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Abstract

We consider the Cauchy problem for multidimensional Kuramoto-
Sivashinsky type equations in R™ and in T"”. The initial data can be
singular, in particular, can belong to Sobolev spaces Hj, with negative r.
We introduce weighted analytic-Gevrey type spaces which allow us to get
new results both on the critical index of singularity of the initial data and
on analytic regularith with respect to x when ¢t > 0. We get also global
well-posedness results in L? in the case of conservative nonlinearities.

Resumo

Consideramos o problema de Cauchy para a equacées do tipo Kuramoto-
Sivashinsky multidimensionais em R™ e em T". Os dados iniciais podem
ser singulares, em particular, podem pertencer a espagos de Sobolev H,
com r negativo. Introduzimos espagos do tipo Gevrey-analiticos com
peso, que nos permitem obter novos resultados tanto quanto ao indice
critico de singularidade do dado inicial, como resultados sobre regulari-
dade analitica de solucGes com respeito a = para t > 0. Obtemos também
resultados de boa postura global em L? no caso da nio linearidade ser
conservativa.

1. Introduction

We consider the following initial value problem (IVP)

O+ A*u+ P(D)yu+VF(u) = 0, t>0,z €, (1.1)
U(O,) = uov (12)
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where @ = R" or @ = T" = R"/(27Z)", P(D) = Zj,j<3Pa D, pa € C, a €
Z%, o) <3, D= (Dy,...,Ds,), Do, =170, F(u) = (Fi(u),...,F,(u)),
Fy(u) are homogeneous polynomials of order s > 2, VF(u) = >}, 0z, (Fo(u)).
In order to simplify the presentation of the main novelties we consider scalar
equations in (1.1)

We recall that the "derived” 1-D Kuramoto-Sivashinsky (KS) equation cf.
E. Tadmor [22] and the references therein, the equation 0;¢ + ¢, ¢ + 02 ¢ +
A%¢ = 0, x = (x1,7,), which describes the evolution of the disturbed surface
of a film flowing down an infinite flat vertical wall cf. T. Shlang and G. I.
Sivashinsky [21], and the "derived” Korteweg-de Vries-Kuramoto-Sivashinsky
(KdV-KS) equation, studied by H. A. Biagioni, J. Bona, R. Torio and M. Scialom
[3], can be reduced to (1.1). Systems of the type (1.1) with u® € H*(Q), s > n/2
have been investigated by B. Guo [13].

The present work has two aims. Firstly, we define the critical L? index for

n(s—1

the equation (1.1) as p.. = =5~ and show that if p > max{1, p.. } we can find

explicitly a nonnegative number r..(p) < 0 such that we can resolve (1.1), (1.2)
with initial data modelled by v® € HI(Q), p > 1 or u® = |D|7p, p € M(Q)
ifp=1,02>r >r.(p), M(Q) being the space of the finite Radon measures
in Q, |D| = (—A)% The question whether r might reach r..(p) is not easy to
answer (for the analogous problem on the L? critical index of singularity for
semilinear heat equations we refer e.g. to H. Kozono and M. Yamazaki [16],
F. Ribaud [18], [19], [20], D. Bekhiranov [2], D. Dix [10], H. Brezis and T.
Cazenave [7], H. A. Biagioni, L.. Cadeddu and T. Gramchev [5], [6], J. Arrieta
and A. N. Carvalho [1], while for the complex Ginzburg-Landau equation see D.
Levermore and M. Oliver [17]). In fact, one essential novelty of the present paper
is the construction of weighted analytic-Gevrey type spaces which generalize
the weighted spaces of Kato-Fujita type. These new spaces allow us not only
to resolve the IVP (1.1), (1.2) for large class of singular initial data but also
to obtain new results for analytic regularity with respect to the space variables
x when ¢t > 0. Such unified approach for studying simultaneously solutions of

(1.1), (1.2) for strongly singular initial data and their analytic regularity in z
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for ¢ > 0 seems to be new in comparison with the methods used for answering
the latter question cf. C. Foias and R. Temam [12], P. Collet, J.-P. Eckmann,
H. Epstein and J. Stubbe [9], P. Taka¢, P. Bollerman, A. Doelman, A. van
Harten and E. Titi [23] and A. Ferrari and E. Titi [11]. We also mention that,
as a consequence of our results, if & = R”, we can solve (1.1) with initial data
homogeneous distributions of order —Z% under suitable hypotheses, in the spirit
of the paper of M. Cannone and F. Planchon [8] on self-similar solutions for the
3-D Navier-Stokes equation. However, since A? + P(D) is not homogeneous if
P(D) # 0, we do not obtain, as in [8], self-similar solutions. The value of the
critical index p.. could be determined by the usual scaling argument applied
o (1.1) with P(D) = 0, namely to look for self-similar solutions of the form
u(t,z) = t_%g(%), which is possible only for p = p.,.

