
Processos Estocásticos
Lista de Exerćıcios - Data de Entrega: 28/11/2025

1. Denotamos por C2
0(R,R) o espaço das funções da reta na reta possuindo segunda derivada

cont́ınua e suporte compacto, isto é, existe algum M > 0 tal que f(x) = 0, para todo x /∈
[−M,M ] ⊂ R. Seja x ∈ R fixado e considere o Movimento Browniano {Bx

t : t ∈ [0,+∞)}
que inicia no tempo t = 0 no ponto x.

(a) Use o Teorema da Mudança de Variáveis e mostre que para todo t > 0 temos

E[f(Bx
t )] =

∫
R
f(x+ y) · 1√

2πt
e−

y2

2t dy.

(b) Mostre que

E[f(Bx
t )]− f(x)

t
=

∫
R

f(x+ u
√
t)− f(x)

t
· 1√

2π
e−

u2

2 du.

(c) Usando a fórmula de Taylor

f(x+y
√
t)−f(x) = f ′(x)y

√
t+

1

2
f ′′(x+θy

√
t)y2t, para algum θ ≡ θ(x, y, t) ∈ [0, 1],

mostre que para cada x ∈ R fixado temos:

lim
t↓0

E[f(Bx
t )]− f(x)

t
=

1

2
f ′′(x).

2. Sejam {Bt : t ∈ [0,+∞)} um Movimento Browniano padrão, Ft ≡ σ(Bs : 0 ⩽ s ⩽ t) e
f ∈ C2

0(R,R). Mostre que, se

E
[
f(Bx

t )− f(Bx
s )−

∫ t

s

1

2
f ′′(Bx

u) du
∣∣∣Fs

]
= 0, ∀t ⩾ s,

então o processo {Mt : t ∈ [0,+∞)} definido por

Mt ≡ f(Bx
t )−

∫ t

0

1

2
f ′′(Bx

u) du, ∀t ∈ [0,+∞),

é um martingale com respeito à filtração {Ft : t ∈ [0,+∞)}.
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3. Mostre que {Bx
t : t ∈ [0,+∞)} e {Bt : t ∈ [0,+∞)} podem ser constrúıdos no mesmo

espaço de probabilidade. Neste caso temos

F x
t ≡ σ(Bx

s : 0 ⩽ s ⩽ t) = σ(Bs : 0 ⩽ s ⩽ t) ≡ Ft, ∀t ∈ [0,+∞).

4. Se {Bx
t : t ∈ [0,+∞)} denota um Movimento Browniano partindo do ponto x em t = 0,

descreva explicitamente a função de densidade do incremento Bx
t −Bx

s , para cada par s, t
satisfazendo 0 ⩽ s < t.

5. Assuma como nos exerćıcios anteriores que 0 ⩽ s < t e que a função f ∈ C2
0(R,R).

Usando o Exerćıcio 10 da Lista 1, mostre que

(a) E [f(Bx
t )|Fs] = h1(B

x
s ), onde h1(y) = E[f(Bx

t−s + y)];

(b) E[f(Bx
s )|Fs] = h2(B

x
s ), onde h2(y) = f(y);

(c) E
[∫ t

s

1

2
f ′′(Bx

u) du
∣∣∣Fs

]
= h3(B

x
s ), onde h3(y) = E

[∫ t−s

0

1

2
f ′′(Br + y) dr

]
;

(d) Para cada y ∈ R defina h(y) ≡ h1(y)− h2(y)− h3(y). Mostre que

h(y) = 0, ∀y ∈ R =⇒ E
[
f(Bx

t )− f(Bx
s )−

∫ t

s

1

2
f ′′(Bx

u) du
∣∣∣Fs

]
= 0,

6. Sejam f ∈ C2
0(R,R) e x ∈ R fixados.

(a) Mostre que ∥f ′′∥∞ < +∞;

(b) defina g : [0,+∞) → R por g(t) ≡ E[f(Bt + x)]. Fixe t > 0. Mostre, usando a
Fórmula de Taylor com resto, que para cada h ∈ R com |h| < t, existe uma v.a.
λ ≡ λ(t, h) ∈ (0, 1) tal que

g(t+ h)− g(t)

h
=

1

2h
E
[
f ′′(Bt + x+ λ(Bt+h −Bt)) · (Bt+h −Bt)

2
]
.

(c) Mostre que se Z ∼ N(0, h), então E[Z4] = 3h2.

(d) Para cada h ∈ R \ {0} seja

R(h) ≡ 1

2h
E
[(
f ′′(Bt + x+ λ(Bt+h −Bt))− f ′′(Bt + x)

)
· (Bt+h −Bt)

2
]
.

Usando a Desigualdade de Cauchy-Schwarz mostre que

|R(h)| ⩽ 1

2|h|
· h

√
3 ·

√
E
[(
f ′′(Bt + x+ λ(Bt+h −Bt))− f ′′(Bt + x)

)2]
.

(e) Usando os itens anteriores mostre que R(h) → 0, quando h → 0.

