

Processos Estocásticos

Lista Exercícios - Data de Entrega: 17/11/2025

Lista de Exercícios - Parte 1

1. Seja $\{B_t: t \in [0, +\infty)\}$ um Movimento Browniano contínuo e considere a filtração

$$\mathscr{F}_t \equiv \bigcap_{s \in (t, +\infty)} \sigma(\mathscr{G}_s \cup \mathcal{N}), \tag{1}$$

onde \mathcal{N} é coleção de todos os subconjuntos dos conjuntos de probabilidade nula e $\mathscr{G}_s \equiv \sigma(B_t : 0 \leq t \leq s)$. Mostre que

- a1) Seja (M,d) um espaço métrico e $F\subseteq M$ um subconjunto arbitrário. Mostre que a aplicação $x\longmapsto d(x,F)$ é uma aplicação contínua de M para \mathbb{R} . Dica: Mostre que $|d(x,F)-d(y,F)|\leqslant d(x,y)$.
- a2) se $F \subseteq \mathbb{R}$ é um conjunto fechado não-vazio, então $\tau_F \equiv \inf\{t \in [0, +\infty) : B_t \in F\}$ é um tempo de parada, com respeito a filtração determinada por (1) e que temos $\mathbb{P}(\tau_F < +\infty) = 1$.
- b) se $A \subseteq \mathbb{R}$ é um conjunto aberto, então $\tau_A \equiv \inf\{t \in [0, +\infty) : B_t \in A\}$ é um tempo de parada, com respeito a filtração determinada por (1);
- c) se τ e σ são tempos de parada, com respeito a filtração determinada por (1), mostre que a v.a. $\tau \wedge \sigma \equiv \min\{\tau, \sigma\}$ também é um tempo de parada com respeito a esta filtração.
- d) se τ e σ são tempos de parada, com respeito a filtração determinada por (1), mostre que $\tau \vee \sigma \equiv \max\{\tau, \sigma\}$ também é um tempo de parada com respeito a esta filtração.
- 2. Sejam σ e τ tempos de parada (com respeito à filtração regular $\{\mathscr{F}_t\}$) tais que $\sigma\leqslant\tau$, quase certamente. Mostre que $\mathscr{F}_\sigma\subseteq\mathscr{F}_\tau$.

Dica: Use diretamente a definição de \mathscr{F}_{σ} e \mathscr{F}_{τ} . Você precisa mostrar que se $M \in \mathscr{F}_{\sigma}$, então $M \cap \{\tau \leqslant t\} \in \mathscr{F}_{t}$ para todo $t \geqslant 0$. Decomponha o evento $\{\tau \leqslant t\}$ usando σ . Este resultado formaliza a intuição de que "quanto mais tarde paramos, mais informação acumulamos".

3. Para $t > 0, x, y \in \mathbb{R}$ considere a densidade de transição

$$p(t, x, y) \equiv \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{(x-y)^2}{2t}\right). \tag{2}$$

Verifique que esta função é uma solução da seguinte equação de difusão

$$\frac{\partial p}{\partial t} = \frac{1}{2} \frac{\partial^2 p}{\partial^2 y}.$$

4. Seja $\{B_t : t \in [0, +\infty)\}$ um Movimento Browniano independente de uma σ -álgebra \mathscr{G} . Sejam $T_1, T_2, \ldots, T_m : \Omega \to [0, +\infty)$ variáveis aleatórias \mathscr{G} -mensuráveis. Mostre que, para qualquer função $f : \mathbb{R}^m \to \mathbb{C}$ continua e limitada temos

$$\mathbb{E}[f(B_{T_1}, B_{T_2}, \dots, B_{T_m}) | \mathcal{G}] = g(T_1, T_2, \dots, T_m),$$

onde $g(t_1, t_2, ..., t_m) = \mathbb{E}[f(B_{t_1}, B_{t_2}, ..., B_{t_m})]$ para cada $(t_1, ..., t_m) \in [0, +\infty)^m$ fixado.

5. Sejam $\{B_t : t \in [0, +\infty)\}$ um Movimento Browniano contínuo e $0 \le s < t$. Mostre que

$$\mathbb{P}(B_t \in A|B_s) = \int_A p(t-s, B_s, y) \, dy,$$

onde p(t, x, y) é a densidade de transição definida em (2).

- 6. Um processo estocástico $\{M_t : t \in [0, +\infty)\}$ definido sobre um espaço de probabilidade $(\Omega, \mathscr{F}, \mathbb{P})$ é chamado de um martingale contínuo, com respeito a filtração $\{\mathscr{F}_t : t \in [0, +\infty)\}$, se as seguintes condições são satisfeitas:
 - M_t é \mathscr{F}_t -mensurável para todo $t \ge 0$ (adaptado);
 - $\mathbb{E}[|M_t|] < +\infty$ para todo $t \ge 0$ (integrável);
 - As trajetórias $t \mapsto M_t(\omega)$ são contínuas (quase certamente);
 - $\mathbb{E}[M_t|\mathscr{F}_s] = M_s$, para todos $0 \leqslant s < t$ (a propriedade de martingal).

