
Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalizing Rewriting and Termination in
PVS

Mauricio Ayala-Rincón

Universidade de Braśılia (UnB)

Braśılia D.F., Brazil

Research funded by

Brazilian Research Agencies: CNPq, CAPES and FAPDF

Joint short course with César Muñoz

International School on Rewriting ISR 2018
Universidad Javeriana Cali, Colombia - Aug 1st 2018

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Talk’s Plan

Deduction, Proofs & PVS
The Prototype Verification System PVS
Deduction à la Gentzen

Formalizations
Abstract Reduction Systems (ARS)
Term Rewriting Systems

Elaborated TRS theorems
Knuth-Bendix Critical Pair Theorem
Rosen’s Confluence of Orthogonal TRS

Conclusion and Future Work

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a specification language:

based on higher-order logic;
a type system based on Church’s simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form Γ ` ∆, where Γ and ∆ are finite sequences of
formulae, with the usual Gentzen semantics.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library includes

Structures, analysis, algebra, Graphs, Digraphs,
real arithmetic, floating point arithmetic, groups, interval
arithmetic,
linear algebra, measure integration, metric spaces,
orders, probability, series, sets, topology,
term rewriting systems, unification, etc. etc.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

The Prototype Verification System - PVS — Sequent
calculus

Sequents of the form: Γ ` ∆.

Interpretation: from Γ one obtains ∆.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed:

Γ ` ∆

Γ′ ` ∆′

Goal: ` ∆.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
Γ ` ∆

Γ1 ` ∆1...Γn ` ∆n
(Rule Name)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Some inference rules in PVS

Structural:

Γ2 ` ∆2

Γ1 ` ∆1
(W), if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

Propositional:

Γ,A ` A,∆
(Ax)

Γ,FALSE ` ∆
(FALSE `)

Γ ` TRUE ,∆
(` TRUE)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Some inference rules in PVS

Cut:

Corresponds to the case and lemma proof commands.

Γ ` ∆
Γ,A ` ∆ Γ ` A,∆

(Cut)

Conditional: IF-THEN-ELSE.

Γ, IF(A,B,C) ` ∆

Γ,A,B ` ∆ Γ,C ` A,∆
(IF `)

Γ ` IF(A,B,C)∆

Γ,A ` B,∆ Γ ` A,C ,∆
(` IF)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

sequents:

Γ ⇒ ∆

↑ ↑
antecedent succedent

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

Table: Rules of deduction à la Gentzen for predicate logic

left rules right rules
Axioms:

Γ, ϕ⇒ ϕ,∆ (Ax) ⊥, Γ⇒ ∆ (L⊥)

Structural rules:

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LW eakening)
Γ⇒ ∆

Γ⇒ ∆, ϕ
(RW eakening)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

Table: Rules of deduction à la Gentzen for predicate logic

left rules right rules
Logical rules:

ϕi∈{1,2}, Γ⇒ ∆

ϕ1 ∧ ϕ2, Γ⇒ ∆
(L∧)

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(R∧)

ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(L∨)

Γ⇒ ∆, ϕi∈{1,2}

Γ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(R→)

ϕ[x/t], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(L∀)

Γ⇒ ∆, ϕ[x/y]

Γ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

ϕ[x/y], Γ⇒ ∆

∃xϕ, Γ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃xϕ
(R∃)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

Derivation of the Peirce’s law:

(R→)

(RW)
ϕ⇒ ϕ (Ax)

ϕ⇒ ϕ,ψ

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

Cut rule:

Γ⇒ ∆, ϕ ϕ, Γ′ ⇒ ∆′

ΓΓ′ ⇒ ∆∆′
(Cut)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus - dealing with negation: c-equivalence

ϕ, Γ⇒ ∆ one-step c-equivalent Γ⇒ ∆,¬ϕ

Γ⇒ ∆, ϕ one-step c-equivalent ¬ϕ, Γ⇒ ∆

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(i) `G ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆,¬ϕ;

(ii) `G ¬ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆, ϕ.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆,⊥
(RW)

Γ⇒ ∆,¬ϕ
(R→)

