Formalisation of Nominal Equational Reasoning

Mauricio Ayala-Rincón
37th International Workshop on Unification - UNIF (FSCD 2023)
Sapienza Università di Roma, July 2nd, 2023
Mathematics and Computer Science Departments
\section*{Universidade de Brasília}

${ }^{\dagger}$ Research supported by the Brazilian agencies CAPES, CNPq, and FAPDF

Joint Work With

Ana C. Rocha Oliveira

Maribel Fernández

Washington L. de Carvalho

Daniele Nantes-Sobrinho

Temur Kutsia
1 / 76

Outline

1. Motivation

Synthesis on Unification modulo
2. Bindings and Nominal Syntax
3. Nominal C-unification
4. Issues Adapting First-Order to Nominal AC-Unification

An Algorithm for Nominal AC-Matching
5. Synthesis on Nominal Equational Modulo
6. Work in Progress and Future Work

Motivation

Equational Problems

- Equality check:
- Matching:
- Unification:

$$
s=t ?
$$

There exists σ such that $s \sigma=t$?
There exists σ such that $s \sigma=t \sigma$?
s and t are terms in some signature and σ is a substitution.

Equational Problems - Syntactic Unification

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$

Equational Problems - Syntactic Unification

- Goal: to identify two expressions.
- Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$
- solution $\{x / b, y / a\}$.

Equational Problems - Syntactic unification

- \mathcal{F} set of function symbols.
- \mathcal{V} set of variables.
- x, y, z variables.
- a, b, c constant symbols.
- f, g, h function symbols.
- $\mathcal{T}(\mathcal{F}, \mathcal{V})$ set of terms over \mathcal{F} and \mathcal{V}.
- s, t, u terms.
- $\sigma, \gamma, \delta: \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ set of substitutions.

Substitutions have finite domain: $\{v \mid v \sigma \neq v\}$ is finite.

Equational Problems - Syntactic Unification

Example:

- Solution $\sigma=\{x / b\}$ for $f(x, y)=f(b, y)$ is more general than solution $\gamma=\{x / b, y / b\}$.
σ is more general than γ :
there exists δ such that $\sigma \delta=\gamma$;

$$
\delta=\{y / b\} .
$$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution:
$\{x / f(w, w)\}$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution:
$\{x / f(w, w)\}$
- $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{z})=$
$h(f(w, w), f(f(w, w), f(w, w)), \underbrace{f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))})$, partial solution: $\{x / f(w, w), y / f(f(w, w), f(w, w))\}$

Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.
Example:

- $h(\underbrace{x}, y, z)=h(\underbrace{f(w, w)}, f(x, x), f(y, y))$
- $h(f(w, w), \underbrace{y}, z)=$
$h(f(w, w), \underbrace{f(f(w, w), f(w, w))}, f(y, y))$, partial solution:
$\{x / f(w, w)\}$
- $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{z})=$ $h(f(w, w), f(f(w, w), f(w, w)), \underbrace{f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))})$, partial solution: $\{x / f(w, w), y / f(f(w, w), f(w, w))\}$
 $h(f(w, w), f(f(w, w), f(w, w)), f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w))))$,
Solution: $\{x / f(w, w), y / f(f(w, w), f(w, w)), z / f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))\}$.

Equational Problems - Syntactic Unification

Interesting questions:

- Correctness and Completeness.
- Complexity.
- With adequate data structures, there are linear solutions (Huet, Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type unary and linear.

Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- $f(x, y)=f(a, b)$?

The unification problem is of type finitary.

Equational Problems - Unification Modulo

When operators have algebraic equational properties, the problem is not as simple.

Example: for f commutative (C), $f(x, y) \approx f(y, x)$:

- $f(x, y)=f(a, b)$?
- Solutions: $\{x / a, y / b\}$ and $\{x / b, y / a\}$.

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f associative $(\mathrm{A}), f(f(x, y), z) \approx f(x, f(y, z))$:

- $f(x, a)=f(a, x)$?

The unification problem is of type infinitary.

Equational Problems - Unification Modulo

Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- $f(x, a)=f(a, x)$?
- Solutions: $\{x / a\},\{x / f(a, a)\},\{x / f(a, f(a, a))\}, \ldots$

The unification problem is of type infinitary.

Equational Problems - Unification Modulo

Example: for f AC with unity $(U), f(x, e) \approx x$:

- $f(x, y)=f(a, b)$?

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f AC with unity $(U), f(x, e) \approx x$:

- $f(x, y)=f(a, b)$?
- Solutions: $\{x / e, y / f(a, b)\},\{x / f(a, b), y / e\},\{x / a, y / b\}$, and $\{x / b, y / a\}$.

The unification problem is of type finitary.

