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The Prototype Verification System - PVS

PVS is a verification system, developed by the SRI International
Computer Science Laboratory, which consists of

1 a specification language:

based on higher-order logic;
a type system based on Church’s simple theory of types
augmented with subtypes and dependent types.

2 an interactive theorem prover:

based on sequent calculus; that is, goals in PVS are sequents
of the form Γ ` ∆, where Γ and ∆ are finite sequences of
formulae, with the usual Gentzen semantics.
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The Prototype Verification System - PVS — Libraries

NASA LaRC PVS library includes

Structures, analysis, algebra, Graphs, Digraphs,
real arithmetic, floating point arithmetic, groups, interval
arithmetic,
linear algebra, measure integration, metric spaces,
orders, probability, series, sets, topology,
term rewriting systems, unification, etc. etc.
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The Prototype Verification System - PVS — Sequent
calculus

Sequents of the form: Γ ` ∆.

Interpretation: from Γ one obtains ∆.
A1,A2, ...,An ` B1,B2, ...,Bm interpreted as
A1 ∧ A2 ∧ ... ∧ An ` B1 ∨ B2 ∨ ... ∨ Bm.

Inference rules

Premises and conclusions are simultaneously constructed:

Γ ` ∆

Γ′ ` ∆′

Goal: ` ∆.
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Sequent calculus in PVS

Representation of A1,A2, ...,An ` B1,B2, ...,Bm:
[-1] A1

.

.

.
[-n] An

|----------
[1] B1

.

.

.
[n] Bn

Proof tree: each node is labelled by a sequent.

A PVS proof command corresponds to the application of an
inference rule.

In general:
Γ ` ∆

Γ1 ` ∆1...Γn ` ∆n
(Rule Name)
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Some inference rules in PVS

Structural:

Γ2 ` ∆2

Γ1 ` ∆1
(W), if Γ1 ⊆ Γ2 and ∆1 ⊆ ∆2

Propositional:

Γ,A ` A,∆
(Ax)

Γ,FALSE ` ∆
(FALSE ` )

Γ ` TRUE ,∆
( ` TRUE)
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Some inference rules in PVS

Cut:

Corresponds to the case and lemma proof commands.

Γ ` ∆
Γ,A ` ∆ Γ ` A,∆

(Cut)

Conditional: IF-THEN-ELSE.

Γ, IF(A,B,C ) ` ∆

Γ,A,B ` ∆ Γ,C ` A,∆
(IF ` )

Γ ` IF(A,B,C )∆

Γ,A ` B,∆ Γ ` A,C ,∆
( ` IF)
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Gentzen Calculus

sequents:

Γ ⇒ ∆

↑ ↑
antecedent succedent
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Gentzen Calculus

Table: Rules of deduction à la Gentzen for predicate logic

left rules right rules
Axioms:

Γ, ϕ⇒ ϕ,∆ (Ax) ⊥, Γ⇒ ∆ (L⊥)

Structural rules:

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LW eakening)
Γ⇒ ∆

Γ⇒ ∆, ϕ
(RW eakening)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)



Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Gentzen Calculus

Table: Rules of deduction à la Gentzen for predicate logic

left rules right rules
Logical rules:

ϕi∈{1,2}, Γ⇒ ∆

ϕ1 ∧ ϕ2, Γ⇒ ∆
(L∧)

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(R∧)

ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(L∨)

Γ⇒ ∆, ϕi∈{1,2}

Γ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(R→)

ϕ[x/t], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(L∀)

Γ⇒ ∆, ϕ[x/y ]

Γ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

ϕ[x/y ], Γ⇒ ∆

∃xϕ, Γ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃xϕ
(R∃)
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Gentzen Calculus

Derivation of the Peirce’s law:

(R→)

(RW )
ϕ⇒ ϕ (Ax)

ϕ⇒ ϕ,ψ

⇒ ϕ,ϕ→ ψ ϕ⇒ ϕ (Ax)

(ϕ→ ψ)→ ϕ⇒ ϕ
(R→)

⇒ ((ϕ→ ψ)→ ϕ)→ ϕ
(L→)
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Gentzen Calculus

Cut rule:

Γ⇒ ∆, ϕ ϕ, Γ′ ⇒ ∆′

ΓΓ′ ⇒ ∆∆′
(Cut)
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Gentzen Calculus - dealing with negation: c-equivalence

ϕ, Γ⇒ ∆ one-step c-equivalent Γ⇒ ∆,¬ϕ

Γ⇒ ∆, ϕ one-step c-equivalent ¬ϕ, Γ⇒ ∆

The c-equivalence is the equivalence closure of this relation.