Sufficiency:

(LW)
Γ⇒ ∆,¬ϕ

ϕ, Γ⇒ ∆,¬ϕ
(Ax) ϕ, Γ⇒ ∆, ϕ ⊥, ϕ, Γ⇒ ∆ (L⊥)

¬ϕ,ϕ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆
(Cut)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus - dealing with negation

(ii) Necessity:

(R→)

(L→)

(R→)
(Ax) ϕ, Γ⇒ ∆, ϕ, ϕ,⊥

Γ⇒ ∆, ϕ, ϕ,¬ϕ ⊥, Γ⇒ ∆, ϕ, ϕ (L⊥)

¬¬ϕ, Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ,¬¬ϕ→ ϕ

¬ϕ, Γ⇒ ∆

¬ϕ, Γ⇒ ∆, ϕ,⊥
(RW)

Γ⇒ ∆, ϕ,¬¬ϕ
(R→)

ϕ, Γ⇒ ∆, ϕ (Ax)

¬¬ϕ→ ϕ, Γ⇒ ∆, ϕ
(L→)

Γ⇒ ∆, ϕ
(Cut)

Sufficiency:

Γ⇒ ∆, ϕ ⊥, Γ⇒ ∆

¬ϕ, Γ⇒ ∆
(L→)

2

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Summary - Gentzen Deductive Rules vs Proof Commads

Table: Structural Left Rules vs Proof Commands

Structural left rules PVS commands

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LW eakening)
ϕ, Γ ` ∆

Γ ` ∆
(hide)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

ϕ, Γ ` ∆

ϕ,ϕ, Γ ` ∆
(Copy)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Summary - Gentzen Deductive Rules vs Proof Commads

Table: Structural Right Rules vs Proof Commands

Structural right rules PVS commands

Γ⇒ ∆
Γ⇒ ∆, ϕ

(RW eakening)
Γ ` ∆, ϕ

Γ ` ∆
(Hide)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)

Γ ` ∆, ϕ

Γ ` ∆, ϕ, ϕ
(Copy)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Summary - Gentzen Deductive Rules vs Proof Commads
Table: Logical Left Rules vs Proof Commands

left rules PVS commands

ϕ1, ϕ2, Γ⇒ ∆

ϕ1 ∧ ϕ2, Γ⇒ ∆
(L∧)

ϕ1 ∧ ϕ2, Γ ` ∆

ϕi∈{1,2}, Γ ` ∆
(Flatten)

ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(L∨)

ϕ ∨ ψ, Γ ` ∆

ϕ, Γ ` ∆ ψ, Γ ` ∆
(Split)

Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(L→)

ϕ→ ψ, Γ ` ∆

Γ ` ∆, ϕ ψ, Γ ` ∆
(Split)

ϕ[x/t], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(L∀)

∀xϕ, Γ ` ∆

ϕ[x/t], Γ ` ∆
(Instantiate)

ϕ[x/y], Γ⇒ ∆

∃xϕ, Γ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

∃xϕ, Γ ` ∆

ϕ[x/y], Γ ` ∆
(Skolem), y 6∈ fv(Γ,∆)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Summary - Gentzen Deductive Rules vs Proof Commads

Table: Logical Right Rules vs Proof Commands

right rules PVS commands

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(R∧)

Γ ` ∆, ϕ ∧ ψ
Γ ` ∆, ϕ Γ ` ∆, ψ

(Split)

Γ⇒ ∆, ϕi∈{1,2}

Γ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ` ∆, ϕ1 ∨ ϕ2

Γ ` ∆, ϕ1, ϕ2
(Flatten)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(R→)

Γ ` ∆, ϕ→ ψ

ϕ, Γ ` ∆, ψ
(Flatten)

Γ⇒ ∆, ϕ[x/y]

Γ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

Γ ` ∆, ∀xϕ
Γ ` ∆, ϕ[x/y]

(Skolem), y 6∈ fv(Γ,∆)

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃xϕ
(R∃)

Γ ` ∆, ∃xϕ
Γ ` ∆, ϕ[x/t]

