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Abstract

In this work we study the equations of the mechanics of magneto-
micropolar fluids in a time-dependent domain. By using the spectral
Galerkin method together with the energy method and compactness ar-
guments, we prove the existence of weak solutions.

Resumo

Neste trabalho estudamos as equacoes da mecdnica de fluidos magneto-
micropolar em um dominio dependendo do tempo. Usando o método de
Galerkin espectral junto com o método de energia e argumentos de com-
pacidade, provamos a existéncia de solucoes fracas.

1. Introduction

The domain occupied by the fluid at time ¢t € (0,7), 0 < T' < oo, is denoted
by @, C R%. Weset Q@ = |J Q x{t} CR®>x(0,T). whose lateral bound-

o<t<T
ary is 0Q = Ugcrer 0% x {t}. Let u(z,t) € R w(z,t) € R%b(z,t) € R?

and p(z,t) € R, denotes for (z,1) € Q, respectively, the unknown velocity, the
microrotational velocity, the magnetic field and the hydrostatic pressure of the

fluid. Then, the governing equations are
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1
(2_1; +u.Vu— (g + x)Au+ V(p + 57"5-5) = xrot w+rb.Vb+ f
j%_zv+ju.Vw—7Aw+2Xw—(a+ﬂ)v divw = xrot utg (1.1)
% —vAb+u.Vb—-bNVu=0

divu= divb=0 in Q.

together with suitable boundary and initial conditions.

In this paper we will consider the problem of existence of weak solutions for
that problem (1.1) in a time-dependent domain of R® x (0,7"),0 < T' < oo.

To (1.1) we append the following boundary and initial conditions:

u(z,t) = w(x,t) =b(z,t)=0, V(z,t)€ IQ, (1.2)

u(0) =ug, w(0)=we and b(0)=1by, Vaz €& Q. (1.3)

where ug,wo and by are given functions. In (1.1), the differential operator
V., A, div and rot are the usual gradient, Laplace, divergence and curl opera-
tors, respectively. The constants p, x,r, a, 3,7, 7 and v are constants associated
to properties of the material. From physical reasons, these constants satisfy
min{y, x,r, j,v,a+ G +~v} > 0; f(z,t) and g(x,t) are given external fields.

For the derivation and physical discussion of equations (1.1) - (1.3) see Con-
diff and Dalher [3], Eringen [5], [6], Ahmadi and Shanbinpoor [1], for instance.
Equations (1.1) (i) has the familiar form of the Navier-Stokes, equations but is
coupled with equation (1.1) (ii), which essentially describes the motion inside
the macrovolumes as they undergo microrotational effects represented by the
microrotational velocity vector w. For fluids with no microstructure this pa-
rameter vanishes. For Newtonian fluids, equation (1.1) (i) e (1.1) (ii) decouple
since x = 0.

It is appropriate to cite some earlier works on the initial - value problem
(1.1) - (1.3) which are related to ours and also locate our contribution therein.

In cylindrical domain and when the magnetic field is absent (b = 0), the reduced
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problem was studied by Lukaszewicz [11], [12]. Lukaszewicz [11] stablished the
global existence of weak solutions for (1.1) - (1.3) under certain assumptions
by using linearization and an almost fixed point theorem. In the same case,
by using the same technique, Lukaszewicz [12] also proved the local and global
existence, as well as the uniqueness of strong solutions. Again when b = 0,
Galdi and Rionero [8] stablished results similar to the ones of Lukaszewicz [12].

The full systems (1.1)-(1.3) in the cylindrical case, was studied by Galdi
and Rionero [8] and they stated without proofs of existence and uniqueness of
strong solutions. Rojas-Medar [19], Ortega-Torres and Rojas-Medar [17], [18],
and Rojas-Medar and Boldrini [21], also studied the system (1.1)-(1.3) and
stablished the existence and uniqueness of local strong solutions, global strong
solutions, and existence and uniqueness of weak solutions, respectively, by using
the spectral Galerkin method, reaching the same level of knowledge as in the
case of the classical Navier-Stokes equations.

It has to be pointed out that similar time-dependent problems but for the
Navier-Stokes equations have been studied by many different authors. This is
the case, for instance, of the works by, J.L. Lions [9] (see also this book of
J.L. Lions [10]), H. Fujita and N. Sauer [7], H. Morimoto [16], R. Salvi [22].
In particular, we would like to emphasize that the arguments in J.I.. Lions
[9], [10], requires £, to be nondecreasing with respect to ¢ (see problem 11.9,
p. 426 of this book). Our paper, other that generalize these previous works
in the sense that problem (1.1)-(1.3) includes the microrotational velocity and
magnetic field, does not assume this nondecreasing condition on 2;.