Finally, we exhibit new results on global in time solutions in the case of L?
conservative nonlinearities. More precisely, if s < 1 + %, which is equivalent
to p.- < 2, we show global well-posedness for (1.1), (1.2) with arbitrary u® €
L*(Q) while in the critical case n = 55 i.e. p, = 2 we require smallness of
||u®||z2 and nonnegativity of Re(A%+ P(D)). Moreover, differences occur in the
critical case between R™ and T", namely we show stronger results if = T”
provided in addition the initial data have zero mean value on T”. For example,
if P(D)=cA,c¢>0,s=2andn =6, we are not able to show global existence
for Q = R® while for Q = T we get global results for all «® with small L*(T¢)
norm and zero mean value if 0 < ¢ < 1. In particular, we generalize the global
well-posedness results in [22] for the one dimensional "derived” (KS) equation,
results in [3] for the one dimensional "derived” (KdV-KS) equation, and results
in the multidimensional case in [13], where v® € H*(R"), s > 2 and s < 1 + &,

Our methods are applicable for quite general systems of evolution equations
with dissipative elliptic terms and this will be done in other works.

The weighted analytic-Gevrey type spaces are introduced in section 2 and
the general results for the existence, the uniqueness and the analytic regularity
of the solutions to (1.1) with singular initial data (1.2) are stated in section

3. Sections 4 and 5 deal with the proofs of these results. The last section 6 is
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devoted to the regularity of the weak solutions and the global well-posedness

for L? initial data and conservative nonlinearities.

2. Weighted spaces and critical indices

For given g € [1,4+00], ¥ > 0,0 > 0 and T €]0, +o0c] we define the Gevrey Ba-
nach space A (T) = A7 (0 T) := {u € C(]0,T[: L(Q)) (" C([0,T]: S'()) :
HUHA;q(T) < oo}, where

|

v M—}-@ o
U = — sup (t2 0%u(t . 2.1
H HA;q(T) agz:ﬁ o 0<£T( H ()HLq) ( )

If v = 0, with the convention 0° = 1, we obtain that A§ (7)) = C4(L%;T'), with
Co(L5T) = Co(L2(Q); T) being the Kato-Fujita weighted space with norm
lulleyramy = OzlfT(tenu(t)HLq). Here S'(R™) (respectively S'(T") = D'(T"))
stands for the space of all tempered (respectively periodic) distributions in R”
(respectively T") while || f||zs stands for the L?(Q) norm of f. If T'= 400 we
set A;q = A;q(—l—oo), Co(L1(Q)) := Co(LU(Q); +00).

The Sobolev embedding theorems and the Cauchy formula for the radius of
convergence of power series imply, for v > 0, that if u € Aj (T') then u(t,z)
is holomorphic in the strip T', := {z € C* : [Im(z)| < p}, p = ~i7, t €]0,T].
Given u € C(]0,T[: L},.(©)) and t €]0,T[, we define pp,(t) = sup{p > 0 :
u(t,-) € O(T',)} with pp(t) := 0 if it cannot be extended to a function in O(T',)
for any p > 0. Here O(I') stands for the space of all holomorphic functions in
an open set I' C C*. Clearly ppy(t) > ’yt%, t €]0,T] provided u € Aj (T).

Typically for perturbative methods dealing with (1.1), (1.2) we want to
find the space of all u® € &'(Q) such that E*[u°] € A’éq(T) for some (all)
T €]0,+ocl, where EL[f](t) := E%(t) x f, E%(t) = f‘g—j}l‘(e—t(|{|4+]3(§))) is the
fundamental solution of d; + A* + P(D). If v = 0 we refer to [15], [4], [18],
[5] for such approach in studying semilinear heat equations with singular initial
data. The norm of such Banach space depends on the A%’q(T) norm while as
a set it depends only on €, 8,¢ but not on v > 0 and P(D). We denote it
by Bq_e(ﬂ). Next we define Bq_e(ﬂ) as the space of all v € S§'(Q) such that
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ey € Aéq, for some (all) v > 0. We stress that Bq_e(ﬂ) are related to
the homogeneous Besov spaces with negative indices cf. H. Triebel [24] but
we do not investigate these aspects here. Roughly speaking, as for the usual
Besov spaces, if # increases then B;H(Q) contains distributions with stronger
singularities. Let H;(Q), 1 < p < 400, r € R be the LP based Sobolev space
Hi(©Q) = II(1 — A)”/QfHLp while for r € Z,, 1 < p < 0o we can
use the norm Hf] Hi(Q) = MaX|y|<, 10° fl|zr (). We set H"(Q) := H}(Q). Given
r < 0 we have H(Q) C B; () if p>1and |D|7"M(Q) C Bq_e(ﬂ) if p=1, for
g>p, 0=—-r+ n(; — %) This will follow from the estimates on F = E*.
n