(Instantiate)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Summary - Completing the GC vs PVS rules

(hide) (copy) (flatten) (split) (Skolem) (Inst) (lemma)
(case)

(LW) ×
(LC) ×
(L∧) ×
(L∨) ×
(L→) ×
(L∀) ×
(L∃) ×

(RW) ×
(RC) ×
(R∧) ×
(R∨) ×
(R→) ×
(R∀) ×
(R∃) ×
(Cut) ×

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

References

Undergraduate Topics in Computer Science

Mauricio Ayala-Rincón
Flávio L.C. de Moura

Applied Logic
for Computer
Scientists
Computational Deduction and Formal
Proofs

2017

Logic for CS with applications

to algorithm verification and

details on the relations between

Gentzen DN and SC rules

and PVS proof commands

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalizing Rewriting Properties

Dealing with HO variables, quantifying binary relations, and
induction:

Theorem (CR vs C)

Confluence and CR are equivalent properties

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Abstract Reduction Systems - Binary relations

relations closure[T : TYPE] : THEORY
BEGIN

IMPORTING orders@closure ops[T], sets lemmas[T]
...

S, R: VAR pred[[T, T]]
n: VAR nat
p: VAR posnat

...
RC(R): reflexive = union(R, =)
SC(R): symmetric = union(R, converse(R))
TC(R): transitive = IUnion(LAMBDA p: iterate(R, p))
RTC(R): reflexive transitive = IUnion(LAMBDA n: iterate(R, n))
EC(R): equivalence = RTC(SC(R))

...
END relations closure

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Abstract Reduction Systems

change to TC : LEMMA transitive closure(R) = TC(R)

R subset TC :LEMMA subset?(R, TC(R))

TC converse: LEMMA TC(converse(R)) = converse(TC(R))

TC idempotent : LEMMA TC(TC(R)) = TC(R)

TC characterization : LEMMA transitive?(S) ⇔ (S = TC(S))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Abstract Reduction Systems - PVS Theory

�� ��

ars[T]

�� ��
results

commutation

��

modulo

equivalence

results

normal form

newman

yokouchi

// noetherian oo // results confluence

// ars terminology

��

oo

relations closure

��
sets lemmas

Figure: Hierarchy of the ars theory (Av. at NASA LaRC PVS library)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

noetherian?(R): bool = well founded?(converse(R))

joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)

locally confluent?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) ⇒ joinable?(R)(y,z)

confluent?(R): bool =
FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) ⇒ joinable?(R)(y,z)

Newman lemma: THEOREM
noetherian?(R) ⇒ (confluent?(R) ⇔ locally confluent?(R))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

- Hands in the dough -
PVS files with Newman’s Lemma formalization downloadable as
NewmanLemma.tgz

yyyy %% %%

$$ $$ zzzz
?

Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

x

zz $$
y1

zzzz

z1

$$ $$
y

%% %%

z

yyyy
?

Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

x

yy %%
y1

{{{{ %% %%

L.C . z1

##yyyy
y

&& &&

∃u z

xxxx
?

Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

x

xx %%
y1

zzzz %% %%

L.C . z1

##yyyy
y

$$ $$

N.I . u

xxxx

z

zzzz

∃v

&& &&
?

Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

x

yy %%
y1

zzzz %% %%

L.C . z1

##yyyy
y

$$ $$

u

yyyy

z

yyyy

v

%% %%

N.I .

∃w
Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

x

xx &&

zzzz && &&

L.C .

$$ $$yyyyy

$$ $$

N.I .

xxxx

z

yyyy&& &&

N.I .

w

Figure: Proof’s Sketch of Newman’s Lemma

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Case of study - Newman’s Lemma

A few used lemmas:

R subset RC : LEMMA subset?(R, RC(R))
iterate RTC: LEMMA FORALL n : subset?(iterate(R, n), RTC(R))
R is Noet iff TC is: LEMMA noetherian?(R) ⇔ noetherian?(TC(R))
R subset TC :LEMMA subset?(R, TC(R))

noetherian induction: LEMMA
(FORALL (R: noetherian, P):