This paper is organized as follows. After this brief introduction, in section
2, we introduce various functions spaces. Next, in section 3, we state the main

theorem of existence of the weak solutions.

2. Function Spaces and Preliminaries

The functions in this paper are either R or R*-valued and we will not distinguish

these two situations in our notations. To which case we refer to will be clear
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from the context. We denote || - ||z2 by |- |.

Now, we give the precise definition of the time-dependent space domain @)
where our initial boundary-value problems associated to the problem (1.1)-(1.3)
has been formulated.

Let T'> 0, we consider the function R : [0, 7] — R?, that is, R(¢) isa 3 x3
matrix. Let € be an open bounded set of R? which, without loss of generality,
can be considered containing the origin of R,

We suppose that the boundary 99 of € is smooth. We consider the sets
Y ={z =yR(t);y € Q}, 0t <T. (2.1)

It is worth noting that such domains Q;, 0 <t < T', generate a non-cylindrical
time-dependent domain of R®x R, @ = Upcser Q2 x {t} whose lateral boundary
0Q = |J 99:x{t} issupposed regular.

o<t<T
We make the following hypothesis on R(t) : R(t) = o(t) M, where o :

0, 7] — R, o € C'([0,T]), o(t) > 0, M is a 3x3 matrix whose entries are
real constant and that there exist its inverse.

The main goal in this paper is to show existence of weak solutions for the
initial value problem (1.1)-(1.3). Our strategy for setting this question con-
sists of transforming problem (1.1)-(1.3) into another initial-value problem in
a cylindrical domain whose sections are not time-dependent. This is done by
means of a suitable change of variable. Next, this new initial value problem
is tretated using Galerkin’s approximation and the Aubin-Lions Lemma. We
conclude returning to ) using the inverse of the above change of variable.

Sets of type (2.1) where R(t) = o(t) I, I identity n x n-matrix, and € is
the unit ball of R™ were considered by R. Del Passo and M. Ughi [4] to study a
certain class of parabolic equations in noncylindrical domains.

Also, L. A. Medeiros and M. Milla-Miranda [13], [14] used the sets of type
(2.1) where R(t) = o(t) I, and ©Q is a bounded open set of R”, with regular
boundary 99 and 0 € © and mino(t) > 0, to study exact controllability for

Schrondinger equation in non-cylindrical domains.
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C. Conca and Rojas-Medar [2] use the analogous domain that [4] to study
the Boussinesq problem; M.A. Rojas-Medar and R. Beltran-Barrios [20] for the
magnetohydrodynamic type equations. The formulation of the general class
of domains considered in this paper was given by M. Milla-Miranda and J.
Limaco-Ferrel [15] to study the classical Navier-Stokes equations.

In order to state the main result we introduce some spaces, following the
notation of [15], let I/, be the space V; = {¢ € (C())*/dive = 0}
and V;(Q;) be the closure of V/; in the space (H*(%))*, s € R;. We use the
particular notation Vi(Q;) = V() and Vo() = H(Q).

The inner product of V() and H(£2;) are

(9u2 Z‘ )

3
o= 3 [ 2t al,] iz, (o), = > [, wilopte)da

7,7=1

We observe that V() — (Hy(£))? continuously for s > % and

V() = {ue (Hy(9))?/divu =0}

We introduce in similar way the spaces V;(€), in this case I/ has the form

v ={¢ € (C5°(Q))° / div(yM~") = 0}.

We put Vi(Q) =V, V45(2) = H and
(v,v)g = (u,v)rz, (u,v)y = ((u,v))2 = (Vu, Vo)re.

Also, H=*(2) and (V;(€))* will denote the topological dual of H*(2) and V;(2)
respectively.

In continuation, we will define the notion of weak solutions for the problem

(1.1)-(1.3).

