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Abstract

The purpose of this note is to extend, to lower dimensions, the theo-
rem 1.1 below

1. Introduction

In [LS] Lawson and Simons proved the folowing

Theorem 1.1. Let f : M"™ — S™™ n > 5, be an isomelric immersion of
a compact, connected, n-dimensional Riemannian manifold M™ into the unit
(n + m)-dimension sphere S™™™ . If the square of the lenght S of the second

fundamental form of the immersion satisfies
S <2vn—1

then M" is homeomorphic to the sphere 5™.

In this note we shall prove the following.

Theorem 1.2. Let f: M"™ — S™™ be an isomelric immersion of a compact,
connected, n-dimensional Riemannian manifold M™. If S < 2y/n — 1, then the
fundamental group m(M") of M™ is finite and the universal covering M™ of

M™ is compact. Moreover

*The results in this work are part of my doctoral thesis at IME-USP under the advising
of A.C.Asperti.
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(a) If n =2, M?* is diffeomorphic to a sphere S* or to the real projective space
IRP?, according to M?* is orientable or not.

(b) If n =3 and m(M?) = {0}, then M? is diffeomorphic to S®.

(¢c) If n =4 and M* is orientable, then M* is homeomorphic to S*.

Corollary 1.3. Theorems 1.1 and 1.2 are valid if M" is complete, connected

and Sup(S) < 2y/n — 1.

We remark that the result in (a) is sharp, since there exists a minimal
embedding of Clifford torus S'(1/2) x S1(1/2) in S with S = 2y/n — 1, and
the assumption of orientability is necessary, since the Veronese surface in S*
with § < 2y/n —1 (cf. 2.12 in Wei, Indiana Univ. Math. J. Vol 33, No.4,
511-529, 1984). Furthermore, if n = 3 and S < 2, then the same conclusion in
(b) holds without the hypothesis on the simple connectivity (cf. [W], the second
proposition on p. 535). Similarly, if n = 4, S < 3, then the same conclusion in
(¢) holds without the assumption on the orientability, and the same techniques
can be carried over to the submanifolds in the product of spheres (cf. 2.4 in
Wei, Indiana Univ. Math. J. Vol. 33, No. 4, 511-529, 1984).

NOTE ADDED ON SEPTEMBER, 13, 1998: This paper was completed
in early June, 1998. Recently, we were able to extend the above results for
M™ compact and S < 2v/n—1 on M"™. Then the Ricci curvature of M™ is
nonnegative and we have only two cases: (1) There exists a point x in M" such
that for all v # 0 in TM" Ric(v) > 0. In this case M™ admits metric of strictly
positive Ricci curvature and : (i) if n = 2, M? is diffeomorphic to S? or to IR P?;
(ii) if n = 3, M? is orientable with the homology group Hy(M?,Z) = {0} and
M? is diffeomorphic to S* if m(M?) = {0}; (iii) if n > 4, and n is odd or n is
even and M™ is orientable, then M™ is homeomorphic to 5.

(2) For all points x in M™ there exists a v # 0 in TM" such that Ric(v) = 0.
In this case we have that : (i) if n = 2, M? is flat, the submanifold M? is minimal
in S%*™ and M? is isometric to a torus S'(r) X S'(s) if M? is orientable and

m = 1. (ii) If n > 3, the codimension m can be reduced to 1 and, the immersion
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can be viewed as a rotational hypersurface of the a torus S*(r) x S"7!(s) in

S™+ with constant mean curvature. The proofs will appear elsewhere.

2. Notations and preliminares lemmas

In this section we introduce the basic notation and prove some preliminaries
lemmas.

Let M = M"™, n > 2, be a connected n-dimensional Riemannian manifold.
We denote by < > the metric and by || || the respective norm. If R denotes
the curvature tensor of M, then the Ricci tensor (at x € M) is defined by

n

Ric(v,w) = > < R(vi,v)w, v; >,

=1
where v,w lie in the tangent space TM of M at z, and {v;}, is any
orthonormal basis of TJ_{W The Ricci curvature Ric(v) in the unit direction

v € TM and the scalar curvature 7 of M in x are given respectively by
Ric(v) =< Qu,v >, 7=1tr Q, (0)
where Q : TM — TM is given by
< Quv,w > = Ric(v,w), v,w e TM.

Let f: M" — Q"™ m > 1, be an isometric immersion, where Q"™ is a
complete, simply connected (n + m)-dimensional manifold with constant sec-
tional curvature c. For each z € M, (TM)* will denote the normal space of f
at z € M and o« : TM x TM — (TM)L will denote the second fundamental form
of f at z.

If {eg}p—, is any orthonormal basis of (T}M)*, then the Weingarten

operator Az = A., in the normal direction eg, is defined by

es
< Agv,w > = < av,w),ez >, v,w € TN,

The mean curvature vector H = [j[(m) at = and its norm are defined (respec.)

by

= ﬁﬁ(tr Ag)es 1)
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and

H = HI (2)
The square of the lenght of the second fundamental form of f at z is defined by
S=> tr Afg (3).
B=1
We then have the following relations (see [E], p. 141):
> A= 2 (tr Ag)Ag = —Q + (n — 1)l (4)
B=1 /=1
where [ : TM — TM is the identity map, and
S = —T—I—n2H2+n(n— 1)ec. (5)
Firstly we prove the following:

Lemma 2.1. Let V be a real vector space of dimension n > 2, and let
AV =V be a symmetric linear map, with tr A =nH. Denote by < , > and
| || the inner product and respective norm of V.

