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Abstract

This is survey article about recent results concerning some unidimen-
sional variational problems in Lorentzian geometry (Refs. [5, 6, 7, 8,
9, 12, 18, 19]). We give a short historical introduction to the classical
brachistochrone problem and we give two formulations of a time min-
imizing variational problem in the context of General Relativity. The
solutions to this variational problem may be interpreted as worldline
of massive objects moving under the action of a gravitational field and
subject to suitable constraint forces, whose trajectory is a (local) time
minimizer among all trajectories that have a fixed energy in a given
reference system. In agreement with the terminology adopted in pre-
vious references, we will call such solutions relativistic brachistochrones.
We distinguish between the travel time and the arrival time brachis-
tochrones, which are curves extremizing the time measured respectively
by a watch which is traveling together with the massive object and by a
watch fixed at the arrival point in space. Two variational principles are
discussed and some existence results for brachistochrones of both types
are presented. Finally, we announce some results concerning the second
variation of the travel time, aimed to develop a Morse theory for the
travel time brachistochrones.

Resumo

Daremos uma breve introdugao histérica ao classico problema da
braquistécrona e duas formulagdes no contexto da Relatividade Geral.
Uma braquistécrona relativistica é interpretada como a linha de universo
de um ponto material movendo-se sob a acdo de um campo gravitacional
cuja trajetéria minimiza (localmente) o tempo dentre todas as possiveis
trajetérias tendo uma energia pre-fixada num dado sistema de referéncia
(observadores). Distiguiremos entre o "tempo de viagem” e "tempo de
chegada” que sao dados , respectivamente, por um relégio que viaja com
o ponto material e por um relégio fixado no ponto de chegada. Dois
principios variacionais serao discutidos e apresentaremos alguns resulta-
dos de existéncia para cada um dos casos.
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1. A Historical Introduction and the General Relativistic
Formulation

The classical brachistochrone! problem dates back to the end of the seventeenth
century, when Johann Bernoulli challenged his contemporaries to solve the fol-

lowing problem.

If in a vertical plane two points A and B are given, then it is required
to specify the orbit AM B of the movable point M, along which it,
starting from A, and under the influence of its own weight, arrives

at B in the shortest possible time. Acta Eruditorum, June 1696
(Fig. 1)

This problem attracted the attention of many important mathematicians of
the time, including Newton, Leibniz, I.’Hopital, and Johann’s brother, Jakob
Bernoulli. The papers written on the subject may be considered the fundaments
of a new field in mathematics, the Calculus of Variations. A beautiful historical
exposition of the brachistochrone problem may be found in Reference [22], where
the authors’ thesis is that the brachistochrone problem also marks the birth of
Optimal Control.

Still now the classical brachistochrone problem is very popular, and its im-
portance is witnessed by the fact that there is hardly any book on Calculus of
Variations that does not use this problem as a takeoff point. The well known so-
lution to the brachistochrone problem is a cycloid, which is the curve described
by a point P on a circle that rolls without slipping (see Fig. 2).

The cycloid curve was introduced by Galileo, who was actually the first scien-
tist to formulate the brachistochrone problem several decades before Bernoulli,
in his Discorsi e dimostrazioni maltematiche intorno a due nuove scienze, of
1638. Curiously enough, Galileo did not find the correct answer to the prob-
lem; apparently, he simply noticed that an arc of a circle joining A and B would

give a faster travel time than the straight segment.

from the greek: BpaytoTos=shortest, xpovos=time.
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M

Figure 1: the brachistochrone problem

Figure 2: the cycloid



196  F. GIANNONI V. PERLICK P. PICCIONE J. A. VERDERESI

Huygens had discovered another remarkable property of the cycloid: it is the
only curve such that a body, falling under its own weight, is guided by this curve
so as to oscillate with a period that is independent of the initial point where the
body is released. For this reason, Huygens called this curve the tautochrone.?

The classical brachistochrone problem has several generalizations, e.g., the
homogeneous gravitational field could be replaced with an arbitrary Newtonian
potential, and instead of releasing the particle from rest one could prescribe an
arbitrary value for the initial speed, leaving the initial direction of the velocity
undetermined.

In modern terminology, the Newtonian brachistochrone problem can be
stated as follows. Given a manifold My endowed with a Riemannian met-
ric go, to be interpreted as the configuration space, and a smooth function
V i Mo — IR, representing the gravitational potential, a brachistochrone of
energy F > 0 between two points z¢ and z; of My is a curve z : [0,7,] — M
joining xg and z; that extremizes the travel time T, in the space of all unit

speed curves y joining zo and z; and satisfying the conservation of energy law:
r ..
§g($,:1:)—|—V(;L’) = k. (1.1)

(throughout this paper we will consider the motion of particles with unit mass)
A well known variational principle states that a curve z joining xg and z; is a
brachistochrone of fixed energy F if and only if z is a geodesic with respect to
the conformal Riemannian metric ¢g-go, with conformal factor ¢ = (F—V)~L.

Figure 3 shows a picture of the brachistochrone curves in the Kepler potential
Vi(z,y,2z) = —M(22 4 y? + 2%)7 in Mg = IR\ {0} (see Ref. [18]).