(FORALL x:
(FORALL y: TC(R)(x, y) ⇒ P(y))
⇒ P(x))

⇒
(FORALL x: P(x)))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

trs Theory - Hierarchy

reduction

��

critical pairsoo trsoo

rewrite rules // substitution

��

orthogonality

jj

replacement

��

compatibilityoo // ars[term]

subterm // positions

��

// finite sequences extras

��
term // finite sequences

Figure: Hierarchy of the trs theory

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Terms

The set of terms

term[variable: TYPE+, symbol: TYPE+] : DATATYPE

BEGIN

IMPORTING arity[symbol]

vars(v: variable): vars?

app(f:symbol,

args:{args:finite_sequence[term] | length(args)=arity(f)}): app?

END term

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Other key basic concepts

Positions and Subterms

The set of positions of the term t, denoted by Pos(t), is
inductively defined as follows:

(a) If t = x ∈ V , then Pos(t) := ε, where ε denotes the empty
string.

(b) If t = f (t1, · · · , tn), then

Pos(t) := {ε} ∪
n⋃

i=1

{ip | p ∈ Pos(ti)}

The subterm of a term s at position p ∈ Pos(s), denoted by
s |p, is inductively defined on the length of p as follows:

s |ε := s
f (s1, ..., sn)|iq := si |q

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Replacement
Replacing the subterm of s at position p ∈ Pos(s) by
t: s[p ← t]

replaceTerm(t: term, s: term, (p: positions?(s))): RECURSIVE term =

(IF length(p) = 0

THEN t

ELSE LET st = args(s),

i = first(p),

q = rest(p),

rst = replace(replaceTerm(t, st(i-1), q), st,i-1) IN

app(f(s), rst)

ENDIF)

MEASURE length(p)

Usefull properties
Let s, t, r be terms. If p and q are parallel positions in s, then

(a) s[p ← t]|q= s|q persistence

(b) s[p ← t][q ← r] = s[q ← r][p ← t] commutativity

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Substitution and Renaming

Substitution

(a) The substitutions are built as functions from variables to terms

sig: [V -> term]

whose domain is finite:

Sub?(sig): bool = is finite(Dom(sig))

(b) The homomorphic extension ext(sig) of a substitution sig is
specified inductively over the structure of terms.

Renaming

Ren?(sig): bool = subset?(Ran(sig),V) &

(bijective?[(Dom(sig)),(Ran(sig))])(sig)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Rewrite Rules and Reduction
Relation

Rewrite Rules

rewrite_rule?(l,r): bool = (NOT vars?(l)) & subset?(Vars(r), Vars(l))

rewrite_rule: TYPE = (rewrite_rule?)

Reduction Relation

reduction?(E)(s,t): bool =

EXISTS ((e | member(e, E)), sig, (p: positions?(s))):

subtermOF(s, p) = ext(sig)(lhs(e)) &

t = replaceTerm(ext(sig)(rhs(e)), s, p)

Lemma
Let E be a set of rewrite rules. The reduction relation
reduction?(E) is closed under substitutions and compatible with
operations (structure of terms).

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

TRS specification - Critical Pairs
Critical Pairs - Analytic Definition
Let li → ri , i = 1, 2, be two rules whose “variables have been renamed” such that
Var(l1) ∩ Var(l2) = ∅. Let p ∈ Pos(l1) be such that l1|p is not a variable and let
σ = mgu(l1|p , l2). This determines a critical pair 〈t1, t2〉:

t1 = σ(r1)
t2 = σ(l1)[p ← σ(r2)]

Critical Pairs - Specification

CP?(E)(t1, t2): bool =

EXISTS (sigma, rho, (e1 | member(e1, E)), (e2p | member(e2p, E)),

(p: positions?(lhs(e1)))):

LET e2 = (# lhs := ext(rho)(lhs(e2p)),

rhs := ext(rho)(rhs(e2p)) #) IN

disjoint?(Vars(lhs(e1)),Vars(lhs(e2))) &

NOT vars?(subtermOF(lhs(e1), p)) &

mgu(sigma)(subtermOF(lhs(e1), p), lhs(e2)) &

t1 = ext(sigma)(rhs(e1)) &

t2 = replaceTerm(ext(sigma)(rhs(e2)), ext(sigma)(lhs(e1)), p)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