Equational Problems - Unification Modulo

Example: for f A, and idempotent $(\mathrm{I}), f(x, x) \approx x$:

- $f(x, f(y, x))=f(f(x, z), x))$?

The unification problem is of type zero (Schmidt-Schauß 1986, Baader 1986).

Equational Problems - Unification Modulo

Example: for f A, and idempotent $(\mathrm{I}), f(x, x) \approx x$:

- $f(x, f(y, x))=f(f(x, z), x))$?
- Solutions: $\{y / f(u, f(x, u)), z / u\}, \ldots$

The unification problem is of type zero (Schmidt-Schauß 1986, Baader 1986).

Equational Problems - Unification Modulo

Example: for +AC , and h homomorphism (h), $h(x+y) \approx h(x)+h(y):$

- $h(y)+a=y+z$?

The unification problem is of type zero and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Equational Problems - Unification Modulo

Example: for +AC , and h homomorphism (h),
$h(x+y) \approx h(x)+h(y):$

- $h(y)+a=y+z$?
- Solutions: $\{y / a, z / h(a)\},\left\{y / h(a)+a, z / h^{2}(a)\right\}, \ldots$,

$$
\left\{y / h^{k}(a)+\ldots+h(a)+a, z / h^{k+1}(a)\right\}, \ldots
$$

The unification problem is of type zero and undecidable (Narendran 1996). The same happens for ACUh (Nutt 1990, Baader 1993).

Motivation

Synthesis on Unification modulo

Synthesis Unification modulo i

		Synthesis Unification modulo			
Theory	Unif. type	Equality- checking	Matching	Unification	Related work
Syntactic	1	$\mathrm{O}(n)$	$\mathrm{O}(n)$	$\mathrm{O}(n)$	R65 MM76 PW78
C	ω	$\mathrm{O}\left(n^{2}\right)$	NP-comp.	NP-comp.	BKN87 KN87
A	∞	$\mathrm{O}(n)$	NP-comp.	NP-hard	M77 BKN87
AU	∞	$\mathrm{O}(n)$	NP-comp.	decidable	M77 KN87
AI	0	$\mathrm{O}(n)$	NP-comp.	NP-comp.	SS86 Saader86

14 / 76

Synthesis Unification modulo

		Synthesis Unification modulo			
Theory	Unif. type	Equality- checking	Matching	Unification	Related work
AC	ω	$\mathrm{O}\left(n^{3}\right)$	NP-comp.	NP-comp.	BKN87 KN87 KN92
ACU	ω	$\mathrm{O}\left(n^{3}\right)$	NP-comp.	NP-comp.	KN92
AC(U)I	ω	-	-	NP-comp.	KN92 BMMO20
D	ω	-	NP-hard	NP-hard	TA87
ACh	0	-	-	undecidable	B93 N96 EL18
ACUh	0	-	-	undecidable	B93 N96

Bindings and Nominal Syntax

Systems with Bindings

Systems with bindings frequently appear in mathematics and computer science, but are not captured adequately in first-order syntax.

For instance, the formulas

$$
\forall x_{1}, x_{2}: x_{1}+1+x_{2}>0 \quad \text { and } \quad \forall y_{1}, y_{2}: 1+y_{2}+y_{1}>0
$$

are not syntactically equal, but should be considered equivalent in a system with binding and AC operators.

Nominal

The nominal setting extends first-order syntax, replacing the concept of syntactical equality by α-equivalence, which let us represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic notions (substitution, rewriting, equality) to it.

Atoms and Variables

Consider a set of variables $\mathbb{X}=\{X, Y, Z, \ldots\}$ and a set of atoms $\mathbb{A}=\{a, b, c, \ldots\}$.

Nominal Terms

Definition 1 (Nominal Terms [)

Nominal terms are inductively generated according to the grammar:

$$
s, t::=a|\pi \cdot X|\langle \rangle|[a] t|\langle s, t\rangle|f t| f^{A C} t
$$

where π is a permutation that exchanges a finite number of atoms.

To guarantee that AC function applications have at least two arguments, we have the notion of well-formed terms $\boldsymbol{\pi}$

Freshness predicate

$a \# t$ means that if a occurs in t then it does so under an abstractor [a].

A context is a set of constraints of the form $a \# X$. Contexts are denoted as Δ, Γ or ∇.

Permutations

An atom permutation π represents an exchange of a finite amount of atoms in \mathbb{A} and is presented by a list of swappings:

$$
\pi=\left(a_{1} b_{1}\right):: \ldots: \because\left(a_{n} b_{n}\right):: \text { nil }
$$

Examples of Permutation Actions

Permutations act on atoms and terms:

- $(a b) \cdot a=b$;
- $(a b) \cdot b=a$;
- $(a b) \cdot f(a, c)=f(b c)$;
- $\left(\begin{array}{ll}a & b\end{array}\right)::(b c) \cdot[a]\langle a, c\rangle=(b c)[b]\langle b, c\rangle=[c]\langle c, b\rangle$.