The brachistochrone problem can also be formulated in the context of gen-
eral relativity. We want to emphasize here that the original solution to the
brachistochrone problem offered by Johann Bernoulli, can be made absolutely
rigorous also in a general relativistic context. Namely, Johann’s ingenious so-
lution was based on a plausibility argument that the moving body could be

imagined as a (massless) light ray moving in a plane medium where the speed

2from the greek, Tavros=equal or same, and xpovos=time.
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Figure 3: Brachistochrones of energy k = 1 issuing from infinity in the Kepler potential.

of light varies continuously. Under these circumstances, the problem can be
studied using the laws of Optics developed by Snellius, Fermat and Huygens.
As it was proven by Fermat, these laws imply that the trajectory of a light
ray is a path of extremal travel time, and the classical cycloid solution of the

brachistochrone problem can be derived using the Fermat variational principle.

In General Relativity it is possible to prove that the trajectory of a freely
falling massive object, which is represented by a timelike geodesic in a Lorentzian
manifold, is characterized by extremizing its arrival time measured by means
of a smooth parameterization of the receiving observer. This is the so called
general relativistic timelike Fermat Principle, suggested in [13] and rigorously
proven in [4]. Hence, the general relativity offers a natural environment for the

extension of the classical brachistochrone problem.

The first relativistic versions of the brachistochrone problem appear in [9]
and [12]. V. Perlick (see [18]) has determined the brachistochrone equation
in a regular stationary Lorentzian manifold, i.e., in a time-independent split
gravitational field according to general relativity, and the other three authors

in [8] have generalized Perlick’s result to the case of a possibly non regular



198 F. GIANNONI V. PERLICK P. PICCIONE J. A. VERDERESI

stationary Lorentzian manifold by reformulating the brachistochrone problem
in the context of sub-Riemannian geometry. The variational principle proven in
[8] was then used in [5] to prove some results concerning the existence and the
multiplicity of relativistic brachistochrones with fixed energy between a fixed
event and a fixed observer of a stationary spacetime.

More generally, the brachistochrone problem can be formulated on possibly
non stationary Lorentzian manifolds in the following way.

Let (M, g) be a 4-dimensional Lorentzian manifold, i.e., an arbitrary space-
time in the sense of general relativity and fix a timelike smooth vector field YV
on M. For simplicity, we assume that Y is complete, i.e., its integral lines are
defined over the entire real line. The integral curves of ¥ can be interpreted as
the worldlines of observers. Please note that we do not require Y to be normal-
ized, i.e., in general the worldlines of our observers are not parameterized by
proper time. The reason is that in the stationary case, i.e., if (M, g) admits a
timelike Killing vector field, it is convenient to choose this Killing vector field
for Y and not a renormalized version of it.

To formulate the brachistochrone problem with respect to our arbitrarily
chosen observer field Y, we fix a point p in M, a (maximal) integral curve
v IR +— Mof Y and a real number £ > 0. The trial paths for our variational
problem are all timelike smooth curves o : [0,1] — M which are nowhere

tangent to Y and satisfy the following conditions.

o(0) = p; (1.2)
o(1) € v(IR); (1.3)
9(5(0), Y(0(0))) = —k ( — g(5(0),5(0)))"/*; (1.4)
9(Vs6,6) =0; (1.5)
9(Vs6,Y) =0 (1.6)

Here V denotes the Levi-Civita connection of the Lorentzian metric g. The

space of trial path for our variational problem is represented in Figure 4.
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V.

Figure 4: the space of trial paths for the general relativistic brachistochrone problem

If we interpret each integral curve of Y as a “point in space”, (1.2) and
(1.3) mean that all trial paths connect the same two points in space, where
the starting time is fixed whereas the arrival time is not. Condition (1.5) says
that all trial paths start with the same speed with respect to the observer field
Y. By condition (1.5), the quantity 7T, defined by —T2 = ¢g(&,5) is a constant
for each trial path o (but takes different values for different trial paths). This
implies that the curve parameter s along o is related to proper time 7 by an
affine transformation, 7 = T, s + const. As a consequence, the 4-velocity along
each trial path is given by T4, whereas the 4-acceleration is given by 772V ;6.
Hence, conditions (1.5) and (1.6) require the 4-acceleration to be perpendicular
to the plane spanned by ¢ and Y. In other words, with respect to the observer
field Y there are only forces perpendicular to the direction of motion. Such
forces can be interpreted as constraint forces supplied by a frictionless slide

which is at rest with respect to the observer field Y.
The brachistochrone problem can now be formulated in the following way.

Among all trial paths that satisfy the above-mentioned conditions, we want

to find those curves for which the travel time is minimal or, more generally,
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stationary.

A different general relativistic brachistochrone problem can be formulated,
by requiring that the solutions be stationary points for the arrival time func-
tional, given by AT(c) = v~ '(o(1)). In other words, AT(c) is the value of
the time of the receiver at the arrival event; this is proper time if and only if
Y is normalized along ~. In physical terms, the two brachistochrone problems
differ by the way of measuring time: in the first case the time is measured by
a watch traveling along the trajectory of the mass, in the second case the time
is measured by the observer that receives the mass at the end of its trajectory.
The two variational problems are essentially different; in this paper we present
some recent results on the travel time brachistochrone (see [8, 5, 7]) and we
announce some new results on the arrival time brachistochrone, that are the

subject of a followup paper (Ref. [6]).