Specification

CP_Theorem: THEOREM

FORALL E:

local_confluent?(reduction?(E))

<=>

(FORALL t1, t2: CP?(E)(t1, t2) => joinable?(reduction?(E))(t1,t2))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

A sketch of the formalisation

Let s be a term of divergence such that

s
l1→r1

~~
l2→r2

s1 s2

that is, there are positions p1, p2 ∈ positions?(s), rules
l1 → r1, l2 → r2 ∈ E, and substitutions σ1, σ2, such that

s |p1= σ1(l1) & s1 = s[p1 ← σ1(r1)]

s |p2= σ2(l2) & s2 = s[p2 ← σ2(r2)]

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

A sketch of the formalisation: Disjoint positions

p1 and p2 are in separate subtrees, i.e., p1 and p2 are parallel
positions in s.
Case 1: Disjoint positions

l2 → r2

l1 → r1l2 → r2

l1 → r1

σ1l1

σ1r1 σ2l2

s1

σ1l1 σ2r2

s2

σ1r1 σ2r2

σ2l2

p1

p1 p2

p1 p2

p1

p2

s3

p2

s

Case 1: Disjoint
positions

Persistence

Commutativity

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem
A sketch of the formalisation: Critical overlap

p ∈ positions?(l1), l1|p is not a variable and σ1(l1|p) = σ2(l2).

Case 2: Either p1 ≤ p2 or p2 ≤ p1 - p2 = p1p

s s

s

p1

σ1l1

p1CP?(E)

σ1r1

l2 → r2l1 → r1

σ1l1

p1

p

σ2r2

p

σ2l2

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

Case 2: The divergence corresponds to an instance of a critical pair 〈t1, t2〉

CP_lemma_aux1: LEMMA

FORALL E, (e1 | member(e1, E)), (e2 | member(e2, E)), (p: position):

positionsOF(lhs(e1))(p) &

NOT vars?(subtermOF(lhs(e1), p)) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(sg2)(lhs(e2))

=>

EXISTS t1, t2, delta:

CP?(E)(t1, t2) &

ext(delta)(t1) = ext(sg1)(rhs(e1)) &

ext(delta)(t2) = replaceTerm(ext(sg2)(rhs(e2)), ext(sg1)(lhs(e1)), p)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

In general the critical overlap case is proved in textbooks by
assuming that the rewriting rules l1 → r1 and l2 → r2 are renamed
such that Vars(l1) ∩ Vars(l2) = ∅.

Case 2: Auxiliary properties

CP_lemma_aux1a: LEMMA

FORALL E, (e1 | member(e1, E)), (e2 | member(e2, E)), (p: position):

positionsOF(lhs(e1))(p) &

NOT vars?(subtermOF(lhs(e1), p)) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(sg2)(lhs(e2)))

=>

EXISTS alpha, rho:

disjoint?(Vars(lhs(e1)), Vars(ext(rho)(lhs(e2)))) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(comp(alpha, rho))(lhs(e2))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem
A sketch of the formalisation: Non-critical overlap

p = q1q2, for q2 possibly empty, such that q1 is a position of variable in l1 and
σ2(l2) = σ1(l1|q1)|q2 .

s

x x x

s

x x x

s

x x x

(3− 1)

s

x x

s

x x

(2)

p1

q1q1q1

q2 q2q2

l1

p1

q1q1q1

q2 q2q2

l1

p1

q1q1q1

q2 q2q2

l1

l2 → r2

l1 → r1

l1 → r1

p1

q1q1

q2q2

r1

p1

q1q1

q2q2

r1

l2 → r2

l2 → r2

σ2l2 σ2l2 σ2l2

σ2l2 σ2r2 σ2l2

σ2r2 σ2r2 σ2r2

σ2l2σ2l2

σ2r2 σ2r2

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem
Case 3: Auxiliary lemma

Let → be a relation compatible with the structure of terms, x be a variable, and σ1

and σ2 be substitutions such that:

σ1(x) → σ2(x) and
σ1(y) = σ2(y), for all y 6= x .