Definition. Let ug, bg € H({g) and wo € L*(Q). We say that (u,w,b) is a
weak solution of problem (1.1)-(1.3), if and only if u, b € L*(0,7;V (%)) N
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L=(0,T; H()), we L*(0,T; H Q) ) N L>2(0,T; L*(9Q;) ), satisfying:

—/OT(u,apt)tdt—l— (,u—|—X)/OT(\7u,ch)tdt—I—/OT(u.Vu,cp)tdt
—r/OT(b.Vb,cp)tdt e /OT(rot w,ap)tdt—l—/OT(f,cp)tdt

i [ w44 [ (T Voydt + [ (5w gyt + 2 [ (w, 0y
+a+B) /0 " (div w, div é)dt = y /0 " (ot u, d)udt + /0 Y (g, Bt

T T T T

—/ (b, ;/;t)tdt—l—u/ (Vb,V;/;)tdt+/ (u.Vb,;b)tdt—/ (b.Vu, b )edt = 0
0 Jo 0 0

Y, ¢, v € CHQ) with compact support C Q, divep = divy =0,

u(0) = ug, w(0) = wp, b(0) = by.

Remark. As it usual, the above regularity condition is enough to guarantee

that the initial conditions has a meaning.

Our result is

Theorem 1. Under the above hypotheses on Q. If ug,byp € H(Qo), wo €
L*(Q), and f,g € L*(0,T; L*(Q)), then there exists a weak solution (u,w,b)
of (1.1)-(1.3). Therefore,

u,b € Cw([0,T]; H(€)) 0 C([0,TT; (Vayo(£4:))7) (2.2)
and w € Cy([0,T); L* (%)) N C([0, T); H=*/*()). (2.3)

Remark 1. In the proof of Theorem 1, the norm of a matrix will be denote by

|| - ||, since in finite-dimensional spaces all the norms are equivalent.

Also, €' will be denote a generic positive constant that only depend up €,
of fixed pararmeters p,x, . vir,7.a, 8 and max (IR R, 1R (O]}
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3. Proof of Theorem 1

Let us introduce the transformation ® : Q — U, given by ®(z,¢) = (xR~ (1), 1),

where U = Q x (0,7). Since o(t) is a C'-function, the transformation ® is a

C''-diffeomorphism and its inverse ®~! : U — @ satisfies ®~(y,t) = (yR(1),1).
We also define

v(y,t) = u(yR(1),1), z(y,t) =w(yR(t),t), h(y,t)=>byR(l),1),
FyR(t),t), ai(y,t) = g(yR(t),t). (3.1)

[Rw)
~~
=
o~
SN
I
~3
e
Ned
=
A~
o~
SN
o~
SN
=k
N
=
N
I

We denote R(t) = (0:;(t)), R7'(t) = (8;;(t)) and K(¢t) = (R™'(¢))". Also, since
R(t)R™'(t) = I we have

R(t) (R (1)) = —R'(t) R (1) (3.2)

Consequently, using (3.1)-(3.2), we get

u, = —yR'(¢ )R_l( ).Vou+ v, u.Vu=vR'(t).Vv

Au = Z " Z Bri(t)Bri(t) yl) Vp=VqK(t)

V(b.b) : V(h.h)K(t) Vdivw = Vdiv(z R (¢)) K (1)
rot w = ZS:VZZ'AZ'(t) onde A;(t) = K(t)Kii(—=1)K,,(—1)Ka,,,, with
a; = (_1)i + (4 + (2 — Z)(?’ — Z))’ v = (_1)i+1 4 (4 + (2 _Qi)(i — 1))

2

and K;;(—1), K,,(—1), K,,,, are elementary transformations of matrixes,

divu = div(vR™'(1)).

Therefore, the system (1.1)-(1.3) defined on @ is transformed on U into the

system:



266 E. ORTEGA-TORRES M. ROJAS-MEDAR

.0
(h+x) ) Ty 2 Z Bra(t)Bri(t) » ) +oR™N(t).Vo —yR ()R (1). Vv
4,l=1
+V(g+ fh.h)]((t) = fi+ rhR7 (1).Vh 4 X Y VA1), (3.3)
.0
Jze—y Z o Z Bri(t)Bri(t) ) + RN (1).Vz — jyR'()R™'(1).Vz
ii=1 9Yi k=
+2xz — (a + B)Vdiv(zR™'(¢))K () = g1 + XZVUiAi(t)a (3.4)
ht — UV Z aa Z /Bkl ﬁkz —h) - yR/(t)R_l(t).Vh —|— UR_l(t).Vh
ii=1 2Yi k=1 Ay
“hR(1).Vo = 0, (3.5)
div(vM™") = 0 and div(hM~') =0 in U, (3.6)
o(9,1) = =(,1) = h{y,1) = 0 on 09 x (0,7), (3.7)
v(y,0) = wvo(y), 2(y,0) = 20(y), h(y,0) = ho(y) in . (3.8)

The notion of weak solution for (3.3)-(3.8) is completely similar to the ones for
(1.1)-(1.3).