Lemma (One-step c-equivalence)

(i) `G ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆,¬ϕ;

(ii) `G ¬ϕ, Γ⇒ ∆, iff `G Γ⇒ ∆, ϕ.
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Gentzen Calculus - dealing with negation

Proof.

(i) Necessity:

ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆,⊥
(RW)

Γ⇒ ∆,¬ϕ
(R→)

Sufficiency:

(LW)
Γ⇒ ∆,¬ϕ

ϕ, Γ⇒ ∆,¬ϕ
(Ax) ϕ, Γ⇒ ∆, ϕ ⊥, ϕ, Γ⇒ ∆ (L⊥)

¬ϕ,ϕ, Γ⇒ ∆
(L→)

ϕ, Γ⇒ ∆
(Cut)
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Gentzen Calculus - dealing with negation

(ii) Necessity:

(R→)

(L→)

(R→)
(Ax) ϕ, Γ⇒ ∆, ϕ, ϕ,⊥

Γ⇒ ∆, ϕ, ϕ,¬ϕ ⊥, Γ⇒ ∆, ϕ, ϕ (L⊥)

¬¬ϕ, Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ,¬¬ϕ→ ϕ

¬ϕ, Γ⇒ ∆

¬ϕ, Γ⇒ ∆, ϕ,⊥
(RW)

Γ⇒ ∆, ϕ,¬¬ϕ
(R→)

ϕ, Γ⇒ ∆, ϕ (Ax)

¬¬ϕ→ ϕ, Γ⇒ ∆, ϕ
(L→)

Γ⇒ ∆, ϕ
(Cut)

Sufficiency:

Γ⇒ ∆, ϕ ⊥, Γ⇒ ∆

¬ϕ, Γ⇒ ∆
(L→)

2
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Summary - Gentzen Deductive Rules vs Proof Commads

Table: Structural Left Rules vs Proof Commands

Structural left rules PVS commands

Γ⇒ ∆
ϕ, Γ⇒ ∆

(LW eakening)
ϕ, Γ ` ∆

Γ ` ∆
(hide)

ϕ,ϕ, Γ⇒ ∆

ϕ, Γ⇒ ∆
(LContraction)

ϕ, Γ ` ∆

ϕ,ϕ, Γ ` ∆
(Copy)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table: Structural Right Rules vs Proof Commands

Structural right rules PVS commands

Γ⇒ ∆
Γ⇒ ∆, ϕ

(RW eakening)
Γ ` ∆, ϕ

Γ ` ∆
(Hide)

Γ⇒ ∆, ϕ, ϕ

Γ⇒ ∆, ϕ
(RContraction)

Γ ` ∆, ϕ

Γ ` ∆, ϕ, ϕ
(Copy)
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Summary - Gentzen Deductive Rules vs Proof Commads
Table: Logical Left Rules vs Proof Commands

left rules PVS commands

ϕ1, ϕ2, Γ⇒ ∆

ϕ1 ∧ ϕ2, Γ⇒ ∆
(L∧)

ϕ1 ∧ ϕ2, Γ ` ∆

ϕi∈{1,2}, Γ ` ∆
(Flatten)

ϕ, Γ⇒ ∆ ψ, Γ⇒ ∆

ϕ ∨ ψ, Γ⇒ ∆
(L∨)

ϕ ∨ ψ, Γ ` ∆

ϕ, Γ ` ∆ ψ, Γ ` ∆
(Split)

Γ⇒ ∆, ϕ ψ, Γ⇒ ∆

ϕ→ ψ, Γ⇒ ∆
(L→)

ϕ→ ψ, Γ ` ∆

Γ ` ∆, ϕ ψ, Γ ` ∆
(Split)

ϕ[x/t], Γ⇒ ∆

∀xϕ, Γ⇒ ∆
(L∀)