For a physical interpretation of our brachistochrone problem, the timelike
vector field Y should be related to some observable quantities, i.e., ¥ should
be co-moving with some bodies. For instance, if we are in the solar system and
Y is comoving with the planets, the solutions to our brachistochrone problem
will give worldlines of particles that minimize the travel time among all curves
that have a fixed specific energy in the rest system of the planets. If Y is at
rest with respect to the sun and to the distant stars, then the brachistochrones
will be the worldlines of massive objects that minimize the travel time among

all curves that have fixed energy in a reference system oriented at distant stars.

It is also possible to return to the original interpretation of of the brachis-
tochrone problem and think of the body guided by a frictionless slide, in which
case Y is determined by being the rest system of the slide.

We emphasize that in the formulation of our variational problem we consider
trajectories subject to the constraint given by equation (1.6). The corresponding
solutions are in general not given by trajectories of freely falling bodies, and

thus the brachistochrones are not geodesics in the spacetime metric.
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If (M, g) is a stationary spacetime and Y is a Killing vector field, i.e., the
flow of Y preserves the metric g, then the condition (1.4) means that the product
g(6,Y) is constant along o. The value of this constant can be easily computed
using condition (1.4), that gives g(¢,Y) = —kT,. Hence, in the stationary case,

the conditions (1.4) and (1.6) can be resumed in the condition:
g(6,Y) = —kT,. (1.7)

The condition (1.7) is the relativistic counterpart of the energy conservation
law (1.1) in the Newtonian case. Although physically meaningful, the mathe-
matical approach to the general relativistic brachistochrone problem in the non
stationary case presents difficulties of higher order than in the stationary case.
For instance, it is not even clear whether the non stationary brachistochrones
are solutions to a second order differential equation; in Reference [19], the au-
thors used a Lagrange multiplier technique to derive a system of differential
equations for the travel time brachistochrones and for the Lagrangian multipli-
ers. Unfortunately, it does not seem to be possible to eliminate the Lagrangian
multipliers from the system without introducing integrals, unless in the station-
ary case. Thus, it looks as if the brachistochrones in the non-stationary case
are not determined by a second-order differential equation, but rather by an
integro-differential equation.

For these technical reasons, we will stick to the case of a manifold M with
metric g which is stationary with respect to the observer field Y.

In this paper we want to review some recent results obtained by the authors.
For the proofs and the details of the arguments presented, the reader is referred
to the original articles, especially references [4, 5, 6, 7, 8, 17, 18, 19]. For the
basic notions of Lorentzian geometry and their physical interpretation, we refer

to classical textbooks, like [2, 10, 15, 20].

We organize the paper as follows. In Section 2 we will present the func-
tional framework of our variational problems. In Section 3 we will discuss the
travel time brachistochrone problem, and we present a variational principle for

the arrival time brachistochrones relating such curves to geodesics in a suit-
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able Riemannian structure defined on M. As a consequence of the principle
we obtain the differential equation that characterizes the travel time brachis-
tochrones. The results presented in Sections 2 and 3 are fully detailed in the
articles [5, 8, 18, 19]. Section 4 is devoted to the arrival time brachistochrones;
in this case, the solution curves to our variational problem are influenced by
a sort of Coriolis force, which causes the arrival time brachistochrone to trace
out a path different from the travel time brachistochrones with the same en-
ergy. The results presented in Section 4 are contained in [6, 18]. In Section
5 we present some existence and multiplicity results for both types of brachis-
tochrones, obtained using the variational principles and techniques of Critical
Point Theory; these results are from the references [5, 6]. Finally, in Section
6 we will study the second variation of the travel time functional and we will
discuss a few applications of the second variational formula for the travel time
brachistochrones. We announce partial results about the Morse theory for this

kind of brachistochrones; the details are contained in a forthcoming paper [7].

2. The Functional Setup: The Space of Trial Paths

Throughout this paper we will denote by (M, g) a stationary Lorentzian man-
ifold, with ¢ a Lorentzian metric tensor on M, and Y is a smooth timelike
Killing vector field on M, which is assumed to be complete.

The symbol (-, -) will denote the bilinear form induced by g on the tangent
spaces of M; the usual nabla symbol V will denote the covariant derivative
relative to the Levi—Civita connection of g. Given a smooth function ¢ on M,
for ¢ € M we denote by V¢(q) the gradient of ¢ at ¢ with respect to g, which is
the vector in T,M defined by (V(q),-) = dé(q)[-]; the Hessian H?(q) of ¢ at ¢
is the symmetric bilinear form on T, M given by H?(q)[vi,va] = (V,,V, vy), for
v1,v2 € T, M. We introduce for convenience the auxiliary Riemannian metric

gr on M, given by:

o (Y (@) (e V)
gr(q)(v1,v2) = (vy, 2>(R) (v1,v2) Y(q).Y(q)) , (2.1)
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for g € M and vy, v, € T,M. It is easy to see that Y is Killing also for the
metric gg; moreover, the restrictions of ¢ and ¢z to the orthocomplement of Y
coincide.