(f) Usando os itens (b) e (d) conclua que

lim
h→0

g(t+ h)− g(t)

h
=

1

2
E[f ′′(Bt + x)].
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7. Como no exerćıcio anterior, fixe f ∈ C2
0(R,R) e x ∈ R. Usando a função g do exerćıcio

anterior mostre que para cada t > 0 temos a seguinte igualdade

E
[
f(Bx

t )− f(x)−
∫ t

0

1

2
f ′′(Bx

s ) ds

]
= 0.

8. Usando os exerćıcios (5) e (2) conclua que o processo {Mt : t ∈ [0,+∞)} definido por

Mt ≡ f(Bx
t )−

∫ t

0

1

2
f ′′(Bx

u) du, ∀t ∈ [0,+∞),

é um martingale com respeito à filtração {Ft : t ∈ [0,+∞)}.

9. O objetivo deste exerćıcio é mostrar que o seguinte problema de Dirichlet unidimensional:

u′′(x) = −g(x) ∀x ∈ [a, b], u(a) = A, u(b) = B, a < b,

onde g(x) é uma função cont́ınua, tem solução única e que pode ser representada usando
o Movimento Browniano.

(a) Sejam {Bt : t ∈ [0,+∞)} um Movimento Browniano, x ∈ (a, b) um número real
fixado e τ = inf{t ⩾ 0;Bt + x /∈ [a, b]}. Mostre que para cada n ∈ N, temos

{τ > n} ⊆
n⋂

k=1

{|Bx
k −Bx

k−1| ⩽ (b− a)}

(b) Mostre que existe algum número p ≡ p(a, b) ∈ (0, 1) tal que P(τ > n) ⩽ pn.

(c) Mostre que P(τ = +∞) = 0.

(d) Mostre que E[τ ] < +∞.

(e) Mostre que Bx
τ é uma variável aleatória assumindo apenas dois valores e determine

E[Bx
τ ].

(f) Argumente que se a função [a, b] ∋ x 7−→ u(x) é uma solução do problema de
Dirichlet descrito acima, então u pode ser estendida à uma função em C2

0(R,R).
(g) Usando a extensão obtida no item anterior, que será também denotada por u, e os

exerćıcios anteriores mostre que o processo definido abaixo é um martingale com
respeito à filtração {Ft : t ⩾ 0}

Mx
t ≡ u(Bx

t )−
∫ t

0

1

2
u′′(Bx

r ) dr

(h) Usando Teorema da Parada Opcional de Doob (Teorema 1) mostre que E[Mx
t∧τ ] =

E[Mx
0 ].

(i) Mostre que é posśıvel usar o Teorema da Convergência Dominada e os itens anteriores
para mostrar que

E[Mx
0 ] = lim

t→∞
E[Mx

t∧τ ] = E[Mx
τ ].
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(j) Usando os itens anteriores mostre que o problema de Dirichlet enunciado acima
possui uma única solução que é dada por

u(x) = E
[∫ τ

0

1

2
g(Bx

s )ds+ A · 1{Bx
τ=a} +B · 1{Bx

τ=b}

]
10. Usando o Teorema 4.6.1 (referência [1, pag. 53]) e a Fórmula de Itô, mostre que se

u ∈ C2
0(R,R) então

Mx
t ≡ u(Bx

t )−
∫ t

0

1

2
u′′(Bx

r ) dr

é um Martingale com respeito à filtração {Ft : t ∈ [0,+∞)} induzida pelo Movimento
Browniano.

11. Use a Fórmula de Itô (d-dimensional) para mostrar que se u ∈ C2
0(R2,R) então o processo

Mt ≡ u(B
(1)
t , B

(2)
t )−

∫ t

0

1

2
△u(B(1)

s , B(2)
s )ds,

onde B(t) ≡ (B
(1)
t , B

(2)
t ) é um Movimento Browniano bidimensional, é um martingale,

com respeito à filtração {Ft : t ∈ [0,+∞)} induzida por {Bt : t ∈ [0,+∞)}.

12. Suponha que D ⊂ R2 é um aberto limitado e u ∈ C2(D,R) é uma solução para o
problema de Dirichlet: △u = −g em D;

u = f em ∂D.

onde g : D → R e f : ∂D → R são funções cont́ınuas e limitadas. Mostre que a solução
u do problema acima admite a seguinte representação:

u(x) = E
[
f(Bx

τ ) +

∫ τ

0

1

2
g(Bx

t )dt

]
, ∀x ∈ D;

onde, Bx
t denota o Movimento Browniano bidimensional iniciando no ponto x e τ é o

tempo de parada
τ = inf{t ⩾ 0;Bx

t /∈ D}.

13. Seja {Bt : t ∈ [0,+∞)} um Movimento Browniano padrão. Encontre todas as funções
de classe C1 ρ : [0,+∞) → R tais que Mt ≡ exp(Bt+ρ(t)) é um martingale, com respeito
à filtração natural induzida pelo Movimento Browniano.