∀xϕ, Γ ` ∆

ϕ[x/t], Γ ` ∆
(Instantiate)

ϕ[x/y ], Γ⇒ ∆

∃xϕ, Γ⇒ ∆
(L∃), y 6∈ fv(Γ,∆)

∃xϕ, Γ ` ∆

ϕ[x/y ], Γ ` ∆
(Skolem), y 6∈ fv(Γ,∆)
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Summary - Gentzen Deductive Rules vs Proof Commads

Table: Logical Right Rules vs Proof Commands

right rules PVS commands

Γ⇒ ∆, ϕ Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ ∧ ψ
(R∧)

Γ ` ∆, ϕ ∧ ψ
Γ ` ∆, ϕ Γ ` ∆, ψ

(Split)

Γ⇒ ∆, ϕi∈{1,2}

Γ⇒ ∆, ϕ1 ∨ ϕ2
(R∨)

Γ ` ∆, ϕ1 ∨ ϕ2

Γ ` ∆, ϕ1, ϕ2
(Flatten)

ϕ, Γ⇒ ∆, ψ

Γ⇒ ∆, ϕ→ ψ
(R→)

Γ ` ∆, ϕ→ ψ

ϕ, Γ ` ∆, ψ
(Flatten)

Γ⇒ ∆, ϕ[x/y ]

Γ⇒ ∆, ∀xϕ
(R∀), y 6∈ fv(Γ,∆)

Γ ` ∆, ∀xϕ
Γ ` ∆, ϕ[x/y ]

(Skolem), y 6∈ fv(Γ,∆)

Γ⇒ ∆, ϕ[x/t]

Γ⇒ ∆, ∃xϕ
(R∃)

Γ ` ∆, ∃xϕ
Γ ` ∆, ϕ[x/t]

(Instantiate)
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Summary - Completing the GC vs PVS rules

(hide) (copy) (flatten) (split) (Skolem) (Inst) (lemma)
(case)

(LW) ×
(LC) ×
(L∧) ×
(L∨) ×
(L→) ×
(L∀) ×
(L∃) ×

(RW) ×
(RC) ×
(R∧) ×
(R∨) ×
(R→) ×
(R∀) ×
(R∃) ×
(Cut) ×
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Formalizing Rewriting Properties

Dealing with HO variables, quantifying binary relations, and
induction:

Theorem (CR vs C)

Confluence and CR are equivalent properties
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Abstract Reduction Systems - Binary relations

relations closure[T : TYPE] : THEORY
BEGIN

IMPORTING orders@closure ops[T], sets lemmas[T]
...

S, R: VAR pred[[T, T]]
n: VAR nat
p: VAR posnat

...
RC(R): reflexive = union(R, =)
SC(R): symmetric = union(R, converse(R))
TC(R): transitive = IUnion(LAMBDA p: iterate(R, p))
RTC(R): reflexive transitive = IUnion(LAMBDA n: iterate(R, n))
EC(R): equivalence = RTC(SC(R))

...
END relations closure
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Abstract Reduction Systems

change to TC : LEMMA transitive closure(R) = TC(R)

R subset TC :LEMMA subset?(R, TC(R))

TC converse: LEMMA TC(converse(R)) = converse(TC(R))

TC idempotent : LEMMA TC(TC(R)) = TC(R)

TC characterization : LEMMA transitive?(S) ⇔ (S = TC(S))
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Abstract Reduction Systems - PVS Theory

�� ��

ars[T]

�� ��
results

commutation

��

modulo

equivalence

results

normal form

newman

yokouchi

// noetherian oo // results confluence

// ars terminology

��

oo

relations closure

��
sets lemmas

Figure: Hierarchy of the ars theory (Av. at NASA LaRC PVS library )
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Case of study - Newman’s Lemma

noetherian?(R): bool = well founded?(converse(R))

joinable?(R)(x,y): bool = EXISTS z: RTC(R)(x,z) & RTC(R)(y, z)

locally confluent?(R): bool =
FORALL x, y, z: R(x,y) & R(x,z) ⇒ joinable?(R)(y,z)

confluent?(R): bool =
FORALL x, y, z: RTC(R)(x,y) & RTC(R)(x,z) ⇒ joinable?(R)(y,z)

Newman lemma: THEOREM
noetherian?(R) ⇒ (confluent?(R) ⇔ locally confluent?(R))
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Case of study - Newman’s Lemma

- Hands in the dough -
PVS files with Newman’s Lemma formalization downloadable as
NewmanLemma.tgz

yyyy %% %%

$$ $$ zzzz
?

Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

x

zz $$
y1

zzzz

z1

$$ $$
y

%% %%

z

yyyy
?

Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

x

yy %%
y1

{{{{ %% %%

L.C . z1

## ##yyyy
y

&& &&

∃u z

xxxx
?

Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

x

xx %%
y1

zzzz %% %%

L.C . z1

## ##yyyy
y

$$ $$

N.I . u

xxxx

z

zzzz

∃v

&& &&
?

Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

x

yy %%
y1

zzzz %% %%

L.C . z1

## ##yyyy
y

$$ $$

u

yyyy

z

yyyy

v

%% %%

N.I .

∃w
Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

x

xx &&

zzzz && &&

L.C .

$$ $$yyyyy

$$ $$

N.I .

xxxx

z

yyyy&& &&

N.I .

w

Figure: Proof’s Sketch of Newman’s Lemma
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Case of study - Newman’s Lemma

A few used lemmas:

R subset RC : LEMMA subset?(R, RC(R))
iterate RTC: LEMMA FORALL n : subset?(iterate(R, n), RTC(R))
R is Noet iff TC is: LEMMA noetherian?(R) ⇔ noetherian?(TC(R))
R subset TC :LEMMA subset?(R, TC(R))

noetherian induction: LEMMA
(FORALL (R: noetherian, P):

(FORALL x:
(FORALL y: TC(R)(x, y) ⇒ P(y))
⇒ P(x))

⇒
(FORALL x: P(x)))
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trs Theory - Hierarchy

reduction

��

critical pairsoo trsoo

rewrite rules // substitution

��

orthogonality

jj

replacement

��

compatibilityoo // ars[term]

subterm // positions

��

// finite sequences extras

��
term // finite sequences

Figure: Hierarchy of the trs theory
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TRS specification - Terms

The set of terms

term[variable: TYPE+, symbol: TYPE+] : DATATYPE

BEGIN

IMPORTING arity[symbol]

vars(v: variable): vars?

app(f:symbol,

args:{args:finite_sequence[term] | length(args)=arity(f)}): app?

END term
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TRS specification - Other key basic concepts

Positions and Subterms

The set of positions of the term t, denoted by Pos(t), is
inductively defined as follows:

(a) If t = x ∈ V , then Pos(t) := ε, where ε denotes the empty
string.

(b) If t = f (t1, · · · , tn), then

Pos(t) := {ε} ∪
n⋃

i=1

{ip | p ∈ Pos(ti )}

The subterm of a term s at position p ∈ Pos(s), denoted by
s |p, is inductively defined on the length of p as follows:

s |ε := s
f (s1, ..., sn)|iq := si |q
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TRS specification - Replacement
Replacing the subterm of s at position p ∈ Pos(s) by
t: s[p ← t]

replaceTerm(t: term, s: term, (p: positions?(s))): RECURSIVE term =

(IF length(p) = 0

THEN t

ELSE LET st = args(s),

i = first(p),

q = rest(p),

rst = replace(replaceTerm(t, st(i-1), q), st,i-1) IN

app(f(s), rst)

ENDIF)

MEASURE length(p)

Usefull properties
Let s, t, r be terms. If p and q are parallel positions in s, then

(a) s[p ← t]|q= s|q persistence

(b) s[p ← t][q ← r ] = s[q ← r ][p ← t] commutativity
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TRS specification - Substitution and Renaming

Substitution

(a) The substitutions are built as functions from variables to terms

sig: [V -> term]

whose domain is finite:

Sub?(sig): bool = is finite(Dom(sig))

(b) The homomorphic extension ext(sig) of a substitution sig is
specified inductively over the structure of terms.

Renaming

Ren?(sig): bool = subset?(Ran(sig),V) &

(bijective?[(Dom(sig)),(Ran(sig))])(sig)
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TRS specification - Rewrite Rules and Reduction
Relation

Rewrite Rules

rewrite_rule?(l,r): bool = (NOT vars?(l)) & subset?(Vars(r), Vars(l))

rewrite_rule: TYPE = (rewrite_rule?)