For A C M, the symbol C*(]0, 1], A) will denote the set of C''-curves defined
on [0,1] and with image in A; we also define the space H?([0, 1], A) of curves in
A satisfying the H?-Sobolev regularity condition:

H*([0,1], A) = {0‘ € C'([0,1],A) : & is absolutely continuous, and
Vso € L¥([0,1],TM)}. (2.2)

It is not too difficult to prove that the definition of the space H*([0,1], A) does
not indeed depend on the choice of the Riemannian metric gz, nor on the choice
of the linear connection V that appears in (2.2). As a matter of fact, the space
H?*([0,1], A) can be defined intrinsically for any differentiable manifold A using
local charts (see [16]) or, equivalently, using auxiliary structures on A, like for
instance a Riemannian metric. In the sequel, we will assume the definition of
the space H?([0, 1], TM).

If A is a smooth submanifold of M, in particular if A is an open subset, then
H?*([0,1], A) has the structure of an infinite dimensional Hilbertian manifold,
modeled on the Sobolev space H?*([0,1], IR™); for o € H*([0, 1], A), the tangent
space T, H*([0,1], A) can be identified with the Hilbert space:

T,H*([0,1],A) = {( € H*([0,1],TM) : ¢ vector field along O'}. (2.3)
The inner product in T, H*([0, 1], A) is given by:

(¢,0).= /01 (<C,C>(R) + Vel VeQ Ry + (VﬁCaV?TO(R)) dt, (2.4)

where V2({ = V,;(V;().
Let k be a fixed positive constant, with —&* < sup (Y (¢),Y(q)), and Uy be

M
the open set:

Ui ={qe M:(Y(q),Y(q)) +k* > 0}. (2.5)

Since Y is Killing, the quantity (Y,Y") is constant along the integral lines of Y,

hence U}, is invariant with respect to the flow of Y.
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We will denote by p a fixed event of Uy, and by v : IR — Uy a given integral
line of Y which does not pass through p. We introduce the space

08 =02 (U)={o € H*([0,1],U) : 0(0)=p, o(1) € 7(R)}. (2.6)

) —
Py~ TPy

Tt is well known that Q¢

Py

2
P,y

is a smooth submanifold of H?([0,1], U); for ¢ € Q2

py?

L= D

the tangent space T, is given by:

7,00, = {¢ e T,H*([0,1],U) : ¢(0) = 0, ((1) € R-Y(o(1)},  (2.7)
which is a Hilbert space with respect to the inner product:

(€, )y = /01 (<Vé§7vé§>(R) + <V§§7V§§>(R)) de. (2.8)

Observe that the inner products (-,-), and (-,-), of formulas (2.4) and (2.8) are
equivalent in 7,00 .

Finally, for all positive constant k& € IR*, we introduce the space BY) (k) by:

(6,Y) = —kT, and (5,6) = —T2}. (2.9)

The space B[’ (k) has the structure of an infinite dimensional smooth Hilbert

manifold:

Proposition 2.1. B’ (k) is a smooth submanifold of Q). For o € B (k),
the tangent space T,B() (k) can be identified with the Hilbert space:

1,82 (k) = {¢ € 7,08, : 3 C¢ € IR such that

(VaG,¥) = (G Vs¥) = Cc and (Vs¢,6) = 25}, (2.10)

endowed with the inner product (-,-), of formula (2.8).

3. The Travel Time Brachistochrones

We consider the action functional F' on Q©) | given by:

pyY?

F(o) = %/01 (6,6) di. (3.1)
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It is well known that F' is smooth; for o € Q) and V € T,Q0) | the Gateaux
derivative dF'(o)[V] is given by:

1
dF(0)[V] = / (Vs V, &) dt. (3.2)
0
If o € By (k), then from (3.1) we obtain immediately:
Lo
Flo) =~ 1% (33)

hence, in B{?) (k) the travel time functional T', given by T(c) = T,, has the

T(0) = /-2 F(0). (3.4)

In particular, from (3.3) and (3.4), one can write the travel time in an integral

following form:

form, so it is possible to study its critical points using the Euler—Lagrange
formalism (see Ref. [7]).
We have the following:

Proposition 3.1. The travel time functional T on BY) (k) is smooth on BY) (k).
For ¢ € T,BP) (k), the Gateaux derivative dT'(o)[(] is given by:

G

AT(0)l) =

(3.5)

After setting up our variational framework, we are ready to give the following

definition:

Definition 3.2. A travel time brachistochrone of energy k between p and ~
is a stationary point for the travel time functional T on BJ) (k). A travel time
brachistochrone curve o is said to be minimal if o is a minimum point for T
on B (k). From Proposition 3.1 it follows easily that a curve o € B (k) is
a travel time brachistochrone if and only if, for every ¢ € T,B{) (k) it is C; = 0.

Since T' is strictly positive on B’) (k), then its critical points coincide with

the critical points in B (k) of the restriction of the action functional F' = — 1T
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The minimal brachistochrones of energy k are mazimum points of F' on B{?) (k).

Figure 5 shows a picture of the spatial part of the travel time brachis-
tochrones in the exterior Schwarzschild’s spacetime, with metric given in spher-
ical coordinates by g = (1 — %)_1 dr? 4 r?(sin® 0 d¢* + d6?) — (1 — %) dt?.

In the equatorial plane § = 7 they are determined by two constants of

motion: ‘
(1 o %)—17;2 -|-7“2952 B
(1—2My-1 1

r

1

and
2

! =

2
-2 -1

Substituting u = %, using the constants of motion we see that the travel time
brachistochrones in the exterior Schwarzschild spacetime are solutions to the

hyperelliptic integral:

B +/udu
V1 —u \/4M2€‘2(1 —u) — u

d¢

We now give a different description of the travel time brachistochrone curves,
as curves that minimize locally their travel time.