14. Sejam g : R → R uma função mensurável e limitada e ∆n ≡ {t0, t1, . . . , tn} ∈ P([a, b]).
Mostre que

n∑
i=1

g(Bti−1
)
(
(Bti −Bti−1

)2 − (ti − ti−1)
)

L2(Ω)−−−−−−−→
∥∆n∥→0

0.
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15. Sejam B
(1)
t e B

(2)
t Movimentos Brownianos independentes e ∆n ≡ {t0, t1, . . . , tn} ∈

P([a, b]). Mostre que

n∑
i=1

(B
(1)
ti −B

(1)
ti−1

)2 · (B(2)
ti −B

(2)
ti−1

)2
L2(Ω)−−−−−−−→

∥∆n∥→0
0.

16. Aplicando a Fórmula de Itô para θ(t, x) = xn, mostre que

d((Bt)
n) =

n(n− 1)

2
(Bt)

n−2 dt+ n(Bt)
n−1dBt.

17. Seja {Bt : t ∈ [0,+∞)} um Movimento Browniano padrão. Use a Fórmula de Itô para
mostrar que o processo definido por

Mt ≡ B3
t − 3tBt, ∀t ⩾ 0,

é um martingale com respeito à filtração natural {Ft}t⩾0.

Dica: Considere a função f(t, x) = x3−3tx e verifique que o termo de “drift” na Fórmula
de Itô se anula.

18. (Transiência do Movimento Browniano em Dimensão d ⩾ 3). O objetivo deste
exerćıcio é conectar a Teoria do Potencial ao comportamento assintótico das trajetórias
do Movimento Browniano, demonstrando que em dimensões altas (d ⩾ 3), o processo
“escapa para o infinito”.

Seja {Bt : t ⩾ 0} um Movimento Browniano d-dimensional partindo de x ∈ Rd, com
x ̸= 0 e d ⩾ 3.

(a) Seja ϕ : (0,∞) → R uma função C2. Se definirmos f(x) = ϕ(∥x∥) para x ∈ Rd \{0},
mostre usando cálculo vetorial que o Laplaciano de f é dado por:

∆f(x) = ϕ′′(∥x∥) + d− 1

∥x∥
ϕ′(∥x∥).

(b) Encontre a solução geral não-constante da EDO ϕ′′(r) + d−1
r
ϕ′(r) = 0. Use isso para

determinar uma função v : Rd \ {0} → R que seja harmônica (i.e., ∆v = 0) e radial,
tal que v(x) → 0 quando ∥x∥ → ∞.

(c) Defina os tempos de parada para 0 < r < ∥x∥ < R:

Tr = inf{t ⩾ 0 : ∥Bt∥ = r} e TR = inf{t ⩾ 0 : ∥Bt∥ = R}.

Seja τ = Tr ∧ TR. Verifique que se v : Rd \ {0} → R é uma das funções encontradas
no item anterior, então esta função é de classe C2 e aplique a Fórmula de Itô ao
processo Mt = v(Bt) para mostrar que Mt∧τ é um martingale.

(d) Use o Teorema da Parada Opcional para mostrar que:

P(Tr < TR) =
v(x)− v(R)

v(r)− v(R)
.

Dica: Observe que τ < ∞ q.c. e que, no tempo τ , temos ∥Bτ∥ ∈ {r, R} (justifique
por que não pode haver ambiguidade sobre qual fronteira foi atingida primeiro).
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(e) Assumindo a fórmula encontrada no item (b) (que deve ser proporcional a ∥x∥2−d),
calcule o limite de P(Tr < TR) quando R → ∞. Conclua que, para d ⩾ 3, a
probabilidade de o Movimento Browniano retornar a uma bola compacta de raio r
(partindo de x com ∥x∥ > r) é estritamente menor que 1. Em outras palavras, existe
probabilidade positiva de que o processo nunca retorne a essa bola (transiência).

1 Teorema da Parada Opcional

Teorema 1 (Teorema da Parada Opcional de Doob). Sejam (Ω,F , {Ft}t⩾0,P) um espaço
de probabilidade filtrado, com a filtração {Ft}t⩾0 satisfazendo as chamadas ”condições usu-
ais”(completa e cont́ınua à direita) e {Mt : t ∈ [0,+∞)} um martingal cont́ınuo à direita e
com limite à esquerda, adaptado a essa filtração. Sejam α e τ dois tempos de parada tais que
α ⩽ τ < +∞, quase certamente. Se pelo menos uma das seguintes condições for satisfeita:

(i) O tempo de parada τ é limitado (isto é, existe uma constante K > 0 tal que τ(ω) ⩽ K
quase certamente);

(ii) O martingale {Mt : t ∈ [0,+∞)} é uniformemente integrável;

(iii) Existe uma variável aleatória integrável Z ∈ L1(Ω) tal que |Mt| ⩽ Z quase certamente,
para todo t ⩾ 0 (condição de dominação);

Então, as variáveis aleatórias Mα e Mτ são integráveis e vale a identidade:

E[Mτ | Fα] = Mα quase certamente.

Em particular, tomando α = 0 temos a igualdade dos seguintes valores esperados

E[Mτ ] = E[M0].

A prova do Teorema da Parada Opcional de Doob é apresentada na referência [2].
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