Sejam $\{B_t : t \in [0, +\infty)\}$ um Movimento Browniano padrão definido sobre um espaço de probabilidade $(\Omega, \mathcal{F}, \mathbb{P})$ completo. Mostre que este Movimento Browniano

- (a) é um martingale contínuo com respeito a filtração natural determinada por $\mathscr{G}_t \equiv \sigma(B_s: 0 \leq s \leq t)$.
- (b) é um martingale contínuo com respeito a filtração determinada por (1). **Dica**: a parte delicada deste item é provar a propriedade de martingal. Abaixo segue uma sugestão de roteiro de como esta prova pode ser feita.
 - i) Se $\mathscr{G} \subseteq \mathscr{H} \subseteq \mathscr{F}$ são sub- σ -álgebras tais que para qualquer $H \in \mathscr{H}$ existe algum $G \in \mathscr{G}$ satisfazendo $\mathbb{P}(G\Delta H) = 0$, então para toda v.a. integrável X temos $\mathbb{E}[X|\mathscr{G}] = \mathbb{E}[X|\mathscr{H}]$, quase certamente.
 - ii) Fixe $0 \le s < t$ e $A \in \mathscr{F}_s \equiv \bigcap_{u \in (s, +\infty)} \sigma(\mathscr{G}_u \cup \mathcal{N})$. Usando o item (a) mostre que para cada $u \in (s, t)$ existe um conjunto mensurável $A_u \in \mathscr{G}_u$ tal que $\mathbb{P}(A\Delta A_u) = 0$ e $\mathbb{E}[\mathbb{1}_A B_t] = \mathbb{E}[\mathbb{1}_A B_u]$.
 - iii) Observe que a última igualdade de ii) é válida para qualquer $A \in \mathscr{F}_s$ e $u \in (s,t)$, porém B_u não é \mathscr{F}_s -mensurável. Mostre que é possível usar a continuidade para concluir que $\mathbb{E}[B_t \mid \mathscr{F}_s] = B_s$, quase certamente.
- 7. Seja $\{B_t : t \in [0, +\infty)\}$ um movimento browniano padrão e $\{\mathcal{G}_t : t \in [0, +\infty)\}$ sua filtração natural. Mostre que o processo $M(t) \equiv \exp\left(B_t \frac{t}{2}\right)$ é um martingale, com respeito a esta filtração.

Sugestão. Calcule o valor esperado de $\exp(B_t - B_s)$ para $0 \le s < t$. Condicione em \mathscr{G}_s e use as propriedades de independência dos incrementos para obter a propriedade de martingale.

8. Seja $\{B_t: t \in [0, +\infty)\}$ um movimento browniano padrão em uma dimensão. Prove que

$$\mathbb{E}[B_s|B_t] = \frac{s}{t}B_t, \quad \text{quase certamente para } 0 \leqslant s < t.$$

Sugestão. Queremos encontrar uma função $\varphi : \mathbb{R} \to \mathbb{R}$ tal que $\mathbb{E}[B_s|B_t] = \varphi(B_t)$, quase certamente. Equivalentemente, queremos determinar φ de modo que para todo boreliano $B \in \mathcal{B}(\mathbb{R})$ temos

$$\int_{\{B_t \in B\}} B_s \, d\mathbb{P} = \int_{\{B_t \in B\}} \varphi(B_t) \, d\mathbb{P}.$$

Para isto use o teorema da mudança de variáveis e a expressão explícita da distribuição conjunta do vetor aleatório (B_s, B_t) para reescrever ambos lados da igualdade acima.

1 Desigualdades de Doob para Martingais

Nesta parte da lista vamos apresentar a prova de algumas das desigualdades de Doob para Martingais à tempo discreto e formular como exercícios algumas de suas extensões para martingais à tempo contínuo.

Definição 1 (Martingais). Um processo estocástico à tempo discreto $\{X_n : n \in \mathbb{N}\}$ definido sobre um espaço de probabilidade $(\Omega, \mathscr{F}, \mathbb{P})$ é um supermartingal (submartingale) com respeito à uma filtração $\{\mathscr{F}_n : n \in \mathbb{N}\}$ se as seguintes condições são satisfeitas:

- 1. $\mathbb{E}[|X_n|] < +\infty$, para todo $n \in \mathbb{N}$;
- 2. $X_n \in \mathscr{F}_n$ -mensurável.
- 3. $\mathbb{E}[X_{n+1}|\mathscr{F}_n] \leqslant X_n$, q.c. $\forall n \in \mathbb{N}$ (respectivemente, $X_n \leqslant \mathbb{E}[X_{n+1}|\mathscr{F}_n]$)

Dizemos que o processo estocástico $\{X_n : n \in \mathbb{N}\}$ é um martingal se ele é simultaneamente um supermartingal e um submartingale.