Intuition Behind the Concepts

Two important predicates are the freshness predicate $\#$, and the α-equality predicate \approx_{α}.

- $a \# t$ means that if a occurs in t then it must do so under an abstractor [a].
- $s \approx_{\alpha} t$ means that s and t are α-equivalent.

Contexts

A context is a set of constraints of the form $a \# X$. Contexts are denoted by the letters Δ, ∇ or Γ.

Advantages of the name binding nominal approach

Freshness conditions $a \# s$, and atom permutations $\pi \cdot s$.
Example
β and η rules as nominal rewriting rules:

$$
\begin{align*}
& \operatorname{app}\langle\operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{subs}\langle[a] M, N\rangle \\
& a \# M \vdash \operatorname{lam}[a] a p p\langle M, a\rangle \rightarrow M
\end{align*}
$$

Some substitution rules:

$$
\begin{aligned}
& b \# M \vdash \operatorname{subs}\langle[b] M, N\rangle \rightarrow M \\
& a \# N \vdash \operatorname{subs}\langle[b] \operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{lam}[a] \operatorname{sub}\langle[b] M, N\rangle \\
& c \# M, c \# N \vdash \operatorname{subs}\langle[b] \operatorname{lam}[a] M, N\rangle \rightarrow \operatorname{lam}[c] \operatorname{sub}\langle[b](a \quad c) \cdot M, N\rangle
\end{aligned}
$$

Advantages of the name binding nominal approach

- First-order terms with binders and implicit atom dependencies.
- Easy syntax to present name binding predicates as $a \in \operatorname{Free} \operatorname{Var}(M), a \in \operatorname{Bound} \operatorname{Var}([a] s)$, and operators as renaming: $(a b) \cdot s$.
- Built-in α-equivalence and first-order implicit substitution.
- Feasible syntactic equational reasoning: efficient equality-check, matching, and unification algorithms.

$$
\begin{gathered}
\frac{\Delta \vdash a \#\rangle}{\Delta}(\#\rangle) \\
\frac{\left(\pi^{-1}(a) \# X\right) \in \Delta}{\Delta \vdash a \# \pi \cdot X}(\# X) \\
\frac{\Delta \vdash a \# t}{\Delta \vdash a \#[b] t}(\#[a] b) \\
\frac{\Delta \vdash a \# t}{\Delta \vdash a \# f t}(\# a p p)
\end{gathered}
$$

Derivation Rules for alpha-Equivalence

$$
\begin{array}{cc}
\overline{\Delta \vdash\left\rangle \approx_{\alpha}\langle \rangle\right.}\left(\approx_{\alpha}\langle \rangle\right) & \overline{\Delta \vdash a \approx_{\alpha} a}\left(\approx_{\alpha} \text { atom }\right) \\
\frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash f s \approx_{\alpha} f t}\left(\approx_{\alpha} a p p\right) & \frac{\Delta \vdash s \approx_{\alpha} t}{\Delta \vdash[a] s \approx_{\alpha}[a] t}\left(\approx_{\alpha}[a] a\right) \\
\frac{\Delta \vdash s \approx_{\alpha}(a b) \cdot t, a \# t}{\Delta \vdash[a] s \approx_{\alpha}[b] t}\left(\approx_{\alpha}[a] b\right) & \frac{d s\left(\pi, \pi^{\prime}\right) \# X \subseteq \Delta}{\Delta \vdash \pi \cdot X \approx_{\alpha} \pi^{\prime} \cdot X}\left(\approx_{\alpha} \text { var }\right) \\
\frac{\Delta \vdash s_{0} \approx_{\alpha} t_{0}, \Delta \vdash s_{1} \approx_{\alpha} t_{1}}{\Delta \vdash\left\langle s_{0}, s_{1}\right\rangle \approx_{\alpha}\left\langle t_{0}, t_{1}\right\rangle}\left(\approx_{\alpha} \text { pair }\right) &
\end{array}
$$

Additional Rule for alpha-Equivalence with C Functions

Let f be a C function symbol.
We add rule $\left(\approx_{\alpha} c\right.$-app $)$ for dealing with C functions:

$$
\frac{\Delta \vdash s_{2} \approx_{\alpha} t_{1} \quad \Delta \vdash s_{1} \approx_{\alpha} t_{2}}{\Delta \vdash f^{C}\left\langle s_{1}, s_{2}\right\rangle \approx_{\alpha} f^{C}\left\langle t_{1}, t_{2}\right\rangle}
$$