Set 0(q) = — — =
Per 4

with norm || f|

plq,0) = Z— 0(54_ D _ n(z; 2 (2.2)
Next we define O(n) = {(¢,0): s < q¢ < +00,0 < s <4, p(q,0) >0, p(q,0) >
0}; 90(n) = {(q,0(q)) € O(n)}; O(n) := O(n) \ 96(n) (6(n) will be the set

) €
of admissible pairs (6, q) such that, if u® € B (), we can resolve (1.1), (1.2));

and set
P. = inf(el' + ReP(6)) (2.3)
Pa = nf (I€]"+ReP(£)). (2.4)

Clearly P; > P,.; for example for P = A we have P. = —i while P; = 0. If
P. > 0, the fundamental solution F(t) decays exponentially for ¢ — +oo.
Given p > 1 we define the L? critical index r..(p) for (1.1) by

n n 4 n

rer(p) = max{> — — 2 2 _ — .
P pe p s max{p,s}

The next proposition is readily obtained from the L” estimates on the fun-

(2.5)

damental solution K in section 4 and the definition of the set ©(n).

1 1
Proposition 2.1. Set I, := {qg > p: (q,—r + n(— ——)) € O(n)} forp >
P 49
max{l, p.}, r < 0. Then we claim that I., is nonempty tff p > per, 7 > 1o (p)
with v allowed to be equal r..(p) iff

n n n 4 n

ro(p) = — — > - 2.6
(7) P pe p s max{ps} (2:6)
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3. The general results in the spaces A; (7T

First we state the local results for (1.1), (1.2) with singular initial data.

Theorem 3.1. Let (¢,0) € O(n) and u® € B%(Q). Then there exisls a non-
increasing positive function T(v), v > 0 such that the IVP (1.1), (1.2) admits
a solution u € () A%q(T(’y)). The solution is unique in C%(Lq(ﬂ);T(O)). As-
sume now that’yé(jQ(q)) € 00(n). We claim that there exists C' = C} > 0 such
that if u® € Bq_e(q)(ﬂ) salisfies %i{(r(l) HEQ[UO]HC%Q_(U;;T) < C' then the IVP (1.1),
(1.2) has a unique solution u € Cow (L% T") for certain T' > 0. Moreover,
u € Ag{T‘I),q(TW/) for some T, €]0,T"], 6 <yl

Now we state the results for global solutions.

Theorem 3.2. Let (¢,0) € O(n). If P. > 0 there exists ¢ = ¢, > 0 such that,
for every u° € Bq_e(ﬂ) satisfying |E®[u°]||c, ey < €, the IVP (1.1), (1.2)
admits a unique global solution u € Co(L(Q)) and u € A} , for0 <~y < 1.

Remark 3.3. As far as we know the results on the analytic regqularity in the
references cited in the introduction guarantee at best the estimate 1£>n+lorcl>f P (t) >
0. Under the assumptions of Theorem 3.2, we have, at least for 0 < v < 1,
that pp(t) > ’yt% for all t > 0. The two theorems above and Proposition 2.1
show that if u® € H}(Q) and I, , # () we can resolve (1.1), (1.2).

4. Estimates on the fundamental solution

In view of (2.3) for every b > —P, we can find b > 0 such that
€' + ReP(€) 2 B¢l — b, £€R™ (4.1)
Next we investigate the analytic regularity in = of F for ¢t > 0.

Theorem 4.1. There exists a constant @ > 0 such that for every 1 <r < 4o0,
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d € Z4 one can find positive constant C' = C, 4 such thal

1

10208 E(1)|1r < Cetimi=50-igily=5 (q1)1/4 (4.2)

Jor all a,3 € Z7%, |B3| = d and t > 0. Moreover, (4.2) implies that 9°F €

A'é_l_ﬂ(l_l)r(T) and for some Cy; = Cy(r,d) >0

107 €™ E]|s,
ite

1
4 (1_F)7T

) < Ch exp(cy%), ~>0,T>0 (4.3)

where ¢ > 0 depends only on @ and n. The same result is true if we replace 0°

with a homogeneous pseudodifferential operator k(D) of order d > 0.