If ¢ is any point in Uy, we denote by 7, the maximal integral line of YV
through ¢q. Moreover, if [ = [a,b] C [0,1] is any interval, and if ¢, g, are any
two points in U, we define Br(fl)w@ (k,I) as the space of curves 7 € H*(I,Uy)
such that 7(a) = q1, 7(b) € 7y, (IR), and satisfying (7,Y) = —k T,, (7,7) = —T?
for some T, € IRT.

Observe that if o € B (k), then, for every I = [a,b] C [0, 1], the restriction
k,T).

. . (2)
of o to I is a curve in Bg(a)%(b)(

Definition 3.3. A curve o € B’ (k) is said to be a local minimizer for the
travel time if, for all 0 < a < b < 1 such that b — a is sufficiently small, the

restriction of o to the interval I = [a,b] is a minimum point for the travel lime
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I

Figure 5: Travel time brachistochrones of energy & = 1 in Schwarzschild’s spacetime
issuing from a point at infinity (see Ref. [18]). They all return to infinity after passing
through a point of minimal distance from the center; for large values of the constant
of motion 2 the travel time brachistochrones remain in the region r > 2M and differ
little from the classical brachistochrones in Kepler’s potential (Fig. ?7).

functional in the space Bf()a)%(b)(k, I)

As in the classical case, the travel time brachistochrone problem can be

reduced to a geodesic problem with respect to a suitable Riemannian structure.

We denote by A the smooth distribution on M given by the orthocomple-
ment of the vector field Y. Observe that, since YV is timelike, A is spacelike,

i.e., the restriction of the Lorentzian metric g on A is positive definite.

Let ¢ : M x IR — M be the flow of Y, i.e., for g € M and t € IR, ¢(q,t)is
the value v,(t), where v, is the maximal integral line of Y satisfying ~,(0) = ¢.
Since Y is Killing, ¢ (-, 1) is a local isometry for all ¢ € IR; moreover, it is easy
to see that the distribution A is ¢-invariant, which means that ¢,(q,%0)(4,) =
Ay(q,t0)s Where ¥5(q,19) denotes the differential of the map (-, o) at the point
g. A function ¢ : M —— IR is said to be Y-invariant if it is constant along each

flow line of Y7 if ¢ is C'', this amounts to saying that (Y, V) = 0.

We define Q°) (A) to be the subset of Q) consisting of curves whose tangent
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vector at each point lies in A:

02 (A) = {w e QP 1 1i(t) € Ay, Y€ [0,1]}. (3.6)

Py

Using the language of sub-Riemannian geometry, we will call horizontal the
curves in Q17 . By the same arguments of Proposition 2.1, one checks immedi-
ately that QF) (A) is a smooth submanifold of Q) and that, for w € Q. (A),
the tangent space T,,Q%. (A) is given by:

T,00(A) = {V e TP, : (V,V,Y) = (V,V,Y) = 0}. (3.7)

We single out the following simple fact:

Lemma 3.4. Let ¢ be a smooth Y -invariant positive function. Then, the

functional

2/ (w, w) (R) dt (3.8)

on Q) and ils restriction to QF) (A) have the same critical points. These
critical points are geodesics in M with respect to the Riemannian metric ¢ - gy
that join p and v and that are orthogonal to ~.

The functional Ey of (3.8) is called the energy functional relative to the
metric ¢ - gr. The critical points of Fy in Q) (or equivalently in Q) (A)) will
be called horizontal geodesics between p and v with respect to the Riemannian

metric ¢ - gg.

In order to state properly our variational principle, we introduce an operator
D that deforms curves in QO
Let D be the map:

into horizontal curves using the flow of Y.

Q\_/

defined by D(o) = w, where
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Using the Killing property of Y it is easily checked that D is well defined,
i.e., the maximal solution of (3.10) is defined on the entire interval [0, 1] and
the corresponding curve w given by (3.9) is horizontal. Moreover, the smooth
dependence on o of the solution 7, of (3.10) proves that D is a smooth map.

We have the following:

Proposition 3.5. The map D is smooth. For o € B (k) and ¢ € T,BY(k),
the Gateaux derivative dD(c)[(] is given by:

dD(0)[¢] = datp(o, o) [( + 7¢ - Y (o)], (3.11)

where d 1 denoles the partial derivative of 1 with respect to the first variable
and 7 : [0,1] — IR is the function:
tC(Y, Y)Y+ 2k T, (VYY)
()=~ [ ;
0 (Y,Y)
In particular, if o is a brachistochrone, then 7, takes the following form:

t Y.V
Te(t) = —2k Ta/ % dr
0 bl
Moreover, for all o € B, (k), the differential dD(o) : T, B

is injective.

dr. (3.12)

(2

Now everything is ready to state the following:

Proposition 3.6 (Variational Principle for Travel Time Brachistochrones). Let

o be a curve in B (k). The following are equivalent:

1. o is a brachistochrone of energy k between p and ~;
2. o is a local minimizer for the travel time;

3. w = D(o) is a horizontal geodesic between p and v with respect to the
Riemannian melric ¢y, - gr, where gy is the Riemannian metric defined in
(??), and ¢y is given by:

YY)

LT (3.14)

b =
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Moreover, if one of the conditions above is salisfied, then Ey, (w) = T2, where

)
Ey, is the energy functional relative to the melric ¢y, - gg.