Reduction Relation

reduction?(E)(s,t): bool =

EXISTS ( (e | member(e, E)), sig, (p: positions?(s)) ):

subtermOF(s, p) = ext(sig)(lhs(e)) &

t = replaceTerm(ext(sig)(rhs(e)), s, p)

Lemma
Let E be a set of rewrite rules. The reduction relation
reduction?(E) is closed under substitutions and compatible with
operations (structure of terms).
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TRS specification - Critical Pairs
Critical Pairs - Analytic Definition
Let li → ri , i = 1, 2, be two rules whose “variables have been renamed” such that
Var(l1) ∩ Var(l2) = ∅. Let p ∈ Pos(l1) be such that l1|p is not a variable and let
σ = mgu(l1|p , l2). This determines a critical pair 〈t1, t2〉:

t1 = σ(r1)
t2 = σ(l1)[p ← σ(r2)]

Critical Pairs - Specification

CP?(E)(t1, t2): bool =

EXISTS (sigma, rho, (e1 | member(e1, E)), (e2p | member(e2p, E)),

(p: positions?(lhs(e1)))):

LET e2 = (# lhs := ext(rho)(lhs(e2p)),

rhs := ext(rho)(rhs(e2p)) #) IN

disjoint?(Vars(lhs(e1)),Vars(lhs(e2))) &

NOT vars?(subtermOF(lhs(e1), p)) &

mgu(sigma)(subtermOF(lhs(e1), p), lhs(e2)) &

t1 = ext(sigma)(rhs(e1)) &

t2 = replaceTerm(ext(sigma)(rhs(e2)), ext(sigma)(lhs(e1)), p)
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Knuth-Bendix Critical Pair Theorem

Specification

CP_Theorem: THEOREM

FORALL E:

local_confluent?(reduction?(E))

<=>

(FORALL t1, t2: CP?(E)(t1, t2) => joinable?(reduction?(E))(t1,t2))
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Knuth-Bendix Critical Pair Theorem

A sketch of the formalisation

Let s be a term of divergence such that

s
l1→r1

~~
l2→r2

  
s1 s2

that is, there are positions p1, p2 ∈ positions?(s), rules
l1 → r1, l2 → r2 ∈ E, and substitutions σ1, σ2, such that

s |p1= σ1(l1) & s1 = s[p1 ← σ1(r1)]

s |p2= σ2(l2) & s2 = s[p2 ← σ2(r2)]
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Knuth-Bendix Critical Pair Theorem

A sketch of the formalisation: Disjoint positions

p1 and p2 are in separate subtrees, i.e., p1 and p2 are parallel
positions in s.
Case 1: Disjoint positions

l2 → r2

l1 → r1l2 → r2

l1 → r1

σ1l1

σ1r1 σ2l2

s1

σ1l1 σ2r2

s2

σ1r1 σ2r2

σ2l2

p1

p1 p2

p1 p2

p1

p2

s3

p2

s

Case 1: Disjoint
positions

Persistence

Commutativity
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Knuth-Bendix Critical Pair Theorem
A sketch of the formalisation: Critical overlap

p ∈ positions?(l1), l1|p is not a variable and σ1(l1|p) = σ2(l2).

Case 2: Either p1 ≤ p2 or p2 ≤ p1 - p2 = p1p

s s

s

p1

σ1l1

p1CP?(E)

σ1r1

l2 → r2l1 → r1

σ1l1

p1

p

σ2r2

p

σ2l2
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Knuth-Bendix Critical Pair Theorem

Case 2: The divergence corresponds to an instance of a critical pair 〈t1, t2〉

CP_lemma_aux1: LEMMA

FORALL E, (e1 | member(e1, E)), (e2 | member(e2, E)), (p: position):

positionsOF(lhs(e1))(p) &

NOT vars?(subtermOF(lhs(e1), p)) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(sg2)(lhs(e2))

=>

EXISTS t1, t2, delta:

CP?(E)(t1, t2) &

ext(delta)(t1) = ext(sg1)(rhs(e1)) &

ext(delta)(t2) = replaceTerm(ext(sg2)(rhs(e2)), ext(sg1)(lhs(e1)), p)
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Knuth-Bendix Critical Pair Theorem

In general the critical overlap case is proved in textbooks by
assuming that the rewriting rules l1 → r1 and l2 → r2 are renamed
such that Vars(l1) ∩ Vars(l2) = ∅.