To prove the existence of solutions of the transformed system (3.3)-(3.8) we
will use the spectral Galerkin method. That is, we fix s = 3/2 and we consider
the Hilbert special basis {¢*(y)}2 of V,(Q) and {¢'(y)}2, of HE(Q), whose

elements we will choose as the solutions of the following spectral problems:

(S‘inv)s = /\i(g‘oiav)v Vove VS(Q)v (Qbivw)s = /\i(qblvw)? Vw e HS(Q)

Let V¥ be the subspace of V;(Q) spanned by {¢'(y),...,9"(y)} and H; be
the subspace of HE(Q) spanned by {&'(y),...,¢"(y)}, respectively. For every

k

kE > 1, we define approximations v*, 2* and h* of v,z and h respectively, by

means of the following finite expansions:
k ' ' k
=Y () (y), 2y 1) =D din(t)d'(y), Ry, 1) =" ewl(t)e'(y)
=1 ; i=1

for t € (0,7), where the coefficients (¢;x), (dix) and (e;x) will be calculated
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in such way that v*, 2% and A* solve the following approximations of system

(3.3)-(3.8):

(v, ) + (1 + )t v*, ) + bt 05,08, ) — &t 0%, ) = rb(t; b hF, )
U 9) 4 XX VA, 9), 39

(2, ) +valt; 25, 6) + (a + ﬁl)_(ldiv ("R (1)), div (R (1))

+5b(t; 0¥, ¥, 6) — j&(t; ¥, 6) + 2x(2", 6)

= (01,8) + X(X Vo A0, ), (3.10)
(i, ) + va(ts h*, ) — &(t; ;;,1 )+ b(ts 0", B5, ) = bt A8 0" ), (3.11)
Ve, veViandV ¢ e Hy,
v*(0) = v, 2F(0) = 25, h*(0) = hE, (3.12)

where v — vo, hE — hg in H(Q)) and 2§ — 2 in L?(Q) as k — oo and

503 ou; Ow;
at; u,w) = ) Bri(1))—L —2Ld
TR ;/Q%(;m (1) G Gy
~ 3 3 v
bta y Y - 7 t i—] d
(o) ;/ﬂi,zz::lﬁl( Ju oy

3 3
! du;
() = Y [ 3 o)ty wdy
=17 k=1

for vector-valued functions u, w, v for which the integrals are well defined.

We observe that the following identity was used
(V(g+ gh.h)K(t),ap) = —(q+ gh.h,div pR(1) =0, Ype VE

Equations (3.9)-(3.12) is a system of ordinary differential equations for the co-
efficients functions ¢;x(#),dx(t) and e;(t), which defines v*,z* and A* in an
interval [0,%;[. We will show some a priori estimates independent of k and
t, in order to take ¢, = T. Also, we will prove that (v*,2* h*)converges in

appropriate sense to a solution (u, z,h) of (3.3)(-(3.8).
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We prove the following lemma.

Lemma 1. The transformed system (3.3)-(3.8) admits at least one weak solu-
tion (v, z, h) satisfying the following:

v,h € L20,T;V(Q)) N L0, T; H(Q)),
z € L*(0,T; Hy(Q)) N L*=(0,T; L*(Q)).

Proof. Setting p = v*, ¢ = zF and ¥ = rh* in (3.9)-(3.11) and observing that

b(t;u,v,v) = 0, we have

1d .
L b IV = (o) + 0%, 08) 1t 4, 1, o)
3
+x(O_ Vi Ai(t), o),
i=1
Jd . . _
§%|zk|2 + 7|Vzk[& (if)|2 + 2)(|zk|2 + (o + ﬁ)|d1v(sz 1(t))|2 = (g1, zk)
3
+5é(t; 25 2F) + x> Vol Ai(t), 25),
=1
rd

570 |R*2 + rv|VREK (1) ]2 = ré(t; b5, h%) + TIN)(t; AT )