Additional Rule for alpha-Equivalence with AC Functions

Let f be an AC function symbol.
We add rule $\left(\approx_{\alpha} a c-a p p\right)$ for dealing with AC functions:

$$
\frac{\Delta \vdash S_{i}\left(f^{A C} s\right) \approx_{\alpha} S_{j}\left(f^{A C} t\right) \quad \Delta \vdash D_{i}\left(f^{A C} s\right) \approx_{\alpha} D_{j}\left(f^{A C} t\right)}{\Delta \vdash f^{A C} s \approx_{\alpha} f^{A C} t}
$$

$S_{n}(f *)$ selects the $n^{\text {th }}$ argument of the flattened subterm $f *$. $D_{n}\left(f_{*}\right)$ deletes the $n^{t h}$ argument of the flattened subterm f_{*}.

Derivation Rules as a Sequent Calculus

Deriving $\vdash \forall[a] \oplus\langle a, f a\rangle \approx_{\alpha} \forall[b] \oplus\langle f b, b\rangle$, where \oplus is C :

Nominal C-unification

Nominal C-unification

Unification problem: $\left\langle\Gamma,\left\{s_{1} \approx_{\alpha}{ }^{?} t_{1}, \ldots s_{n} \approx_{\alpha}{ }^{?} t_{n}\right\}\right\rangle$
Unification solution: $\langle\Delta, \sigma\rangle$, such that

- $\Delta \vdash \Gamma \sigma$;
- $\Delta \vdash s_{i} \sigma \approx_{\alpha} t_{i} \sigma, 1 \leq i \leq n$.

We introduced nominal (equality-check, matching) and unification algorithms that provide solutions given as triples of the form:

$$
\langle\Delta, \sigma, F P\rangle
$$

where $F P$ is a set of fixed-point equations of the form $\pi \cdot X \approx_{\alpha}^{?} X$.
This provides a finite representation of the infinite set of solutions that may be generated from such fixed-point equations.

Nominal C-unification

Fixed point equations such as $\pi \cdot X \approx_{\alpha}^{?} X$ may have infinite independent solutions.

For instance, in a signature in which \oplus and \star are C , the unification problem: $\left\langle\emptyset,\left\{(a b) X \approx_{\alpha}^{?} X\right\}\right\rangle$
has solutions: $\left\{\begin{array}{l}\langle\{a \# X, b \# X\}, i d\rangle, \\ \langle\emptyset,\{X / a \oplus b\}\rangle,\langle\emptyset,\{X / a \star b\}\rangle, \ldots \\ \langle\{a \# Z, b \# Z\},\{X /(a \oplus b) \oplus Z\}\rangle, \ldots \\ \langle\emptyset,\{X /(a \oplus b) \star(b \oplus a)\}\rangle, \ldots\end{array}\right.$

Issues Adapting First-Order to
Nominal AC-Unification

Our Work in First-Order AC-Unification in a Nutshell

We modified Stickel-Fages's seminal AC-unification algorithm to avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm's termination, soundness, and completeness [AFSS22].

An Example

Let f be an AC function symbol. The solutions that come to mind when unifying:

$$
f(X, Y) \approx ? f(a, W)
$$

are:

$$
\{X \rightarrow a, Y \rightarrow W\} \text { and }\{X \rightarrow W, Y \rightarrow a\}
$$

Are there other solutions?

An Example

Yes!

For instance, $\left\{X \rightarrow f\left(a, Z_{1}\right), Y \rightarrow Z_{2}, W \rightarrow f\left(Z_{1}, Z_{2}\right)\right\}$ and $\left\{X \rightarrow Z_{1}, Y \rightarrow f\left(a, Z_{2}\right), W \rightarrow f\left(Z_{1}, Z_{2}\right)\right\}$.

Stickel-Fages AC-unification - the AC Step

Example

the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

$$
f(X, X, Y, a, b, c) \approx^{?} f(b, b, b, c, Z)
$$

Stickel-Fages AC-unification - eliminating Common Arguments

Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

$$
f(X, X, Y, a) \approx^{?} f(b, b, Z)
$$

Stickel-Fages AC-unification - introducing a Linear equation

According to the number of times each argument appears, transform the unification problem into a linear equation on \mathbb{N} :

$$
2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}
$$

Above, variable X_{1} corresponds to argument X, variable X_{2} corresponds to argument Y, and so on.

Stickel-Fages AC-unification - building a basis of solutions

Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation $2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}$

X_{1}	X_{2}	X_{3}	Y_{1}	Y_{2}	$2 X_{1}+X_{2}+X_{3}$	$2 Y_{1}+Y_{2}$
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	0	2	1	0	2	2
0	1	1	1	0	2	2
0	2	0	1	0	2	2
1	0	0	0	2	2	2
1	0	0	1	0	2	2

Stickel-Fages AC-unification - associating new variables

Associate new variables with each solution.