Proof. Set x(¢) = £° for given 3 € Z7, |3 = d. For each a € Z’; we can write

E2(t,2) = Dr(D)E(l,z) = / eir et —tP©) g (£)¢a g, (4.4)
Q
Here @¢ = (2m)7"d¢. After the dilation £ = t% we obtain that
o _dtlal _n o X
E2(t,z)=1""3 “4¢ (m;t), (4.5)

where ¢*(z;t) := /Rn == (™ @, ®(n;t) = |n|* — tP(4). Since

92 s Dler = 79771
estimate of |[¢)*(+;1)|[z-. We observe that

o~

r, t > 0 we are reduced to the proof of the

Re(®(n;t)) > bln|* — bt, neR"t>0. (4.6)
We check easily that for all @ > 0, s > 0 we have

s, —az! — i s/4 4
Sztzlg(ze )= ()" (4.7)

1
Next, we recall the Stirling formula ¢! ~ (=)*V2nl, as { — +oco. Here £! =
e

I'(¢ + 1), where I'(z) stands for the Gamma function. As a consequence, we

show that there exist 0 < v, < 1 < 7, such that

0
N < (PES R, CeRy; (4.8)
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and if § > —1 there exists B > 0 such that

IS

F(Z FE4+1) < BN, >0 (4.9)

We will prove (4.2) for r = co and r = 1. Then the interpolation in the L?
spaces yields the general case. We have, by using (4.6) and (4.7):

16l < @m) @ < [ e Oy

< o [ el ey
Rn

bt bt dt|al4n—1
€ wn/ e P pitlelrn=lg,
0

Wy, o] +d+n
ebt _lal+d+n F( 4 )7

4

IN

(4.10)

where w, is the area of the unit sphere S™! which implies (4.2) for r = 400,
in view of (4.9), (4.8) and the fact that one can find ¢' = C(n) > 0 having the
property |a|! < ClPlal, o € 7.

Set B,(6) = {z € R*: |z| < 4}, § > 0. The Holder inequality implies

9l ®ny < mes(Ba(1))|gllne®ny + |9l L1 @m\Ba 1)) (4.11)

and therefore it is enough to show (4.2) for the L'(R™\ B,(1))-norm of 1)*(+; ).

If |z] > 1 we introduce the linear operator £ = L(z,8,) = —i|z|™' > z;0,..
j=1

We note that |z|7'L(e”") = €*" and L' = —L, with £* standing for the
transposed operator of £. Furthermore
M! M M!
M _ B _ B
(—)M = > ﬁwma7 = > ﬁcg(,z)aﬁ, (4.12)
|8l=M |8|=M

with cs(2) = il°l28|z| 718l 3 € ZV\ 0, 2 € R"\ 0. Evidently |cs(z)| < 1.
Integration by parts M times gives ¢*(z;t) = |Z|_MJJV"(Z; t) where

Pzt = [ e (=)™ (e () an (4.13)
The definition of ®(n;?) implies that there is C' > 0 such that

00 (n; )| < C(1+ 15 + [n)* = 1> 0,0 e R p e 27, |u] < 4.
(4.14)
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Then, since x(n) and ®(n; ) are polynomials in 5, straightforward computations

show that for each M € N there exists C' = C(M, k, P) > 0 such that

(—L)M (=D ()] < C(1 4 15)M|a|Me I
x (|| (et+a=As g lal+de3nty g g5

for all n € R™, a € Z%, t > 0. Here r4 := max{r,0}. Hence for M =n +1 we
obtain, taking into account (4.13) and (4.14),

a 1 —_
157G Dl @mBa) < (/ —dZ) 52 (5 )| o).

2>1 [2]" ! (4.16)
We estimate sza(-;t)HLoo(Rn) exactly in the same way as ||¢)*(-;1)| po@n) and
conclude the proof of (4.2) for = R™.