Adding the above equalities and observing that IN)(t; u,v,w) + ZN)(t; u,w,v) = 0,

we obtain

1d . . .
5%(|Uk|2 + 31 P 4 ) + () IVOPK ()P 4+ 4| V2R K (1)
+rv|VRPK (1) + 2x|2" [ + (a + §)|div(z" R (1))
= (fla vk) —I' (917 Zk) —I' E(ta vk7 vk) —I' ] E(t, Zka Zk) —I' r E(ta hk7 hk)
3 3
+X(Z szAi(t),vk) + )&(Z vaAi(t),zk). (3.13)

Now we will estimate the right-hand side of (3.13). By using the Holder and
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Young inequalities, we obtain

1 1
|(F o) < AN < SIAP + S0

1
(g1, 25)] < lonl] 2] < 4—X|91|2 + 2],

N IM—I_X . R/t QR—thRt 2
|C(t;vk,vk)| § . |Vvk[x(t)|2—|-(H ()H H ()H H ()H Hyllioo)|vk|27

P+ X
. v . FIR' DIPINREO|P||R()|? ,
|]c(t;zk72k)| S Z|VZk]X(t)|2 ‘|‘( H ( )H H 7( )H H ( )H Hyl‘%oo)]|zk|27
. rv i ROIP| RO R

3 2
(X VA, o8] < SIVR (P + ot
=1 v

ok k N‘|‘X k X k
X VuiA(t), 2")] < VoK ()] + (——)j|2"|%,
| (; (1), )] < ——| OF + G o

whence, we arrive to the inequality
d . . -
4GP PSP + (4 )V K (O + 9|V K (1))
+rv|VREK (1)) + 2(a + B)|div(zFR™' (1)) 2

< CUAP +1g:") + CW* P + 41 + r[h* ), (3.14)

where C' is a positive constant that depends only of x,u,~,7, max ||R'(¢)],

0<t<T
max [1B (O], max RN e llyllz-

By integrating (3.14) from 0 to ¢, with 0 <¢ < T', we conclude

(0 OF + F1H0F + PP + (4 ) [ 1904()K (5)ds
y /Ot V2 () K (s)*ds + ro /Ot VRE(s) K (s)|2ds
<O [UREP +1an()P s +C [ (WO + 1) +rlhk(s))ds

+H* () + j[*(0)[* + r[R*(0) .

Due to the choice of v§, 25 and A, there exists C; independent of k such that
|’U0| < 02|’U0| |Z§| < 02|ZO| and |hk| < Cg|h0|
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Then, since fi, g € L2(0,T; L2()), result
(0 OF + 1M P + rHOP) + (-4 0) [ 1904(5)K (5)ds
+7 /Ot IV2*(s)K (s)]*ds + rv /Ot IVRF(s)K (s)|*ds
<O+ C [ (PO + 6P + ol (s) )
By using Gronwall’s inequality, we have
(0 OF + G150 F + 0P + (4 0) [ 1904 (5)K (5)Pds
+y /Ot V25 (s) K (s)|2ds + rv /Ot VR () (s)[2ds < O
Thus for all k, we have that v*, 2% and h* exist globally in £. Now, we put N =

1
[nax, ||R(t)]|, then we observe that W|Vvk|2 < O |VoF|? < VR K (1)]?,

¢
whence / |VvF(s)|?ds < N?*C. Moreover,
0

(v"), (h¥) are bounded in L*(0,7; H(Q)) N L*(0,T; V()
and (%) is bounded in L*®(0,T; L*(Q)) N L*(0,T; H}()). (3.15)

The next step of the proof consists of proving that (vF),(h¥) are bounded in
L*(0,7T;(Va2(Q))*) and that (zf) is bounded in L*(0, T} H32(Q)).
We consider P, : H(Q) — V* and Ry, : L*(Q) — Hy, defined by

k k

Pru = Z(u,c,oi)cpi and Ryw =) (w, ¢’

=1 i=1
Since V,(Q) — H(Q) and HE — L*(Q); VF — V() and Hy < H(N) we
can consider Py : Vi(Q) — V4(Q) and Ry @ H{(Y) — H{(Q). Tt is easily
to see that P, € L(Vi(R),V5()) and Ry € L(HZ(Q), H5(Q))(L(X,Y) denote
the space of the bounded operators of X into Y), hence F; : (V5())* —
(Vs(2))* and Ry : H*°(Q) — H~*(Q), defined by (P (v),w) = (v, P(w))
lies in L((V5(Q))*, (V5(Q))*) and ||PF|| < || Pe]| < 1. Analogously, for R;. We
also observe that the autofunctions ¢’ and ¢' are invariants by P, and Ry,

respectively.
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From it and (3.9)-(3.11) Vw, n € V* and V¢ € Hy, we have