Observe that the result of Lemma 3.4 applies to the function ¢;; Proposition

3.6 is easily proven using the following equality:
F'=—FE4 oD inBY (k). (3.15)

As a Corollary of the variational principle, we obtain the following charac-

terization of the travel time brachistochrones:

Proposition 3.7. A curve o € QF) is a travel time brachistochrone of energy

k between p and ~ if and only if o is smooth and there exists a T, > 0 such that

o satisfies the following second order differential equation:

VY, Y) 2% T
C-r . 2k2 < g 9 . g O_Y
Voo A ey Sty VT
—2kT, (Vo1 V) Y =0. (3.16)

(YY) (E24+(Y,Y))

with initial velocity 6(0) satisfying:

(5(0),5(0)) = —T2%,  and {(5(0),Y(p)) = —k T (3.17)

4. The Arrival Time Brachistochrones

We now discuss a different variational problem in B{?) (), whose solution curves
are the arrival time brachistochrones. To this aim, we will now assume that

(M, g) satisfies the strong causality axiom:
o there exists no closed, or almost closed, causal curve in M.

The axiom above is very natural in General Relativity; its physical interpreta-
tion is that objects (massive or massless) traveling at a speed less than or equal
to the speed of light will never come close to themselves at an earlier stage of

their life.
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Then, it is not difficult to prove that v is an embedded curve in M. We
define the following functional 7: Q) +— IR:

(o) =57 (o(1)). (4.1)

The functional 7 is interpreted as the time measured by the observer v at the

arrival event of o. The following result is proven:

Proposition 4.1. The functional 7 is smooth on Q2. , hence its restriction AT

Py’
to BP) (k) is also smooth. For all o € QF) and all ( € T,QF), the Gateaux

)
v Pyy’

derivative dr(0o)[(] is given by:

(C(1),Y(o(1)))
(Y(a(1)),Y(a(1))) (4.2)

Observe that the value of the functional 7(¢) is independent of the param-

dr(o)[¢] =

eterization of the curve o; also the spaces Q) and QF) (A) are invariant under
reparameterization, while the space B{) (k) is not. In particular, it follows im-
mediately from Proposition 4.1 that if w is a critical point of 7 in the space Q)
or in QF) (A), then any reparameterization w of w is still a critical point of 7
in the same space as w.

We are ready to give the following definition:

Definition 4.2. An arrival time brachistochrone of energy k between p and v
is a stationary point for the arrival time functional AT on BY) (k). An arrival
time brachistochrone curve o is said to be minimal if o is a minimum point
for AT on BP) (k). Again, from Proposition 4.1 il follows immediately that
a curve o € BP) (k) is an arrival time brachistochrone if and only if, for all

¢ € T,BO(k), it is (1) = 0.

Figure 6 shows a picture of the spatial part of the arrival time brachis-
tochrones issuing from a point at infinity in Schwarzschild’s spacetime. For
r > 2M sufficiently large, both the travel time and the arrival time brachis-
tochrones differ little from the Newtonian brachistochrones in Kepler’s poten-

tial.
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Figure 6: Arrival time brachistochrones of energy & = 1 issuing from a point at

infinity in Schwarzschild’s spacetime (see Ref. [18]). They cover the region r > 2M

completely; for (2 > (3 = 402 they return to r = oo, for £ = (% they approach

27
the sphere at r = % asymptotically spiraling on and on forever, for 2 < /3 they

terminate at r = 2M.

From the viewpoint of Calculus of Variations, the arrival time brachis-
tochrone problem is much more delicate than the travel time time brachis-

tochrone problem, mainly due to the following reasons:

e the functional AT is not given by an integral, i.e., it cannot be expressed

in terms of a Lagrangian function £ as in the case of the travel time

functional (see formulas (3.1), (3.3) and (3.4));

e there exists no natural notion of local minimization for AT (although one
could use the arrival time with respect to other integral lines of Y for a

localization of the problem);

e the functional AT is invariant under reparameterization, yielding a lack
of good compactness properties of AT, as well as the regularity and dis-

creteness of its critical points and the finiteness of their Morse index.

In order to state our variational principle for the arrival time geodesics with
fixed energy value k, we define the following functional 7, on Q) (A):

() = 7(w) — k/ol —W al, (4.3)

Tk(
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where ¢, is given by (??). It is easily seen that 7 is smooth on Q&)
b

(A)
(A)

2

1
Py ?

moreover, it is invariant under reparameterization, as well as the space )

and a quick computation shows that:
7o D= AT (4.4)

on B® (k), where D is the deformation map defined by (3.9).

Py
We prove the following variational principle:

Proposition 4.3 (Variational Principle for Arrival Time Brachistochrones). If
o € B (k) is an arrival time brachistochrone of energy k between p and v, then
there exists a unique reparameterization w of w = D(c) which is a eritical point
for the functional Ty, in QF) (A).

Conversely, if w is a critical point of Ty in Q) (A) and 1 is the unique repa-
rameterization of w such that the quantity ¢p(W){(@W', ') is constant, then there
exists a unique arrival time brachistochrone o € B (k) such that D(o) = .