Table 2: Solutions for the Equation $2 X_{1}+X_{2}+X_{3}=2 Y_{1}+Y_{2}$

X_{1}	X_{2}	X_{3}	Y_{1}	Y_{2}	$2 X_{1}+X_{2}+X_{3}$	$2 Y_{1}+Y_{2}$	New Variables
0	0	1	0	1	1	1	Z_{1}
0	1	0	0	1	1	1	Z_{2}
0	0	2	1	0	2	2	Z_{3}
0	1	1	1	0	2	2	Z_{4}
0	2	0	1	0	2	2	Z_{5}
1	0	0	0	2	2	2	Z_{6}
1	0	0	1	0	2	2	Z_{7}

Stickel-Fages AC-unification - old and new variables

Observing the previous Table, relate the "old" variables and the "new" ones:

$$
\begin{aligned}
& X_{1} \approx^{?} Z_{6}+Z_{7} \\
& X_{2} \approx^{?} Z_{2}+Z_{4}+2 Z_{5} \\
& X_{3} \approx^{?} Z_{1}+2 Z_{3}+Z_{4} \\
& Y_{1} \approx^{?} Z_{3}+Z_{4}+Z_{5}+Z_{7} \\
& Y_{2} \approx^{?} Z_{1}+Z_{2}+2 Z_{6}
\end{aligned}
$$

Stickel-Fages AC-unification - all the possible cases

Decide whether we will include (set to 1) or not (set to 0) every "new" variable. Every "old" variable must be different than zero.

In our example, we have 2^{7} possibilities of including/excluding the variables Z_{1}, \ldots, Z_{7}, but after observing that $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}$ cannot be set to zero, only 69 cases remain.

Stickel-Fages AC-unification - dropping impossible cases

Drop the cases where the variables representing constants or subterms headed by a different AC function symbol are assigned to more than one of the "new" variables.

For instance, the potential new unification problem

$$
\begin{array}{r}
\left\{X_{1} \approx^{?} Z_{6}, X_{2} \approx^{?} Z_{4}, X_{3} \approx ? f\left(Z_{1}, Z_{4}\right),\right. \\
\left.Y_{1} \approx^{?} Z_{4}, Y_{2} \approx ? f\left(Z_{1}, Z_{6}, Z_{6}\right)\right\}
\end{array}
$$

should be discarded as the variable X_{3}, which represents the constant a, cannot unify with $f\left(Z_{1}, Z_{4}\right)$.

Stickel-Fages AC-unification - dropping more cases

Replace "old" variables by the original terms they substituted and proceed with the unification.

Some new unification problems may be unsolvable and will be discarded later. For instance:

$$
\left\{X \approx^{?} Z_{6}, Y \approx^{?} Z_{4}, a \approx^{?} Z_{4}, b \approx^{?} Z_{4}, Z \approx^{?} f\left(Z_{6}, Z_{6}\right)\right\}
$$

Stickel-Fages AC-unification - solutions

In our example,

$$
f(X, X, Y, a, b, c) \approx^{?} f(b, b, b, c, Z)
$$

the solutions are:

$$
\left\{\begin{array}{l}
\sigma_{1}=\{Y \rightarrow f(b, b), Z \rightarrow f(a, X, X)\} \\
\sigma_{2}=\left\{Y \rightarrow f\left(Z_{2}, b, b\right), Z \rightarrow f\left(a, Z_{2}, X, X\right)\right\} \\
\sigma_{3}=\{X \rightarrow b, Z \rightarrow f(a, Y)\} \\
\sigma_{4}=\left\{X \rightarrow f\left(Z_{6}, b\right), Z \rightarrow f\left(a, Y, Z_{6}, Z_{6}\right)\right\}
\end{array}\right\}
$$

Adapting first-order AC-unification to nominal AC-unification

We found a loop while solving nominal AC-unification problems using Stickel-Fages' Diophantine-based algorithm.

For instance

$$
f(X, W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)
$$

Variables are associated as below:
U_{1} is associated with argument X,
U_{2} is associated with argument W,
V_{1} is associated with argument $\pi \cdot X$, and
V_{2} is associated with argument $\pi \cdot Y$.

Table of Solutions

The Diophantine equation associated is $U_{1}+U_{2}=V_{1}+V_{2}$.
The table with the solutions of the Diophantine equations is shown below. The name of the new variables was chosen to make clearer the loop we will fall into.