" kp—1 k
Z le )/sz(t)—)) — v R (t).Vv
k=1 ayl

3
(vF,w) = (Pr((p+ x)( Z

3
+yR (R (1).Vor + fi + "RV (1).VEF + x Y VA (1)), w),

=1

°. 0 az
35,6 = (Ri(y( > Zﬁk; (1) Bri(t j)) — PR (1). V2

7,l=1 8 Yi k=1
+iyR () R™'(1).VZF —2x2" + (a4 B)Vdiv(zF R (1)) K(1)
3
o1+ x Y VuFAi(1)),€),
=1
a Oh*

90, (k; Bu(®)Bui(t) ) + yR(1)R7(1). VA
)

Hence, by taking w = Pyu,n = Pb, for u,b € Vi(Q) and & = Rpw for
w € HE(N), we obtain

a9 3 ok

(k) = (B 0) 22 (02 BB ) = PE R (0.9
FRLGROR (050 + FEUR) + PR R (.90
+P;<vaZfAi<t>>, u), (3.16)

i(ebv) = (il 32 (32 A3t ) = Fitiot B (0.9

FRGYR( R (1).924) — Ri2x=*) + Ri(x 32 VA (D)
+R;(g ) + R*((a + B)Vdiv(z* R (1)) K (1)), w), (3.17)
(RF,b) = (P} (v ZE " kZ@M (1) Bra(t ay )) + P (yR'(1)R™(t).VA")

—Pr(v"RTY(4). VAR + PE(RFRT(1). Vo), b). (3.18)
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We observe that

3
1Ps((p+x) Y

7,0=1

<(p+x) sup I(W’“K(t),VuA (t))l

[lullv, <1

(0 Al G o

< Clp+x) max {|[RT ()]} sup [Vo¥||Vu] < OV,

0<t<T

[lullv, <1
them, from (3.15), we have
" > 0 a k )
IR+ Y 5 (3 Bu()8us(5) 2 () ey <
0 =1 9Yi =y oy (3.19)

Analogously,

1P (R (R (). Vo)l < sup | <yR(DRT(L). Vo' u > |

[lullv, <1

< o IR OB Oyllool Vo ful
/ -1 k
< € gax (IR OIIR O <0,
then
! * ! -1 k 2 k k 2
LIPS R (5)-90H(5))lyyeds < € [ [904(s) s < C.
(3.20)
Also,
/ 1P S (s 5<0/ f1(s)[2ds < C. (3.21)

Observing that

3
1P (x DoV Aty < sup | < XZVZkA (1), u > |

i=1 [lullv, <1 i=1

< CIRTWINVE] < OV,

and (3.15), we have

1
/ 1P ( Evz ) |[yyeds < 0/ V2(s)[2ds < C.
’ (3.22)
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Now, to estimate the term P (v®R™1(¢).Vv*), we will use the following inter-

polation result whose proof can be found in Lions [10, p. 73]:

Lemma 2. If (u*) is bounded in L*(0,T;V(Q)) N L>=(0,T; H(Q)), then (u*) is
also bounded in L*(0,T; L*()), where % =

r_ 1
2 2n "

Using the Sobolev imbedding H*™' «— [? (s = 3/2), we have

| Pr(v* R (). Vo) |vyr < sup | < vPRTN#).VoF u > |

lullv <1
< sup o ROVl " e
lullv <1
< CIURT N sup [Vl
lullv <1
< CIRT O N7 sup ull-

llullv, <1

< CIRT OIvMIZe < Cllv*Iz,

and from (3.15) using the Lemma 2 (n = 3), we have that (v*) is bounded in
L*(0,T; L*(9)). Moreover, we get

/Ot ”Pk*(vk(s)]%—l(s).vvk(s))H%VS)*ds < C’/Ot |0 (s)||1sds < C.
(3.23)

Analogously,

[ NBZGRA ) R () TR eds < C [ 4 fads < C.
(3.24)

By using the estimates (3.19)-(3.24) in (3.16), we get
Cl k(2
| 1ok @)l yeds < .