Now let @ = T". We have (cf. [17] for similar arguments for the Ginzburg-

Landau equation)

ET(t,2)= > E(t,x+273), x€T" t>0. (4.17)
BEL™

Set Egni(t,x) := 0%k(D)E™ " (t,z) = > E2(t,z + 2n3). We write, using (4.2)
BeZ™

|EZ i <3 [ 1B +2m8)lde
pezn’T"
1 d+|a|

= HE:(t’ ')HLl(R") < OlaHlebt(Oﬂ!)Zt_T

for all o« € Z7, t > 0. We recall another expression for E™(t,z), namely

n 1 ; 4
E™(t,z) = 3 et (4.18)
(QW) VAL
1 : 4
Hence E75(t,z) = @n) > el +P(£))§ali(f). Next, by using (4.6)-(4.9)
EEL™
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and the estimate Z 1=0(""), 5 — oo, we get for some C' > 0
|€]=7

” _ 4
[ Ep (L, ) |lpoe(rmy < P gl (&)
EEL™
< Cebt ( lar|+d —Qtz“) Z ~Lile|?
sup(z e 2 e 2
- (27T)n z>%) fEZn
< O|oz|—|—1 bt bt]
1 la|+d b, -4 iy T,
< C|a|+1€bt(0z!)zt_ i suple 1" jn_l]ze_zt]
j21 j=0
< clenanttSyel a ez,
I

Finally, as for R™, the interpolation leads to the desired estimates for ET .

5. Proofs of Theorems 3.1 and 3.2

Throughout this section (g, ) will be fixed. Following the standard approach,
we reduce (1.1), (1.2) to the integral equation

u(t) = B)(0) - Klul(0). (5.1)
K[u](t) := /0 VE(l — 1) % F(u(r))dr (5.2)

where VE(t — )« F(u(7)) := Yj_; Oz, E(t — 7) * Fy(u(7)). For a € Z'} we set

Lo [u)(t) = £ %H/ P2V E(t — 1) % F(u(r))dr | 1. (5.3)
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We have, using the convolution property 9°+° f x g = 97 f * 9°g, the inequality
(a+b)” <a”+b% if 0 €]0,1], a,b > 0 and the Young inequality,

1[0 st?[«www“+~“WWWVEu—ﬂ*va»mmT

'] ' 5 "
t—T T+ 0°VE{t—7) 71 0% F(u(r
— alif Z / I i ( )>|< a”!( ( ))HquT

’+O[“_(1

o [t et=7)dr
§ O{'tz/ 1, n(s=1)
O (t— T)Z+TT%
|
(T 0 Y B
X su -
oz’-}—%’:’:a 0<t£)T( O[/! )
|O‘_//|+9_5 "
T & T4 |0 F(u(r q
0<t<T o'l

Now, (2.1), (4.3), (5.3) and (5.4) imply that for some C' > 0

H[& u]HAv ) < Z — sup L%[u](?)

a€Z? 0<t<T

< CV(T )Hve_bEHM o Tl E@)llay, )

fs
=,

—1)

4q ‘g—s+1

< CU(T) exp(eyt )HF( May, ;> 720,

fs g
4 s

~

>0 (5.5)

where ¢ > 0 is the constant appearing in (4.3) and

. 0 [t eb(t—T)dT
LII(T) = \Dq:g,s(T) = Sup (t4 /0 (t n(s—1) es) : (56)

1
0<t<T _T)z+ g T3

In view of (5.6), U(T) = O(T*(#9)) as T\, 0 (p(q,0) given in (2.2)) and

p(+00) :=sup ¥(T') < +oo  provided b < 0 or b =0, p(q,0) = 0.
>0 (57)

In the same way as above we show that

1K ] = Klwa]llay, () < 209(T)e™ || F(ur) = F(w)llay_, ()
d T (58)

for all u, € AZq(T),Ezl,Z, ~>0,T>0.
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Next we extend the generalized Holder inequality in the spaces Ay (7).

Lemma 5.1. Letyv >0, 1 < ¢q, < oo, 0, >0, v=1,....0,0=0,+...+6,
¢

1 1
and let — = Z — < 1. Then for every h, € A;, , (T), 1 <v <L we have
q v=1 Qv

£ £
1L ullaz oy < Tl oy (5.9
v=1 d v=1

Ou qu
Proof. We obtain, for 0 < 7 < T,
18]
~1Blr?
Z Haﬁ( (7)) he(7))| 7
< 27|5|T9+| Z 1

AR ’Haﬁlhl(r) .. .aﬁ‘hg(T)HLg
Bi+...+8.=0

fy|l31|7- |'641| s fy|ﬁz|7-€e+|ﬁ4—el 5
<> Tua V()| Tua ¢ho(7)|| e
B1 Be
¢
=TIl .
which implies (5.9).
O
Next, taking into account the identity uj — uj = > (uy — ug)uj” =7yl and

=0
applying to its right-hand side Lemma 5.1, we get the following inequality for

s> 2, up,ug € A} q(T)
47

It = wallay, oy < Ml = wallay, n(lnllay )+ lluallag )"
47 4

fo (5.10)