Case 2: Auxiliary properties

CP_lemma_aux1a: LEMMA

FORALL E, (e1 | member(e1, E)), (e2 | member(e2, E)), (p: position):

positionsOF(lhs(e1))(p) &

NOT vars?(subtermOF(lhs(e1), p)) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(sg2)(lhs(e2)) )

=>

EXISTS alpha, rho:

disjoint?(Vars(lhs(e1)), Vars(ext(rho)(lhs(e2)))) &

ext(sg1)(subtermOF(lhs(e1), p)) = ext(comp(alpha, rho))(lhs(e2))
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Knuth-Bendix Critical Pair Theorem
A sketch of the formalisation: Non-critical overlap

p = q1q2, for q2 possibly empty, such that q1 is a position of variable in l1 and
σ2(l2) = σ1(l1|q1 )|q2 .

s

x x x

s

x x x

s

x x x

(3− 1)

s

x x

s

x x

(2)

p1

q1q1q1

q2 q2q2

l1

p1

q1q1q1

q2 q2q2

l1

p1

q1q1q1

q2 q2q2

l1

l2 → r2

l1 → r1

l1 → r1

p1

q1q1

q2q2

r1

p1

q1q1

q2q2

r1

l2 → r2

l2 → r2

σ2l2 σ2l2 σ2l2

σ2l2 σ2r2 σ2l2

σ2r2 σ2r2 σ2r2

σ2l2σ2l2

σ2r2 σ2r2
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Knuth-Bendix Critical Pair Theorem
Case 3: Auxiliary lemma

Let → be a relation compatible with the structure of terms, x be a variable, and σ1

and σ2 be substitutions such that:

σ1(x) → σ2(x) and
σ1(y) = σ2(y), for all y 6= x .

Let t be an arbitrary term, and p1, . . . , pn ∈ positions?(t) be all the occurrences of x
in t. Define t0 = σ1(t) and ti = ti−1[pi ← σ2(x)], for 1 ≤ i ≤ n. Then ti →n−i σ2(t),
for 0 ≤ i ≤ n. In particular, σ1(t)→n σ2(t).

Case 3: Auxiliary constructors

replace_pos(t, s, (fssp:SPP(s)) ): RECURSIVE term =

IF length(fssp) = 0 THEN s

ELSE replace_pos(t,replaceTerm(t, s, fssp(0)), rest(fssp)) ENDIF

MEASURE length(fssp)

RSigma(R, sg1, sg2, x): bool = FORALL (y: (V)):

IF y /= x THEN sg1(y) = sg2(y) ELSE R(sg1(x), sg2(x)) ENDIF
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Knuth-Bendix Critical Pair Theorem

Case 3: The variable l1|q1 can occur repeatedly in both sides of the rule l1 → r1

CP_lemma_aux2: LEMMA

FORALL R, t, x, sg1, sg2:

LET Posv = Pos_var(t, x),

seqv = set2seq(Posv) IN

comp_cont?(R) & RSigma(R, sg1, sg2, x)

=>

FORALL (i: below[length(seqv)]):

RTC(R)(replace_pos(ext(sg2)(x),ext(sg1)(t), #(seqv(i))),ext(sg2)(t))

&

RTC(R)(ext(sg1)(t), ext(sg2)(t))
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The PVS theory orthogonality

The PVS theory orthogonality substantially enlarges the
theory trs including several notions and formalisations related
with the specification of orthogonal TRSs.

⇒ orthogonality includes a formalisation of the theorem of
confluence of orthogonal TRSs according to:

use of the parallel reduction relation and
an inductive construction of terms of joinability for parallel
divergences through the Parallel Moves Lemma.

Available: NASA LaRC PVS library or trs.cic.unb.br.
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Parallel Rewriting

l

E

π
1

π
1

πn
π

2π
2 πn

n

s t
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1
σ

1 . . .