Moreover, w is a minimal point for 7y if and only if o is minimal for AT.

Proposition 4.3 allows to prove the regularity and to give the following dif-

ferential characterizations of the arrival time brachistochrones:

Proposition 4.4. Lel 0 € BY) (k) be fived and z be the unique affine repa-
rameterizalion of o defined on the interval [0,T,]. Then, o is an arrival lime
brachistochrone of energy k between p and v if and only if z is a smooth curve

satisfying the second order differential equation:

o2 2 (V.Y,Y) .
Vii— oV — = VDT sy =), 4.5
Tk PRy Y (4:5)

with initial tangent vector Z(0) salisfying:

(3(0),2(0)) = —1, and (2(0),Y(2(0)) = —k. (4.6)
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5. Some Existence Results

As it is natural to expect, in order to obtain existence results for brachis-
tochrones, one needs to assume the completeness of M with respect to some
Riemannian structure.

The following two theorems are proven in [5] in the case of travel time
brachistochrones, using techniques of Critical Point Theory and Global Analysis
on Manifolds. The case of arrival time brachistochrones is proven in [6], under

the assumption of causality for (M, g).

Theorem 5.1. Let M be a stationary Lorentzian manifold, Y a timelike Killing
vector field on M and k € IR a fized real constant.

Suppose that Y is complete, k?* is a regqular value for the function —(Y,Y),
and assume that Y is bounded from below in Uy, i.e., there exists a positive

constant v > 0 such that:
—(Y(q),Y(q)>v >0, VgqelU. (5.1)

Let p be a point in Uy, and v a maximal integral line of Y inside Uy.
Then, if Uy = Uy |JOUy is complete with respect to the Riemannian metric
gn, there exists at least one travel time brachistochrone o® and at least one

arrival time brachistochrone o\® of energy k joining p and ~ in Uy,.

Under the extra assumption that the closed set U}, be non contractible, we

also have the following multiplicity result for brachistochrones of fixed energy:

Theorem 5.2. Under the hypotheses of Theorem 5.1, if Uy is not contractible,
then there exists a sequence {o0}, e of travel time brachistochrones and a
sequence {0} e of arrival time brachistochrones of energy k belween p and

~ such that:
lim T ) = lim AT (o a)) = +oo. (5.2)

n—oo n n—00 n

Theorem 5.2 is the analogue of Serre’s Theorem (see [21]) concerning the
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multiplicity of geodesics joining two fixed points in a non contractible Rieman-

nian manifold.

6. The Second Variation of the Travel Time. Morse The-
ory for the Travel Time Brachistochrones

In order to investigate whether a given stationary point o in B{?) (k) for the travel
time functional is a local minimum, maximum, or a saddle point, one needs a
second order variational formula. In this section we present briefly some results
from [7] concerning the second variation of the travel time functional at a given
arrival time brachistochrone.

Let M be a Banach manifold and f : M —— IR be a smooth map. If
o € M is a critical point for f, i.e., df(xo) = 0, then it makes sense to define
the Hessian of f at xq, denoted by HY(z,), which is a continuous symmetric
bilinear form on 7,, M, in the following way.

Choose a coordinate system around zg, ¢ : U C M —— Uy C F, where E is

some Banach space. Define:

HY (o) [v, w] = d*(f 0 67")(¢(x0))[dg(x0)[v], d (o) 0], (6.1)

for v,w € T,;M. Using the fact that z¢ is critical for f, it is easy to see that
this definition will not depend on the chart (U, ¢). Indeed, is is easily seen that
for every smooth curve s — y; € M such that yo = z¢ and yj, = v € T, M, it

&2((y.))
ds?

Formula (6.2) provides a simple way of computing H/(zo)[v,v]; the general

im0 = H (20)[v, 0], (6.2)

formula for HY(xq)[v,w] is easily obtained by polarization. If M is finite di-
mensional and it is endowed with a semi—Riemannian metric g, then one defines
the Hessian H”(m) of a C*function f : M — IR at any point m € M as the
symmetric bilinear form on T, M given by HY(m)[vi,vq] = g(V,, V[, v2), where
vy,v9 € T,, M, V is the Levi-Civita connection of g and V f is the gradient of
f with respect to g.
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It is easy to prove the following:

Proposition 6.1. Let M and N be Banach manifolds and D : M —— N be
a smooth map; let f : N —— IR be a smooth function. If xro € M is such
that D(zg) a critical point for f, then xy is a critical point for f o D, and the
Hessians H!(D(z0)) and H°P(z¢) are related by:

HY(D(0))[dD(xo)[v], dD(o)[w]] = H'*P (x0)[v, ], (6.3)

for allv,w e T, M.

Observe that, from (3.3) and (6.2) we obtain easily:
HY (o) = ~T, - H"(0) (6.4)

for all brachistochrone o € B (k), where T' is the travel time and F is the
Lorentzian action functional defined in (3.1). In particular, using Proposition
3.6, we obtain immediately the following second order variational principle for

the travel time brachistochrones:

Proposition 6.2. Let o € BY) (k) be a brachistochrone and w = D(o). Then,
for all ¢y, € T,BE) (k):

H"(0)[G1, ¢2] = — H" (w)[dD(w)[¢:], dD(w)][¢2]] (6.5)

On the other hand, the Hessian H"# of the energy functional of the Rie-
mannian metric ¢ - gr in the space Q) (A) is computed directly in the next
Proposition.