We note that, since E(t) * f = F(%)* E(%) * f, the properties of the convo-
lution and the Young inequality show that for some Cy > 0

r —b.
[ £]u ]Hqu @) < max{l,e"z}|e bEl\Agyl(g)Uf,e(T)

< Comax{1, "3} U2,(T), (5.11)
for all 7> 0, vy > 0, u® € B;?(Q) with UYo(T) := ||Elu ]HAO (Z)-

79
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Define By (R;T) = {u € Ay q(T); HUHAVB ) < R}, 0<T < 400, R> 0.
The estimates (5.5), (5.8), (5.10) and (5.11)4 show that if, for given u°, we can
find R > 0 and T > 0 satisfying, for some C' > 0 independent of v > 0,

3
cy 4

Coe™ max{l,ebg}Ugﬁ(T)—I—C'ec'ﬂmax{l,ebT}\Il(T)Rs < R, (5.12)

20" max{1,TIW(TYR*™" < 1, (5.13)
then we can apply the FPT in By (R;T) and solve uniquely the integral equa-
tion (5.1). If b < 0 and (5.12), (5.13) hold for T = 400 and some R =
R(UD4(+00)), the FPT yields global solution to (5.1).

We observe that, plugging (5.13) in (5.12), straightforward computations

show that if the estimates

NI

O() e

max{1, ebg}U;@(T) < g

(5.14)
and (5.13) are satisfied, then (5.12) holds as well.

We show first the local results. Assume 0 <7 < 1. If (8,9) € @(n) we have
p=p(0,q) > 0. In view of (5.6), (5.7) and p > 0 we obtain that U(7') is stricly

increasing for 0 < 7' < 1. Thus if we choose R by assuming equality in (5.14)
max{1, eg}U;a(T) we obtain that (5.13) will hold if

3
cy 4

.e. R=2Ce”

1

W(T)(Uy(T))™" < W(TYU(1)" < T T
22005 ew" (max{l, ez })* (5.15)

In view of the monotonicity of W(7") and the fact that W(7) = O(T") as T'\, 0

we resolve (5.13) and obtain the following estimate for T

T > T(5) = min{1,Cre” 7" (U°(1))" 7 } (5.16)

with C'y > 0 depending only on C', Cy, b and V.
If (6,q) € 00(n) we have p = 0. In that case ¥(T) = O(1) for T\, 0
and we could not proceed as above. However, choosing R by assuming equality
in (5.14), the estimate (5.13) is true for small 7" provided %i{n‘o U§76(T) is small

enough. Theorem 3.1 is proved.
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Let us show now the global results in Theorem 3.2. The hypotheses imply
that U;{@ = U§79(+oo) is finite, we can choose b < 0 and therefore we can apply
the FPT in By (R;4oc) provided we choose R by assuming equality in (5.14)
with 7' = 400 and the next inequality is satisfied:

1

W (+o0)(Uly(+00)) ™ < ———
2005 e

(5.17)

Clearly (5.17) is satisfied if U} ;(+0c) is small enough. This concludes the proof
of Theorem 3.2.

6. Regularity and global well-posedness
First we estimate the regularity down to ¢ = 0 due to the dissipation by AZ.

Theorem 6.1. Let s € N, 2§3§1—|—%. Fizg=s if5<1—|—% and g =s+¢
with 0 < e < 1 when s =1+ 2. Let uw € C([0,T[; L*()) N C%(%_%)(Lq(ﬂ);T)
be a weak solution to (1.1), (1.2) for some T > 0. Then we claim that

qu e Cly

TG

u € C([0,T]: H}()) if u® e H}(Q) for some r € Zy, p > 2. (6.2)

(LP(Q);T), forevery a € Z7,2 <p < oo, (6.1)

Proof. We write Ku|(t) = K'[u](t) + K"[u](t) with K'[u](t) (respectively
t 5t t
K"[u](t)) being defined as K[u] replacing / by / (respectively by / ) and
0 0 5t
where 0 < § < 1. We will show by induction with respect to v that

lel  ng1_ 1
WP(t) := max sup (tT+Z(5_5)H@au(t)HLp), p>2 (6.3)
lol=v 0<t<T
which will imply (6.1).
First we note that the estimates on £ and the definition of K'[u] yield that
1 1
for every fixed pp € Zy, 2 < p < 400 and r,, defined by 1 + — = — + i, the
p q

T'p
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following estimates hold for some C' = Cr > 0, C = CN'T75 > 0:

VaAT) = max |0 Bl ley y y anny < o0 (64)
&t
102K ()l < [ 10°T B = 1)l | F ()] lr

< o T

<

where p := 6"'”7_5” > 0 in view of the condition on s and n.