Therefore, (vF) is bounded in L2(0,7;(V,(2))*). Analogously we can proved
that (hF) is bounded in L2(0,T; (V4(2))*)
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From (3.17), we have

' . 3 o k .
AR ACDY Dy 2 Zﬁkz (08 ()Z D= + [ (gl

7,0=1 =

HIRL Gy R (OR™ (). V) |-« + | Ri (50" R7H(1).V25) || -

3
HIRE2 x25) =< + 1R (x 2 Vol Ait) |-

+|| Ry (e + ﬁ)Vdiv(sz_l(t_))K(t))HH_S. (3.25)

We only estimate the last term of (3.25), the others terms are analogously

estimate. We have

B3 (e + B)Vdiv(* R () (1)) -
<C sup | < Vdiv(zFRTY ) K (1), w > |

llwll s <1

< C sup |(div(z"R7'(1)), div(wR7(1))]

llwl| s <1
<C sup |[V(RTH)||IV(wR™ (1))l
llwl|zs<1
S ORIV sup wllm < C|VE2F,
w||gs<1
and from (3.15), we obtain
t

/ | Ry (o 4+ B)Vdiv(2*(s) R (5)) K (s))||4-.ds < C. (3.26)
0

Therefore, (2F) is bounded in L(0,T; H=*(f)).

Arguing as in the book of Lions [10, p. 76] and making use of the Aubin-
Lions Lemma [10, p. 58], with By = V(Q),po =2, B = H(Q), B, = (Vi(Q))*
and p; = 2, we can conclude that there exists v,h € L*(0,T;V(Q)) such that,
up to a subsequence which we shall denote again by the suffix &, there hold

v* —s v and A* —s h weak in L*(0,T;V(Q)),
v" —s v and A* — b weak —x in L*°(0,T; H(Q)),
vf — v, and h¥ — by weak in L*(0,7; (Vi(9))"),
v — v and B* — h strong in L*(0,T; H(R)),
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also with By = H3(Q), po = 2, By = H™*(Q), p1 = 2 and B = L?*(Q), we have
that there exist z € L*(0,T; H3(Q)) such that

F — 2 weak in L*(0,T; Hy(Q)),

2 — 2 weak —# in L(0,T; IA(Q)),
2F — 2, weak in L*(0,T; H*(Q)),
2F — 2 strong in L*(0,T; L*(Q)).

Now, the next step is to take the limit. But, once the above convergence
results, have been established, this is standard procedure and it follows the
same patter as in Lions [10, p. 76]. Consequently, we obtain that (v,z,h) is a

weak solution of problem (3.3)-(3.8), satisfying

(v1:0) + (1 + ) (VoK (1), VoK (1)) + (vR™(1).¥v, )
~(R(R™(1).V0,9) = (fi.¢) + (kR (1).Vh, )

+x(§33 VziAi(l), @), (3.27)

=1

3z @) + (VK (1), VOK (1)) + j(0R™ (1).V 2, 6) + 2x(2, 9)
(YRR (1).92,6) + (a + A)(div (2R (1), div (6R™'(1))

3

=(g1,¢) + X(Z Vv Ai(t), ¢), (3.28)
(he, ) + v(VRK (1), VYK (1)) — (yR' (1) R™(1).Vh, ) + (vR™(1).Vh, 1))
—(hR™\(1).Vv,4) = 0, (3.29)
Ve, € V(Q)and Vo € HY(Q),
v(0) = v, 2(0) = zo, h(0) = ho, (3.30)

in the distributional sense in (0,7"). This complete the proof of lemma.

To prove the theorem, we observe that the weak solution (v, z,h) of trans-
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formed problem (3.3)-(3.8), satisfies
T T T. T
—/0 (v,‘sat)diJr(/~L+><)/0 &(t;v,¢)dt+/0 b(t;v,v,@dt—/o (tyv, @)dt
T T . T 3
= [ @yt r [ bhh @)y [ (X VEA@), B (331)
=1

_J/ ¢t dt—l—'y/ (t; 2 qb)dt—l—j/OTlN)(t;v,z, N’)dt—j/OTE(t,z,%)dt

12y / $)dt + (a + B) / (div (zR™1(1)), div ($R71(1)))dt
=Aum@ﬁ+xﬁ<§RMAm»@w (3.32)

T . T . T . T. .
—/ (h,;/;t)dtJrz// a(t; h ¢)dt—/ 6(t;h,¢)dt—|—/ B(t; 0, b, §)dt
0 0 0
—/ (t: h, v, d)dl = 0 (3.33)
V@, 1, ¢ e (U) with compact support C U,
div(gM ™) = div(yM~') = 0.
To conclude the proof of theorem, let us consider a tests functions @, ¢, ¥ €

CY(Q) with compact supports @ such that divp =0, dive) = 0 and define

Py, 1) = det R(1) p(yR(1), 1),
Sy, t) = det R(t) $(yR(1), 1),

Y(y,t) = det R(t) v(yR(1),1).