We recall that, given a non degenerate submanifold ¥ of M, i.e., a sub-
manifold of M such that for each m € ¥ the restriction of g to T,,% is non
degenerate, and given any orthogonal vector n € T,, X%, the second fundamental
form ST of ¥ at m in the direction of n is the symmetric bilinear form on 7,3
given by:

S (v1,v2) = (Vo Vo, ),
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where V5 is any vector field on ¥ that extends v,.
Let’s assume that the timelike curve 4 has no self intersection, which in

particular implies that v(/R) is a non degenerate submanifold of M.

Proposition 6.3. Let w € QF) (A) be a horizontal geodesic between p and ~
with respect to the Riemannian metric ¢i - gn. Then, the Hessian HP (w) is

given by the following symmetric bilinear map on T,,Q%) (A):

P (w)[V,V] = [ L u(w) [(VaV, VoV + (R(V, ) V, )] dt +

+/ 2V (w ><vmv,w>+%<H¢k(w)v,v><w,w>} dt+  (6.6)
+o(w(1)) - S (V(1), V(1)),

where YV ¢y, and H? are the gradient and the Hessian of ¢y with respect to the
Lorentzian metric g of M and 53(1) is the second fundamental form of v in the

direction of the normal vector w(1), with respect to g.

We recall the definition of the Morse index at a critical point of a C*-functional:

Proposition 6.3. Let M be a Hilbert manifold, [ : M —— IR be a map of class
C? and xo a critical point for f in M. The Morse index p(zo) is the dimen-

sion of a mazimal subspace of T,,M on which the Hessian H’(xq) is negative

definite.

Roughly speaking, the Morse Index u” (o) of the travel time T at a brachis-
tochrone o gives the number of essentially different directions in which the
curve o can be deformed to obtain a curve of shorter travel time.

A travel time brachistochrone ¢ is a local minimum for 7' if and only if
1T (o) = 0; moreover, if o is a local maximum, it is necessarily u” (o) = +oc.

Observe that, from (3.15) and (6.4), since the differential dD(co) is injective

(see Proposition 3.5), we obtain immediately:

p' (o) < u"(D(a)), (6.7)
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for all brachistochrone o € B (k).
It is well known that the Morse index of a Riemannian geodesic is finite (see

[14]), hence formula (6.7) gives us immediately the following:

Corollary 6.5. Let o € BY) (k) be a brachistochrone. Then, the Morse index
uT (o) is finite. In particular, o is never a local mazimum for the travel time

functional T.

Studying the Morse index of the bilinear form (6.6) by direct computation
can be quite a challenging task. However, in the papers [1, 3, 11] it is presented
a Morse Index Theorem for geodesics between submanifolds of a Riemannian
manifold that relates the Morse index of a Riemannian action functional at a
given geodesic with some geometrical properties of the geodesic. We recall here
the main facts of the Theory.

Given a horizontal geodesic w in between p and v with respect to the Rie-
mannian metric ¢; - gr, let VI and R} denote respectively the Levi-Civita
connection and the curvature tensor of the metric ¢y - g, and let 7t} be the
finite dimensional vector space of all the Jacobi fields .J along w with respect
to ¢k - gr, 1.€., all smooth vector fields satisfying the second order differential
equation:

VIRV g 4 R b, J) i = 0. (6.8)

Moreover, let J}(5, 1) be the subspace of J} consisting of all Jacobi fields
J along w satisfying:

Lo J() [ Y (w(1));
2. J(to) = 0;
3. <V@(1)J, Y) + Sl(l)(J(l),Y) = 0.

A point w(ly) along w is said to be a y-focal point if dim(J ¥} (1)) > 0; the
mulliplicity of the a v-focal point w(ly) is the dimension of J ().



TIME MINIMIZING TRAJECTORIES IN LORENTZIAN GEOMETRY 219

w(to)

Figure 7: a v-focal point along w

Equation (??) is obtained by linearizing the geodesic equation in the metric
ok gr; hence, 1t is satisfied by vector fields along w that correspond to variations
of w consisting of geodesics. Loosely speaking, the arrow-head of J traces out
infinitesimally close neighboring geodesics to w (see Figure 7).

The condition 1 means that, in a first order approximation, these geodesics
arrive on 7; condition 2 means that they pass through w(ty). Condition 3 means
that these geodesics arrive orthogonally at +; observe that orthogonality to the
vector field Y is equivalent in the three metrics g, gr and ¢ - gr, and for this
reason it is possible to write this condition using the Lorentzian Levi-Civita
connection V and the Lorentzian second fundamental form S of ~.

The Morse Index Theorem says that, if p is not a y-focal point along w, the
Morse index ("¢ (w) of Ey, in the space T.,Q0) (or, equivalently, in T,,Q0) (A))

is given by the number of y-focal points along w, counted with multiplicity.

Thus, we have the following:

Proposition 6.6. Let o € BY) (k) be a brachistochrone and w = D(c). Suppose

that there are no y-focal points along w. Then, o is a local minimum for the
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arrival time functional T'.

Details and further results concerning the Morse theory for the travel time

brachistochrones are found in [7].
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