash \sigma \approx \sigma'$.

Our algorithm receives as input quintuples. Hence, to state the theorems of soundness and completeness, we need the definition of a solution $\langle \Delta, \delta \rangle$ to a quintuple $\langle \Gamma, P, \sigma, V, \mathcal{X} \rangle$.

A solution to a quintuple $\langle \Gamma, P, \sigma, V, \mathcal{X} \rangle$ is a pair $\langle \Delta, \delta \rangle$, where the following conditions are satisfied:

- 1. $\Delta \vdash \Gamma \delta$.
- 2. if $a \#_{?} t \in P$ then $\Delta \vdash a \# t \delta$.
- 3. if $t \approx_? s \in P$ then $\Delta \vdash t\delta \approx_{\alpha} s\delta$.
- 4. there exists λ such that $\Delta \vdash \lambda \circ \sigma \approx_V \delta$.
- 5. $dom(\delta) \cap \mathcal{X} = \emptyset$.

Note that if $\langle \Delta, \delta \rangle$ is a solution of $\langle \Gamma, \emptyset, \sigma, \mathbb{X}, \mathcal{X} \rangle$ this corresponds to the notion of $\langle \Delta, \delta \rangle$ being an instance of $\langle \Gamma, \sigma \rangle$ that does not instantiate variables in \mathcal{X} .

Theorem 3 (Soundness for AC-Matching ^C)

Let the pair $\langle \Gamma_1, \sigma_1 \rangle$ be an output of ACMatch($\langle \emptyset, \{t \approx_? s\}, id, Vars(t, s), Vars(s) \rangle$).

If $\langle\Delta,\delta\rangle$ is an instance of $\langle\Gamma_1,\sigma_1\rangle$ that does not instantiate the variables in s, then

 $\langle \Delta, \delta \rangle$ is a solution to $\langle \emptyset, \{t \approx_? s\}, id, \mathbb{X}, Vars(s) \rangle$.

An interpretation of the previous Theorem is that if $\langle \Delta, \delta \rangle$ is an AC-matching instance to one of the outputs of ACMatch, then $\langle \Delta, \delta \rangle$ is an AC-matching solution to the original problem.

Theorem 4 (Completeness for AC-Matching \square)

Suppose that $\langle \Delta, \delta \rangle$ is a solution to $\langle \emptyset, \{t \approx_? s\}, id, \mathbb{X}, Vars(s) \rangle$, that $\delta \subseteq V$ and that $Vars(\Delta) \subseteq V$.

Then, there exists

 $(\langle \Gamma, \sigma \rangle \in \texttt{ACMatch}(\langle \emptyset, \{t \approx_? s\}, \textit{id}, V, \textit{Vars}(s) \rangle)$

such that $\langle \Delta, \delta \rangle$ is an instance (restricted to the variables of V) of $\langle \Gamma, \sigma \rangle$ that does not instantiate the variables of s.

An interpretation of the previous Theorem is that if $\langle \Delta, \delta \rangle$ is an AC-matching solution to the initial problem, then $\langle \Delta, \delta \rangle$ is an AC-matching instance of one of the outputs of ACMatch.

Formalisation Nominal AC-matching - The hypotheses on variables

The hypotheses $\delta \subseteq V$ and $Vars(\Delta) \subseteq V$ are just a technicality that was put to guarantee that the new variables introduced by the algorithm in the AC-part do not clash with the variables in $dom(\delta)$ or in the terms in $im(\delta)$ or in $Vars(\Delta)$.

Synthesis on Nominal Equational Modulo

Synthesis on Nominal Equational Modulo

Timeline on the formalisation of nominal equational reasoning

70 / 76

Synthesis of results on Nominal Unification Modulo

		Synthesis Unification Nominal Modulo						
Theory	Unif. type	Equality- checking	Matching	Unification	Related work			
	1	$O(n \log n)$	$O(n \log n)$		UPG04 LV10			
\approx_{α}				$O(n^2)$	CF08 CF10			
					LSFA2015			
С	∞	$O(n^2 \log n)$	NP-comp.	NP-comp.	LOPSTR2017			
					FroCoS2017			
					TCS2019			
					LOPSTR2019			
					MSCS2021			
A	∞	$O(n \log n)$	NP comp	NP bard	LSFA2016			
			nii -comp.	INI -Haru	TCS2019			
AC	ω	$O(n^3 \log n)$	NP-comp.		LSFA2016			
				NP-comp.	TCS2019			
					CICM2023			

Also:

- Overlaps in Nominal Rewriting [LSFA 2015]
- Nominal Narrowing [FSCD 2016]
- Nominal Intersection Types [TCS 2018]
- Nominal Disequations [LSFA 2019]
- Nominal Syntax with Permutation Fixed Points [LMCS2020]

Work in Progress and Future Work

Removing the hypotheses $\delta \subseteq V$ and $Vars(\Delta) \subseteq V$ in the statement of completeness.

Theory	Theorems	TCCs	Size (.pvs)	Size (.prf)	Size (%)
[AFFKS23]	6	4	2.8 kB	0.02 MB	< 1%
unification_alg	11	19	6.9 kB	2.1 MB	9%
ac_step	45	11	15.8 kB	1.6 MB	7%
inst_step	75	17	20.3 kB	2 MB	9%
aux_unification	140	52	44.9 kB	6.9 MB	30%
Diophantine	77	44	23.5 kB	1 MB	4%
unification	119	13	28.0 kB	1.7 MB	8%
fresh_subs	37	5	10.9 kB	0.6 MB	3%
substitution	166	34	30.1 kB	2.5 MB	11%
equality	83	20	15.1 kB	1.6 MB	7%
freshness	15	10	4.5 kB	0.1 MB	< 1%
terms	147	53	29.1 kB	1.1 MB	5 %
atoms	14	3	3.7 kB	0.03 MB	< 1 %
list	265	113	54.9 kB	1.4 MB	6 %
Total	1200	398	290.5 kB	22.6MB	100%

 Table 4:
 Quantitative Data.

The approach in progress is similar to
 the one applied for
 removing variables
 to the first-order
 AC-unification algo rithm formalization in
 [FSCD2022]^[2].

- Q Study how to avoid the circularity in nominal AC-unification.
 ? How circularity enriches the set of computed solutions?
 ? Under which conditions can circularity be avoided?
- Consider the alternative approach to AC-unification proposed by Boudet, Contejean and Devie [BCD90, Bou93], which was used to define AC higher-order pattern unification.
- \bigotimes

Explore the connection between nominal and higher-order patterns to obtain a nominal AC-unification algorithm.

Thank you!

- Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva. and Daniele Nantes Sobrinho, A Certified Algorithm for AC-Unification, Formal Structures for Computation and Deduction, FSCD 2022 (2022).
- Alexandre Boudet, Evelyne Contejean, and Hervé Devie, A New AC Unification Algorithm with an Algorithm for Solving Systems of Diophantine Equations, Proceedings of the Fifth Annual Symposium on Logic in Computer Science, LICS, 1990.
- Alexandre Boudet, Competing for the AC-Unification Race, J. of Autom. Reasoning (1993).