The most delicate part of the proof concerns the L? estimates of K"[ul(t).
We will prove (6.3) for v = 0 in the following way: we will find M € N and M
indices pg = ¢ < p; < ... < pyr = +oc such that if, for some j =0,1,... , M —1,

u e C%(%_L)(ij (Q), T), then u € Cg(l_;)(l/pj-kl(ﬂ);T).

4

J 2 Pj+1 (66)

The key in proving (6.6) is the next chain of estimates with r; defined by
1 1 S
1+ = —4 —:
Pi+1 i Pj

L

IOl < [ IVE(=7)

%(%_1%) s
(7" P flu(m)l )

Plu(r)] »dr

t
C

< Tym(L_ 1y sal_1 dr
5t (t—T)4 b, Thjp1 4 N2 By
~ 1P ij 1))
< 07510 (1)) , 0<t<T (6.7)
tz(a—le)
provided
1 1 1 1 3 -1
(= — ) <1 &= 2 (6.8)
4 4'pj pin Pi P41 m Pj

The inequalities (6.8) hold if we fix §y €]0, 2 — *=L[ and define pL = % —jbo, ] =

q

0,1,..., M —1, with M being the first positive integer j such that 5 — 740 < 0.
The choice of {p;}!,, the estimates (6.7), (6.6), (6.4), (6.5) and the integral

7=0>

equation (5.1) imply (6.3) for v = 0.
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Assume the validity of (6.3) for 0 < v < p — 1. Choose and fix o € Z7,
|a| = p. Using the Leibnitz rule for the higher order derivatives of products of
s functions, we get the following estimates for 0 < ¢ < 7" and some C' > 0:

0° K" Ollr < C [ IVE( = 1)l (™ (1) u(7) )

oo X /HVEt—ruUnHa@ ardr
s)EZ

(81,
n oy loly n(l o
< t(TSHU(T)HLoo) frat a“ 2n PnHa u(m)llze
5t t—r)% lelpsn_o
X / 122} 107 u(r) )19 u(r) oo,
EZ’ 5t —7')%
N t4|+ (%—%) t(t_T)%T(S_gl)” t":'+ (1 L

where (641,...,8,) € Z'(a) means 3; € Z%, |Bi| < |af, i + ... + G5
F,(T,4) is a polynomial of degree s of W*(T'), WP(T), v =0,1,... ,u—1 and
in view of the inductive assumption F,(7,§) is bounded. Multiplying (5.1) with
t%+%(%_%), la| = ¢ and using (6.4), (6.5) and (6.9) we get

1 Wp
Wﬂﬂﬂﬁﬂﬂ&+0Mﬁ@W*AWt ﬁﬂHnw, O<t<? |
—T)sT B 6.10

Now, if s < 14+ £, we can apply the singular Gronwall inequality (see [14], p

190) and obtain by (6.10) the validity of (6.3) for v = p. If s —1 = £, the sum

of the exponents in the denominator of the integral in (6.10) is 1 and we could

not apply the singular Gronwall inequality. However, we have the freedom to

choose 4 close to 1 so that
t Wp 1 1 —

/——QQTwSC@Wﬁm qazf-————w fo

t (t — T)ZTZ ) (

and we obtain (6.3) directly from (6.10).

Now we prove (6.2) by induction, namely

W2(1) == max sup [|0°u(t')||s < 400, v =0,1,... 1.
lo|=v o<t/ <t (6.11)
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In order to simplify the presentation we suppose that F' is quadratic in u i.e.

s =2. If v =0 we get (6.11) from the uniqueness and the assumption u° €

HI(Q) — LP(Q). Assume the validity of (6.11) for v = 0,1,... ,u — 1 with

p €N, p<r—1. Let o €Z}, |a| = p. The Leibnitz rule for differentiation
t

and the Holder inequality imply that J,(¢) := / |0 (VE({t —7)* F(u(7))||redT
0

is estimated as follows:

L) < [IVE@= Dl 107 F ()] g
. ( /HW M 07 s,

(t—rm7)7 ity

570

[l >|\Lpd7) 612

(t—r7) itip

prov1ded + 4= < 1, which is true except for the case n = 6, p = 2. We get
then, in view of (5.1), (6.12) and the induction hypothesis,

[ u(Dll < C(Hu e + 32077 <>)

=1

— t)|0* pd

v g [ 1t (6.13)
0 (t — 7—)4 4p

Using again the singular Gronwall inequality we deduce the validity of (6.11)

for v = p. The case n = 6, p = 2 is settled by similar arguments to those used

for the proof of (6.1). The proof of Theorem 6.1 is complete.