Definição 2 (Tempo de parada). Seja $(\Omega, \mathscr{F}, \mathbb{P})$ um espaço de probabilidade e $\{\mathscr{F}_n : n \in \mathbb{N}\}$ uma filtração. Uma aplicação $\tau : \Omega \to \mathbb{N} \cup \{+\infty\}$ é chamada de tempo de parada se

$$\{\tau \leqslant n\} \in \mathscr{F}_n, \quad \forall n \in \mathbb{N}.$$

Teorema 3 (Desigualdade Maximal de Doob). Seja $\{X_n : n \in \mathbb{N}\}$ um submartingale não-negativo, com respeito à uma filtração $\{\mathscr{F}_n : n \in \mathbb{N}\}$. Então para cada $\lambda > 0$ temos:

$$\mathbb{P}\left(\max_{1\leqslant k\leqslant n}X_{k}\geqslant\lambda\right)\leqslant\frac{1}{\lambda}\mathbb{E}\left[X_{n}\cdot\mathbb{1}_{\left\{\max_{1\leqslant k\leqslant n}X_{k}\geqslant\lambda\right\}}\right]$$

Prova. Para facilitar a notação defina a v.a.

$$M_n \equiv \max_{1 \le k \le n} X_k. \tag{3}$$

Fixado $\lambda > 0$ considere a v.a.

$$\tau \equiv \tau_{n,\lambda} \equiv \begin{cases} \min \left\{ k \in \{1,\dots,n\} : \lambda \leqslant X_k \right\}, & \text{se } \exists k \leqslant n \text{ tal que } \lambda \leqslant X_k; \\ n, & \text{caso contrário.} \end{cases}$$

Observe que τ define um tempo de parada satisfazendo $\tau \leq n$. Já que $\{X_n : n \in \mathbb{N}\}$ é um submartingale, não-negativo temos que a aplicação $j \longmapsto \mathbb{E}[X_j]$ é monótona não-decrescente e assim segue da definição de esperança condicional que

$$\mathbb{E}[X_{\tau}|\tau] = \sum_{j=1}^{n} \frac{\mathbb{E}[X_{j} \cdot \mathbb{1}_{\{\tau=j\}}]}{\mathbb{P}(\tau=j)} \, \mathbb{1}_{\{\tau=j\}} \leqslant \sum_{j=1}^{n} \frac{\mathbb{E}[X_{j}]}{\mathbb{P}(\tau=j)} \, \mathbb{1}_{\{\tau=j\}} \leqslant \mathbb{E}[X_{n}] \sum_{j=1}^{n} \frac{1}{\mathbb{P}(\tau=j)} \, \mathbb{1}_{\{\tau=j\}},$$

onde as parcelas em que $\mathbb{P}(\tau = j) = 0$ são identificadas com a v.a. nula. Das propriedades elementares da esperança condicional e da desigualdade acima temos que

$$\mathbb{E}[X_{\tau}] \leqslant \mathbb{E}[X_n].$$

Note que vale a seguinte igualdade

$$\mathbb{E}[X_{\tau} \cdot \mathbb{1}_{\{M_n \geqslant \lambda\}}] + \mathbb{E}[X_{\tau} \cdot \mathbb{1}_{\{M_n < \lambda\}}] = \mathbb{E}[X_{\tau}].$$

Além do mais, segue das definições acima que se $M_n \geqslant \lambda$, então $X_{\tau} \geqslant \lambda$. Por outro lado, se ocorre $M_n < \lambda$, então temos $\tau = n$ e consequentemente $X_{\tau} = X_n$. Logo segue dos fatos estabelecidos acima que

$$\lambda \mathbb{P}(M_n \geqslant \lambda) + \mathbb{E}[X_n \cdot \mathbb{1}_{\{M_n < \lambda\}}] \leqslant \mathbb{E}[X_\tau \cdot \mathbb{1}_{\{M_n \geqslant \lambda\}}] + \mathbb{E}[X_\tau \cdot \mathbb{1}_{\{M_n < \lambda\}}] = \mathbb{E}[X_\tau] \leqslant \mathbb{E}[X_n].$$

Da desigualdade acima temos imediatamente que

$$\lambda \mathbb{P}(M_n \geqslant \lambda) \leqslant \mathbb{E}[X_n] - \mathbb{E}[X_n \cdot \mathbb{1}_{\{M_n < \lambda\}}] = \mathbb{E}[X_n (1 - \mathbb{1}_{\{M_n < \lambda\}})]$$
$$= \mathbb{E}[X_n \mathbb{1}_{\{M_n \geqslant \lambda\}}]$$

o que encerra a demostração.