Let t be an arbitrary term, and p1, . . . , pn ∈ positions?(t) be all the occurrences of x
in t. Define t0 = σ1(t) and ti = ti−1[pi ← σ2(x)], for 1 ≤ i ≤ n. Then ti →n−i σ2(t),
for 0 ≤ i ≤ n. In particular, σ1(t)→n σ2(t).

Case 3: Auxiliary constructors

replace_pos(t, s, (fssp:SPP(s))): RECURSIVE term =

IF length(fssp) = 0 THEN s

ELSE replace_pos(t,replaceTerm(t, s, fssp(0)), rest(fssp)) ENDIF

MEASURE length(fssp)

RSigma(R, sg1, sg2, x): bool = FORALL (y: (V)):

IF y /= x THEN sg1(y) = sg2(y) ELSE R(sg1(x), sg2(x)) ENDIF

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Knuth-Bendix Critical Pair Theorem

Case 3: The variable l1|q1 can occur repeatedly in both sides of the rule l1 → r1

CP_lemma_aux2: LEMMA

FORALL R, t, x, sg1, sg2:

LET Posv = Pos_var(t, x),

seqv = set2seq(Posv) IN

comp_cont?(R) & RSigma(R, sg1, sg2, x)

=>

FORALL (i: below[length(seqv)]):

RTC(R)(replace_pos(ext(sg2)(x),ext(sg1)(t), #(seqv(i))),ext(sg2)(t))

&

RTC(R)(ext(sg1)(t), ext(sg2)(t))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

The PVS theory orthogonality

The PVS theory orthogonality substantially enlarges the
theory trs including several notions and formalisations related
with the specification of orthogonal TRSs.

⇒ orthogonality includes a formalisation of the theorem of
confluence of orthogonal TRSs according to:

use of the parallel reduction relation and
an inductive construction of terms of joinability for parallel
divergences through the Parallel Moves Lemma.

Available: NASA LaRC PVS library or trs.cic.unb.br.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Parallel Rewriting

l

E

π
1

π
1

πn
π

2π
2 πn

n

s t

r
1
σ

1 . . .

2
σ

2
r

. . .

r nσn

1
σ

1
l

2
l σ

2 σn

s ⇒ t

⇒(E)(s,t) : bool = ∃ (Π : SPP(t1), Γ : Seq[E], Σ
: Seq[Subs]) : · · ·

t = replace par pos(s, Π, sigma rhs(Σ, Γ))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Theorem [Confluence of Orthogonal TRSs]
Orthogonality ⇒ confluence

One has to prove:

the diamond property (3P) for ⇒;

→ ⊆ ⇒ ⊆ →∗ implies ⇒∗ ≡ →∗;
⇒ confluent, implies → confluent.

y� �%
∗
y�

∗
�%

∗
}}

∗
!!3P implies CR implies CR

�% y� �%∗ y� ∗ !!∗ }} ∗

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Orthogonal?(E) => diamond property?(parallel reduction?(E))

*

E
E

E
E

s

t t

u

1
2

*

* *

*

*

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Building the joinability term: the Parallel Moves Lemma

s

OO

//

θ

E E

lσ

xσ

. . .

. . .

xσ

r

σx . . .

σ

g
t = θl

x

θ

EE

x

x
. . .

r

θ

θ

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Joinability requires synchronised applications of PML

*

E
E

E
E

s

t t

u

1
2

*

* *

*

*

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: Orthogonal implies confluent

Lemma (Specification of Orthogonality implies Confluence)

Orthogonal implies confluent: LEMMA

FORALL (E : Orthogonal) :

confluent?(reduction?(E))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: parallel reduction has DP

Lemma (Specification of Orthogonality of → implies 3P of ⇒)

parallel reduction has DP: LEMMA

Orthogonal?(E) =>

diamond property?(⇒(E))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: divergence in Pos Over

divergence in Pos Over: LEMMA

⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧ π ∈ Pos Over(Π1, Π2)