Remark 6.2. If u > 0 is not integer, and u® € H!(QY) for some 1 < p < +o0,
we can show C([0,T] : H!(Y)) regularity of the solution u. The proof is more
involved and it is based on LP — L7 estimates, the use of fractional derivatives

and Sobolev embedding theorems.

Now we will study the equation (1.1) with initial data

u(0,-) =u’ € L*(Q), (6.14)
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under the hypothesis that the nonlinearity is conservative, namely

Re(/ < Vu(z), F(u(z)) > dz) =0 Yue H*Q), > —.
“ (6.15)

Theorem 6.3. Let (6.15) be true.

n 1 1

1 Ifs <148, (q,Z(§—§)) € O(n) then the IVP (1.1), (6.14) has a unique

global solution u € X,(Q) := C([0,00); L*(£2)) N C%(%_ )(Lq(ﬂ)).

2. Suppose now that s = 1—|—%, P.>0and g=s+¢,0< e 1. Then we
can find ¢, > 0 such that for every u® € L*(Q) satisfying ||u°||12 < ¢, the
IVP (1.1), (6.14) admils a unique global solution u € X, ().

3. Let5:1—|—%, Q=T" P;>0andg=s+¢,0<e<K1. Then we can
find ¢, > 0 such that if u® € L*(T™) satisfies ||u°||r2 < ¢, and the mean
value of u® is zero, there exists a unique u € X,(T") solving (1.1), (6.14).

Proof. First we construct local solution via the FPT as in section 5. We note
that the estimate (4.3) on the fundamental solution £ implies that, under the
hypotheses of Theorem 6.3, we get for some absolute constant Cy > 0

1E[°]lle

iy < Collellze,  w® € LX(Q),0<T < 1.
(6.16)

2

W=
Q=

Hence, in view of (5.12), (5.13) for v = 0 and (6.16), we can apply the FPT in
Y,(T; R) := BS (T'; R) if for suitable C; > 0

3y

C()”UOHL2 + ClTpRS < R, QOlTpRs_l < 1. (617)

If s <1+%ie p>0,weget readily from (6.17) that the lifespan Tqq(u®) for
the local solution of (1.1), (6.14) satisfies T},qz(u®) > min{l,C’g(HuOHLa)_%},
with C3 > 0 being an absolute constant, while in the case s =1+ g ie. p=0,
such estimate from below could not be derived from (6.17) for all u® € L*(Q).

However, from arguments used in the proof of the local results in the critical
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case we get that there exist ¢, > 0 and T' > 0 such that T,,,(u®) > T provided
|u®||r2 < ¢4 Next, we follow the approach in [22]. Indeed, taking into account
the regularity result (6.1), multiplying (1.1) by @ and integrating in = € Q and
then from 0 to ¢, we get, by using (6.15)

lu()lze = l[u°ll7> + /Ot Re(< —(A* + P(D))u(r),u(r) >p2)dr
(6.18)

where < -, - >72 stands for the scalar product in L?*(Q). Since P. < Py, the
Parseval identity for R” and T™ and the Gronwall inequality imply that, for

all £ > 0 for which the local solution exists, we have ||u(t)||2. < e 7||u’||%..

If s <14 %, the estimate of the lifespan by means of ||u°||;> and the energy
estimate allow us to use the same arguments as in [22] and to construct global in
time solution by "patching” together the local solutions. The main difficulties
arise in the critical case s = 1 + %, when, although according to the results
in section 4 we can always construct local solution with initial data in L*(Q),
we can control the lifespan by ||u®]|z2 only for ||u°||z2 small enough. In fact, in
this case the difference between R™ and T™ occurs. We note that the following

slightly more precise a priori energy estimate is true

lu(®)lize < e lu’llz: (6.19)

with pq equals P, (respectively Py) if @ = R”, u® € L*(R™) (respectively
Q =T" u® € L*(T") and the mean value of u° is zero). We have used the
fact that the mean value zero is preserved for the solutions of (1.1) if Q@ = T™.
Now, since in the critical case we have P. > 0 (respectively P; > 0) if @ = R”
(respectively Q = T™), the L*(Q) norm of u(¢) does not increase and we can
patch together again the local solutions into a global one in view of the fact
that on each step we construct a local solution on a time interval of length at

least T.
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