2
σ

2
r

. . .

r nσn

1
σ

1
l

2
l σ

2 σn

s ⇒ t

⇒(E)(s,t) : bool = ∃ (Π : SPP(t1), Γ : Seq[E], Σ
: Seq[Subs]) : · · ·

t = replace par pos(s, Π, sigma rhs(Σ, Γ))
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Theorem [Confluence of Orthogonal TRSs]
Orthogonality ⇒ confluence

One has to prove:

the diamond property (3P) for ⇒;

→ ⊆ ⇒ ⊆ →∗ implies ⇒∗ ≡ →∗;
⇒ confluent, implies → confluent.

y� �%
∗
y�

∗
�%

∗
}}

∗
!!3P implies CR implies CR

�% y� �%∗ y� ∗ !!∗ }} ∗
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Orthogonal?(E) => diamond property?(parallel reduction?(E))

*

E
E

E
E
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t t
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*

* *

*

*



Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Building the joinability term: the Parallel Moves Lemma

s
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Joinability requires synchronised applications of PML

*

E
E

E
E

s

t t

u

1
2

*

* *

*

*



Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: Orthogonal implies confluent

Lemma (Specification of Orthogonality implies Confluence)

Orthogonal implies confluent: LEMMA

FORALL (E : Orthogonal) :

confluent?(reduction?(E))



Deduction, Proofs & PVS Formalizations Elaborated TRS theorems Conclusion and Future Work

Formalisation: parallel reduction has DP

Lemma (Specification of Orthogonality of → implies 3P of ⇒ )

parallel reduction has DP: LEMMA

Orthogonal?(E) =>

diamond property?(⇒(E))
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Formalisation: divergence in Pos Over

divergence in Pos Over: LEMMA

⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧ π ∈ Pos Over(Π1, Π2)

=>

LET Π = complement pos(π, Π2) IN

∃ ( (l , r) ∈ E , σ ) :

subtermOF(s, π) = lσ ∧
subtermOF(t1, π) = rσ ∧
⇒(E)(subtermOF(s, π),subtermOF(t2,π), Π)
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Formalisation: subterm joinability

s

subterm joinability: LEMMA

Orthogonal?(E) ∧ ⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧
Π = Pos Over(Π1,Π2) o Pos Over(Π2,Π1) o Pos Equal(Π1,Π2)

=>

∀i <| Π | :

∃ui : ⇒(E)(subtermOF(t1, Π(i)), ui) ∧
⇒(E)(subtermOF(t2, Π(i)), ui)
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Formalisation: subterms joinability

s

subterms joinability: LEMMA

Orthogonal?(E) ∧ ⇒(E)(s,t1,Π1) ∧ ⇒(E)(s,t2,Π2) ∧
Π = Pos Over(Π1,Π2) o Pos Over(Π2,Π1) o Pos Equal(Π1,Π2)

=>

∃U : | U | = | Π | ∧
∀ i : ⇒(E)(subtermOF(t1, Π(i)), U(i)) ∧

⇒(E)(subtermOF(t2, Π(i)), U(i))
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Conclusion and Future Work

trs provides elegant formalisations close to textbook’s and
paper’s proofs.

x

R∗

||

R∗

""
y

R∗ ""

CR z

R∗||
·

confluent?(R): bool = ∀( x, y, z):

→∗(R)(x,y) ∧ →∗(R)(x,z)

=> ↓(R)(y,z)

⇒ First straightforward formalisation of Knuth-Bendix CP Th.
⇒ A formalisation of Rosen’s confluence of orthogonal TRS’s.

Precise discrimination of notions and properties:

3 property implies non termination.
proof’s analogies fail: a development of parallel rewriting was
necessary to formalise confluence of orthogonal TRS’s.

Clarity about adaptation of results in other contexts:
confluence in explicit substitutions and nominal rewriting.
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Conclusion and Future Work

Applications to certify confluence of orthogonal specifications,
variants of lambda calculus, nominal rewriting.

Adaptation of the proof in Takahashi’s style.

Formalisations using other styles of proof. Van Oostrom’s
developments, for instance.

Formalisations of termination: Joint work with Cesar Muñoz
(NASA LaRC). PVS libraries CCG and PVS0.
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