Table 3: Solutions for the Equation $U_{1}+U_{2}=V_{1}+V_{2}$

U_{1}	U_{2}	V_{1}	V_{2}	$U_{1}+U_{2}$	$V_{1}+V_{2}$	$N e w$ variables
0	1	0	1	1	1	Z_{1}
0	1	1	0	1	1	W_{1}
1	0	0	1	1	1	Y_{1}
1	0	1	0	1	1	X_{1}

After solveAC

$$
\begin{aligned}
& \left\{X \approx ? X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1}\right\} \\
& \left\{X \approx ? Y_{1}, W \approx ? W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Y_{1}\right\} \\
& \left\{X \approx ? Y_{1}+X_{1}, W \approx ? W_{1}, \pi \cdot X \approx W_{1}+X_{1}, \pi \cdot Y \approx ? Y_{1}\right\} \\
& \left\{X \approx ? Y_{1}+X_{1}, W \approx^{?} Z_{1}, \pi \cdot X \approx^{?} X_{1}, \pi \cdot Y \approx^{?} Z_{1}+Y_{1}\right\} \\
& \left\{X \approx ? X_{1}, W \approx^{?} Z_{1}+W_{1}, \pi \cdot X \approx^{?} W_{1}+X_{1}, \pi \cdot Y \approx Z_{1}\right\} \\
& \left\{X \approx ? Y_{1}, W \approx^{?} Z_{1}+W_{1}, \pi \cdot X \approx^{?} W_{1}, \pi \cdot Y \approx^{?} Z_{1}+Y_{1}\right\} \\
& \left\{X \approx ? Y_{1}+X_{1}, W \approx^{?} Z_{1}+W_{1}, \pi \cdot X \approx^{?} W_{1}+X_{1}, \pi \cdot Y \approx^{?} Z_{1}+Y_{1}\right\}
\end{aligned}
$$

After instantiateStep

Seven branches are generated:
$B 1-\{\pi \cdot X \approx ? X\}, \sigma=\{W \mapsto \pi \cdot Y\}$
$B 2-\sigma=\left\{W \mapsto \pi^{2} \cdot Y, X \mapsto \pi \cdot Y\right\}$
$B 3-\left\{f\left(\pi^{2} \cdot Y, \pi \cdot X_{1}\right) \approx ? f\left(W, X_{1}\right)\right\}, \sigma=\left\{X \mapsto f\left(\pi \cdot Y, X_{1}\right)\right\}$
B4 - No solution
B5 - No solution

$$
B 6-\sigma=\left\{W \mapsto f\left(Z_{1}, \pi \cdot X\right), Y \mapsto f\left(\pi^{-1} \cdot Z_{1}, \pi^{-1} \cdot X\right)\right\}
$$

$$
B 7-\left\{f\left(\pi \cdot Y_{1}, \pi \cdot X_{1}\right) \approx^{?} f\left(W_{1}, X_{1}\right)\right\}
$$

$$
\sigma=\left\{X \mapsto f\left(Y_{1}, X_{1}\right), W \mapsto f\left(Z_{1}, W_{1}\right), Y \mapsto f\left(\pi^{-1} \cdot Z_{1}, \pi^{-1} \cdot Y_{1}\right)\right\}
$$

The Loop

Focusing on Branch 7, notice that the problem before the AC Step and the problem after the AC Step and instantiating the variables are, respectively:

$$
P=\left\{f(X, W) \approx^{?} f(\pi \cdot X, \pi \cdot Y)\right\}
$$

$$
P_{1}=\left\{f\left(X_{1}, W_{1}\right) \approx^{?} f\left(\pi \cdot X_{1}, \pi \cdot Y_{1}\right)\right\}
$$

Issues Adapting First-Order to Nominal AC-Unification

An Algorithm for Nominal AC-Matching

Nominal AC-matching

Nominal AC-matching is matching in the nominal setting in the presence of associative-commutative function symbols.

We proposed (to the best of our knowledge) the first nominal AC-matching algorithm, and formalised it in the PVS proof assistant ([AFFKS23] ${ }^{(1)}$).

From unification to matching using protected variables

Given an algorithm of unification, one can adapt it by adding as a parameter a set of protected variables \mathcal{X}, which cannot be instantiated.

The adapted algorithm can then be used for:

- Unification - By putting $\mathcal{X}=\emptyset$.
- Matching - By putting \mathcal{X} as the set of variables in the right-hand side.
- α-Equivalence - By putting \mathcal{X} as the set of variables that appear in the problem.

From First-Order AC-Unification to Nominal AC-Matching

We modify our first-order AC-unification formalisation to obtain a formalised algorithm for nominal AC-matching.

Input

The algorithm is recursive and needs to keep track of

- the current context Γ,
- the equational constraints we must unify P,
- the substitution σ computed so far,
- the set of variables V that are/were in the problem, and
- the set of protected variables \mathcal{X}.