=>

LET Π = complement pos(π, Π2) IN

∃ ((l , r) ∈ E , σ) :

subtermOF(s, π) = lσ ∧
subtermOF(t1, π) = rσ ∧
⇒(E)(subtermOF(s, π),subtermOF(t2,π), Π)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: subterm joinability

s

subterm joinability: LEMMA

Orthogonal?(E) ∧ ⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧
Π = Pos Over(Π1,Π2) o Pos Over(Π2,Π1) o Pos Equal(Π1,Π2)

=>

∀i <| Π | :

∃ui : ⇒(E)(subtermOF(t1, Π(i)), ui) ∧
⇒(E)(subtermOF(t2, Π(i)), ui)

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: subterms joinability

s

subterms joinability: LEMMA

Orthogonal?(E) ∧ ⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧
Π = Pos Over(Π1,Π2) o Pos Over(Π2,Π1) o Pos Equal(Π1,Π2)

=>

∃U : | U | = | Π | ∧
∀ i : ⇒(E)(subtermOF(t1, Π(i)), U(i)) ∧

⇒(E)(subtermOF(t2, Π(i)), U(i))

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Conclusion and Future Work

trs provides elegant formalisations close to textbook’s and
paper’s proofs.

x

R∗

||

R∗

""
y

R∗ ""

CR z

R∗||
·

confluent?(R): bool = ∀(x, y, z):

→∗(R)(x,y) ∧ →∗(R)(x,z)

=> ↓(R)(y,z)

⇒ First straightforward formalisation of Knuth-Bendix CP Th.
⇒ A formalisation of Rosen’s confluence of orthogonal TRS’s.

Precise discrimination of notions and properties:

3 property implies non termination.
proof’s analogies fail: a development of parallel rewriting was
necessary to formalise confluence of orthogonal TRS’s.

Clarity about adaptation of results in other contexts:
confluence in explicit substitutions and nominal rewriting.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Conclusion and Future Work

Applications to certify confluence of orthogonal specifications,
variants of lambda calculus, nominal rewriting.

Adaptation of the proof in Takahashi’s style.

Formalisations using other styles of proof. Van Oostrom’s
developments, for instance.

Formalisations of termination: Joint work with Cesar Muñoz
(NASA LaRC). PVS libraries CCG and PVS0.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Classical References

G. Huet.

A complete proof of correctness of the Knuth-Bendix completion
algorithm.

Journal of Computer and Systems Sciences, 23, 1981.

D. E. Knuth and P. B. Bendix.

Computational Problems in Abstract Algebra, chapter Simple Words
Problems in Universal Algebras, pages 263–297.

J. Leech, ed. Pergamon Press, Oxford, U. K., 1970.

M. H. A. Newman.

On theories with a combinatorial definition of “equivalence”.

Ann. of Math., 43(2):223–243, 1942.

B. K. Rosen.

Tree-manipulating systems and church-rosser theorems.

J. of the ACM, 20(1):160–187, 1973.

Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Self References

A. L. Galdino and M. Ayala-Rincón.

A Formalization of Newman’s and Yokouchi Lemmas in a Higher-Order
Language.

J. of Formalized Reasoning, 1(1):39–50, 2008.

A. L. Galdino and M. Ayala-Rincón.

A Formalization of the Knuth-Bendix(-Huet) Critical Pair Theorem.

J. of Automated Reasoning, 45(3):301–325, 2010.

A. C. Rocha Oliveira, A. L. Galdino and M. Ayala-Rincón.

Confluence of Orthogonal Term Rewriting Systems in the Prototype
Verification System

J. of Automated Reasoning, 58(2):231-251, 2017.

	Deduction, Proofs & PVS
	The Prototype Verification System PVS
	Deduction à la Gentzen

	Formalizations
	Abstract Reduction Systems (ARS)
	Term Rewriting Systems

	Elaborated TRS theorems
	Knuth-Bendix Critical Pair Theorem
	Rosen's Confluence of Orthogonal TRS

	Conclusion and Future Work