It is easily seen that @, v, b € CY(U), with compact supports in U/ and
div (M 1) = div (¢ M~1) = 0.
Integrating by parts,

_/ / é(t; v, 3)d /detR () (v, 1),

/0 v, @)t = Z/ /det]% S Bul) ‘;”fgfid dt,

k=1

T. D,
b(t; p)dl = — det R(t) (vp=—2v;)dydl
mew ;léemw%wm,

/OT(div(zR_l(t)),div(gBR( )t = /detR Zﬁkl %k dive)dt
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where zj, is the k™ coordinate of y R(t). By using the above identities in (3.31)-
(3.33), we obtain

av]a@]
_/ det R(t) (v, 0)dt + (11 + x) 2/ /detR ];lﬁk, 5y o
— Z/ /detR vk—v] Ydydt = / det R(t) (f1,)dt
@c,o]
_,«kz_jl/ /detR ) iy h)dydt
Ty / det R(1) (ZVziAi(t),cp)dt, (3.34)
e az]a¢]
_]/0 det R(t) (= gbtdt+72/ /detR gjlﬁkl 5o oyt
d9;
-7 det R(t) (v —z Ydydt 4+ 2x | det R(t) (z,¢)dt
5 a2 [
oz—l—/B/ det R(1 231«1 dlw )t = / det R(1)(gr, d)dl
k=1
ﬂ/ det R(1 ZWA (1), d)dt, (3.35)

=1

T ah 0,
— [ det R(t)( )dt det R(1 —Ldydt
| det Rty (b, +uz//e “zlﬁkz S

+Z//dem hkgd’ ;)dydt

2/ /detR vkgih Yyt (3.36)

k,j=1

Let us now consider the transformation ®! : U — @ defined by

O~ (y,t) = (yR(1),1).

We observe that det(J ®~') is det R7'(¢). Consequently, from (3.1) and by
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change of variables in the integrals (3.34)-(3.36), become

: du; d¢;
_/Qu ordedt + (p + x) k;i/@ a—;z'kaxk drdt — Z / uk—u] dzdt
3 ,
:/ fodedt —r Z / bka—%bjd;r:dt—l—x/ rot w o dxdt,
Q k=179 z

3 ow; 0;
j ,, dedt /—]—]ddt / dzdt
]/ngbt ’ +7k§::1 Q Oy 0z, E RPN w] !
+2X/ w ¢dmdt+(a+/8)/ divw div ¢ dzdt
Q Q

:/gqéd;cdt—l—x/ rot u ¢ dxdt,
Q

: ab; 9, 1/)1
_/Qb;z;tdxdwyzfaxkaxkd rdi — Z/ b dadi

s /bk—u] dadt = 0.

k,j=1

which proves that (u,w,b) is a weak solution of (1.1)-(1.3), since the mappings

L*0,T;V(Q)) — L*0,T; V(D))

v(y,t) — u(z,t)=v(zR(t),t)
h(y,t) — b(z,t)=h(zR7'(1),1)

L*(0,T; Hy(Q)) — L*(0,T; Hy(2))
2(y,t) — w(w,t) = 2(zR7(1),1)

L>(0,T; H(QY)) — L=(0,T; H(Y))
v(y,t) — u(x,t) =v(xzR™(t),1)
h(y,t) — b(x,t)=h(xzR™'(1),1)

L0, T; L*()) — L™(0,T; L*(%%))
2(y, 1) — w(z,t) = z(zR™'(1),1)

are smooth bijections of class C'!, it follows that

w, b e L(0,T; V() N L=(0,T; H()),
w e L*0,7T; Hy(Q)) N L>(0,T5 L*(9)).
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Finally a standard arguments show that «(0) = ug,w(0) = we and b(0) = by.

Assertions (2.2) and (2.3) are proved analogously as in the case of the classical

Navier-Stokes equations, see for instance, Lions [10]. This finished the proof of

theorem.
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