Hence, it's input is a quintuple $\langle\Gamma, P, \sigma, V, \mathcal{X}\rangle$.

Set of protected variables for matching problems

We assume the input satisfies $\operatorname{Vars}(r h s(P)) \subseteq \mathcal{X}$ (notice that to obtain a nominal AC-unification algorithm, we would have to eliminate this hypothesis from the proofs).

Output

The output is a list of solutions, each of the form $\left\langle\Gamma_{1}, \sigma_{1}\right\rangle$.

applyACStep

The AC part of the algorithm (ACMatch ${ }^{\top}$) is handled by function applyACStep $\boldsymbol{\pi}$, which relies on two functions: solveAC and instantiateStep.

- solveAC builds the linear Diophantine equational system associated with the AC-matching equational constraint, generates the basis of solutions, and uses these solutions to generate the new AC-matching equational constraints.
- instantiateStep $\boldsymbol{\beta}$ instantiates the moderated variables that it can.

Formalisation Nominal AC-matching - Termination

Idea: for the particular case of matching (unlike unification) all the new moderated variables introduced by solveAC are instantiated by instantiateStep.

Formalisation Nominal AC-matching - Termination is Easier

Hence, termination is much easier in nominal AC-matching than in first-order AC-unification.

Notation

$\nabla^{\prime} \vdash \nabla \sigma$ denotes that $\nabla^{\prime} \vdash a \# X \sigma$ holds for each $(a \# X) \in \nabla$.
$\nabla \vdash \sigma \approx_{V} \sigma^{\prime}$ denotes that $\nabla \vdash X \sigma \approx_{\alpha} X \sigma^{\prime}$ for all X in V. When V is the set of all variables \mathbb{X}, we write $\nabla \vdash \sigma \approx \sigma^{\prime}$.

Solution to a Quintuple i

Our algorithm receives as input quintuples. Hence, to state the theorems of soundness and completeness, we need the definition of a solution $\langle\Delta, \delta\rangle$ to a quintuple $\langle\Gamma, P, \sigma, V, \mathcal{X}\rangle$.

Solution to a Quintuple ii

Definition 2 (Solution for a Quintuple [

A solution to a quintuple $\langle\Gamma, P, \sigma, V, \mathcal{X}\rangle$ is a pair $\langle\Delta, \delta\rangle$, where the following conditions are satisfied:

1. $\Delta \vdash \Gamma \delta$.
2. if $a \#$? $t \in P$ then $\Delta \vdash a \# t \delta$.
3. if $t \approx$? $s \in P$ then $\Delta \vdash t \delta \approx_{\alpha} s \delta$.
4. there exists λ such that $\Delta \vdash \lambda \circ \sigma \approx \vee \delta$.
5. $\operatorname{dom}(\delta) \cap \mathcal{X}=\emptyset$.

Solution to a Quintuple iif

Note that if $\langle\Delta, \delta\rangle$ is a solution of $\langle\Gamma, \emptyset, \sigma, \mathbb{X}, \mathcal{X}\rangle$ this corresponds to the notion of $\langle\Delta, \delta\rangle$ being an instance of $\langle\Gamma, \sigma\rangle$ that does not instantiate variables in \mathcal{X}.

Formalisation Nominal AC-matching - Soundness

Theorem 3 (Soundness for AC-Matching [])
Let the pair $\left\langle\Gamma_{1}, \sigma_{1}\right\rangle$ be an output of
$A C M a t c h(\langle\emptyset,\{t \approx ? s\}, i d, \operatorname{Vars}(t, s), \operatorname{Vars}(s)\rangle)$.

If $\langle\Delta, \delta\rangle$ is an instance of $\left\langle\Gamma_{1}, \sigma_{1}\right\rangle$ that does not instantiate the variables in s, then

$$
\langle\Delta, \delta\rangle \text { is a solution to }\langle\emptyset,\{t \approx ? s\}, i d, \mathbb{X}, \operatorname{Vars}(s)\rangle
$$

Interpretation for Soundness

An interpretation of the previous Theorem is that if $\langle\Delta, \delta\rangle$ is an AC-matching instance to one of the outputs of ACMatch, then $\langle\Delta, \delta\rangle$ is an AC-matching solution to the original problem.

Formalisation Nominal AC-matching - Completeness

Theorem 4 (Completeness for AC-Matching [${ }^{\top}$)
Suppose that $\langle\Delta, \delta\rangle$ is a solution to $\langle\emptyset,\{t \approx$? $s\}$, id, $\mathbb{X}, \operatorname{Vars}(s)\rangle$, that $\delta \subseteq V$ and that $\operatorname{Vars}(\Delta) \subseteq V$.