Teorema 4 (Desigualdade Maximal de Doob em L^2). Seja $\{X_n : n \in \mathbb{N}\}$ um submartingale não-negativo, com respeito à uma filtração $\{\mathscr{F}_n : n \in \mathbb{N}\}$. Se $\mathbb{E}[|X_n|^2] < +\infty$, para todo $n \in \mathbb{N}$, então temos

$$\mathbb{E}\left[\left|\max_{1\leqslant k\leqslant n}X_k\right|^2\right]\leqslant 4\mathbb{E}[X_n^2].$$

Prova. Como na prova do teorema anterior considere a v.a.

$$M_n \equiv \max_{1 \le k \le n} X_k. \tag{4}$$

Usando que M_n é uma v.a. não-negativa, o Teorema 3, o Teorema de Tonelli e a Desigualdade de Cauchy-Schwarz obtemos

$$\mathbb{E}[M_n^2] = 2 \int_0^\infty t \, \mathbb{P}(M_n > t) \, dt$$

$$\leqslant 2 \int_0^\infty \mathbb{E}[X_n \cdot \mathbb{1}_{\{M_n \ge t\}}] \, dt$$

$$= 2 \int_0^\infty \int_\Omega \mathbb{1}_{\{M_n \ge t\}} \cdot X_n \, d\mathbb{P} \, dt$$

$$= 2 \int_\Omega X_n \left[\int_0^\infty \mathbb{1}_{\{M_n \ge t\}} \, dt \right] d\mathbb{P}$$

$$= 2 \int_\Omega X_n M_n d\mathbb{P}$$

$$= 2 \left(\int_\Omega X_n^2 d\mathbb{P} \right)^{\frac{1}{2}} \left(\int_\Omega M_n^2 d\mathbb{P} \right)^{\frac{1}{2}}.$$

É claro que se $\mathbb{E}[M_n^2]=0$, então a desigualdade que desejamos mostrar é óbvia. Caso contrário, segue da desigualdade acima que $\mathbb{E}[M_n^2]^{1/2}\leqslant 2\mathbb{E}[X_n^2]^{1/2}$. Tomando o quadrado em ambos os lados desta última desigualdade concluímos finalmente a prova do teorema.

Lista de Exercícios - Parte 2

1. O objetivo deste exercício é estender a Desigualdade Maximal de Doob em L^2 (Teorema 4) para o Movimento Browniano. Mais precisamente, Seja $\{B_t : t \in [0, +\infty)\}$ um Movimento Browniano e $\{\mathscr{F}_t : t \in [0, +\infty)\}$ a filtração determinada por (1). vamos mostrar que para todo t > 0 temos

$$\mathbb{E}\left[\sup_{0\leqslant s\leqslant t}|B_s|^2\right]\leqslant 4\,\mathbb{E}[B_t^2].$$

(a) Fixe t > 0 e $n \in \mathbb{N}$. Para cada $k \in \{0, \dots, 2^n\}$ defina

$$X_k^n \equiv \left| B_{\frac{kt}{2^n}} \right|.$$

Mostre que $\{X_k^n: k \in \{0, \dots, 2^n\}\}$ é um submartingale (possuindo apenas um número finito de v.a's aleatórias), com respeito a filtração $\{\mathscr{F}_{\frac{kt}{2n}}: k \in \{0, \dots, 2^n\}\}$.

(b) Mostre que

$$\mathbb{E}\left[\left(\max_{0 \le k \le n} X_k^n\right)^2\right] \le 4\mathbb{E}\left[|B_t|^2\right], \quad \forall n \in \mathbb{N}.$$

(c) Mostre que a igualdade abaixo é válida, quase certamente,

$$\lim_{n \to \infty} \left(\max_{0 \le k \le n} X_k^n \right)^2 = \sup_{0 \le s \le t} |B_s|^2$$

(d) Mostre que $X_k^n=X_{2k}^{n+1}$ e conclua que a sequência de v.a.'s $\{Y_n:n\in\mathbb{N}\}$ definida por

$$Y_n \equiv \left(\max_{0 \leqslant k \leqslant 2^n} X_k^n\right)^2$$

é uma sequência monótona não-decrescente.

(e) Usando o Teorema da Convergência Monótona e os itens anteriores conclua que vale a seguinte desigualdade

$$\mathbb{E}\left[\sup_{0\leqslant s\leqslant t}B_s^2\right]\leqslant 4\,\mathbb{E}[B_t^2].$$