Then, there exists

$$
(\langle\Gamma, \sigma\rangle \in \operatorname{ACMatch}(\langle\emptyset,\{t \approx ? s\}, i d, V, \operatorname{Vars}(s)\rangle)
$$

such that $\langle\Delta, \delta\rangle$ is an instance (restricted to the variables of V) of $\langle\Gamma, \sigma\rangle$ that does not instantiate the variables of s.

Interpretation for Completeness

An interpretation of the previous Theorem is that if $\langle\Delta, \delta\rangle$ is an AC-matching solution to the initial problem, then $\langle\Delta, \delta\rangle$ is an AC-matching instance of one of the outputs of ACMatch.

Formalisation Nominal AC-matching - The hypotheses on variables

The hypotheses $\delta \subseteq V$ and $\operatorname{Vars}(\Delta) \subseteq V$ are just a technicality that was put to guarantee that the new variables introduced by the algorithm in the AC-part do not clash with the variables in $\operatorname{dom}(\delta)$ or in the terms in $i m(\delta)$ or in $\operatorname{Vars}(\Delta)$.

Synthesis on Nominal Equational Modulo

Synthesis on Nominal Equational Modulo

Timeline on the formalisation of nominal equational reasoning

Synthesis of results on Nominal Unification Modulo

		Synthesis Unification Nominal Modulo			
Theory	Unif. type	Equality- checking	Matching	Unification	Related work
\approx_{α}	1	$O(n \log n)$	$O(n \log n)$	$O\left(n^{2}\right)$	UPG04 LV10 CF08 CF10 LSFA2015
C	∞	$O\left(n^{2} \log n\right)$	NP-comp.	NP-comp.	LOPSTR2017 FroCoS2017 TCS2019 LOPSTR2019 MSCS2021
A	∞	$O(n \log n)$	NP-comp.	NP-hard	LSFA2016 TCS2019
AC	ω	$O\left(n^{3} \log n\right)$	NP-comp.	NP-comp.	LSFA2016 TCS2019 CICM2023

More on Nominal Reasoning

Also:

- Overlaps in Nominal Rewriting [LSFA 2015]
- Nominal Narrowing [FSCD 2016]
- Nominal Intersection Types [TCS 2018]
- Nominal Disequations [LSFA 2019]
- Nominal Syntax with Permutation Fixed Points [LMCS2020]

Work in Progress and Future Work

Work in Progress

Removing the hypotheses $\delta \subseteq V$ and $\operatorname{Vars}(\Delta) \subseteq V$ in the statement of completeness.

Table 4: Quantitative Data.

Theory	Theorems	TCCs	Size (.pvs)	Size (.prf)	Size (\%)
[AFFKS23]	6	4	2.8 kB	0.02 MB	$<1 \%$
unification_alg	11	19	6.9 kB	2.1 MB	9%
ac_step	45	11	15.8 kB	1.6 MB	7%
inst_step	75	17	20.3 kB	2 MB	9%
aux_unification	140	52	44.9 kB	6.9 MB	30%
Diophantine	77	44	23.5 kB	1 MB	4%
unification	119	13	28.0 kB	1.7 MB	8%
fresh_subs	37	5	10.9 kB	0.6 MB	3%
substitution	166	34	30.1 kB	2.5 MB	11%
equality	83	20	15.1 kB	1.6 MB	7%
freshness	15	10	4.5 kB	0.1 MB	$<1 \%$
terms	147	53	29.1 kB	1.1 MB	5%
atoms	14	3	3.7 kB	0.03 MB	$<1 \%$
list	265	113	54.9 kB	1.4 MB	6%
Total	1200	398	290.5 kB	22.6 MB	100%

Q Study how to avoid the circularity in nominal AC-unification.
(?) How circularity enriches the set of computed solutions?
(3) Under which conditions can circularity be avoided?
\& Consider the alternative approach to AC-unification proposed by Boudet, Contejean and Devie [BCD90, Bou93], which was used to define AC higher-order pattern unification.
Explore the connection between nominal and higher-order patterns to obtain a nominal AC-unification algorithm.

Thank you!

References i

Rauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, and Daniele Nantes Sobrinho, A Certified Algorithm for AC-Unification, Formal Structures for Computation and Deduction, FSCD 2022 (2022).
R Alexandre Boudet, Evelyne Contejean, and Hervé Devie, A New AC Unification Algorithm with an Algorithm for Solving Systems of Diophantine Equations, Proceedings of the Fifth Annual Symposium on Logic in Computer Science, LICS, 1990.
(Alexandre Boudet, Competing for the AC-Unification Race, J. of Autom. Reasoning (1993).