IfveV, ||v]=1and if \y < Xy < -+ < A, are the eigenvalues of A, then
(i) < A%v,v > < (Tln;l) [tr A —nH?*+2H < Av,v > —H?;
(ii) < Av,o>> A\ > H— \/(”n;l) [tr A2 — nH?).

Proof. Let {v;}”_, be an orthonormal basis of eigenvectors of A, where
Av; = AN, for all @. Assume first that tr A = nH = 0, and let A; be such
that
2 _ 2
A= mzax{/\i }.

Since

then
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Therefore

n
A§§<

If v =3 a;v;, where }° a? =1, it is clear that

=1 =1

)tr A2,

n

1
< A*v,v >< /\§§ (n )tr A?

n

and then (i) follows for H = 0. For (ii), note that < Av,v >> X;. Since
M < H=0and
2
i-(S4) < wongo
i#1 i#1
then

1
Afg(” )trA2

n

N> —\/<n_1)tr A2,
n

which is the desired result (ii) for H = 0.
Suppose now that H # 0 and let B = A — HI, where [ : V — V is the
identity map. Then tr B =0, B> = A? ~2HA+ H*I and tr B? = tr A> —nH?*.

and

The result (i) follows immediately by applying the case H = 0 to B. Since
< Av,v >> Ay and H > Ay, choose v = vy in (i) for B= A — HI. Then

n—1

(M — H)? < ( ) [tr A% — nH?],

n

and (ii) follows for H # 0.

Lemma 2.2. Let f: M™ — Q"™ be an isometric immersion and lel x € M™.
For [j[(;v) # 0, denote by e; = %[:‘[(1’), Ay = A., the Weingarten operator in
direction ey and Ay = min {X | X is eigenvalue of Ai}. For ﬁ(:z:) =0, let
M=0.IfveTM |v|=1 then

n—1

Ric(v) > ( ) (ne — S) + (n — 2)HX\ + nH>. (6)

n



166 E. A. COSTA

Proof. Let {eg}%, be an orthonormal basis of (T}")* such that ¢, = %[:‘](:1:),
when ﬁ(m) # 0. Since tr A; = nH and tr Az = 0, for all 3 > 1, where

Ag = A, it follows from (4) that
Z < Aév,v > 4+ < Alv,o> —nH < Ayv,v> = —Ric (v)+(n—1)c (7)
£=2

For ﬁ(m) = 0, choose {eg}5_; be an orthonormal basis of (TM™)L ] where
Ag = A.,, tr Ag =0, for all 3 and then (7) also follows from (4).Now, applying
the lemma 2.1 for each Ag in (7), we get (6).

Lemma 2.3. Let M = M”, n > 4, be a connected, compact, n-dimensional
Riemannian manifold such that M is orientable if n is even, M = M™ the
universal covering of M and m(M) the fundamental group of M. Denote by
H,(M,Z) and by H,(M,Z) the p-dimensional homology groups, with integer
coefficients, of M and M, respectively. If H\(M,Z) is finite, M is compact
and H,(M,Z) = HP(M,Z) = {0}, for all p = 2,3,---,n — 2 then M" is

homeomorphic to a sphere S™.

Proof. Firstly we prove that M is orientable if n is odd. In fact, if M is not
orientable then by coroll.7.12 of ([B], p.346), H,(M,Z ) = {0}. But the Euler
characteristic x(M) of M is zero.For other side x(M) = by — by + ... — by,
where b; = rank H;(M,Z).Then x(M) = 14 b, (contradiction !).Since
H(M,Z ) is finite, the torsion part of H\(M,Z )is H,(M,Z). But by universal
coefficient theorem ([B], p.282, corollary 7.3) the cohomology group H'(M,Z)
is isomorphic to direct sum of F; and T;_,, where F; and T; are the free part and
torsion part,respectively, of H;(M,Z ) and then H"~'(M,Z ) = is isomorphic
to a F,_;. Now by the Poincare duality ([B], p.339) H,(M,Z) is isomorphic
toa H"'(M,Z) and so H,(M,Z ) = {0}. Again, by the universal coefficient
theorem H'(M,Z) = {0} and by the Poincare duality H,_(M,Z) = {0}.
Then M is a homology sphere. The above arguments applied to M tells us that

it is a homology sphere. Since m1(M) = {0}, by the Hurewicz isomorphism
theorem([S],p.398, theorem 5) the i-th homotopy group of M WZ(M”) = {0},
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foralli =1,2,---,n—1 and m,(M") is isomorphic a Z . Let now ¢ : S* — M"
be a representative for a generator of wn(M”) g is a mapping between simply
connected CW complex which induces isomorphisms of homology groups. Hence
by Whitehead theorem ([S],p.399,theorem 9) and ([S], p.406, theorem 25) g is
a weak homotopy equivalence.Then by ([S],p.405,corollary 24) g is a homotopy
equivalence and M™ is indeed a homotopy sphere. By the generalized Poincaré
conjecture (Smale, n > 5,Freedman n = 4), we have that M is homeomorphic
to a sphere. Therefore we have a homology sphere M which is covered by a
sphere M and so by a theorem of Sjerve [S1], 7 (M) = {0} and hence M is also

homeomorphic to a sphere. This proves the lemma 2.3.

3. Prof of Theorem 1.2

Let € M” and v a unity vector in T, M. Define Sy = 0 if H(z) = 0 and
Sy = trA?, where % if H(z) # 0. Choosing ¢ = 1 in lemma 2.2 and
applying lemma 2.1 (ii) to (6) we obtain

Ric (v) > (21) :nc FomH? — 5 —(n— z)H\/(nnTl) (Sy — nm)J . (8)
Since S > Sy, then
Ric (v) > (22) :nc FomH? — 5 —(n— Z)H\/<n”j) (5 — nm)J . (9)

(10)

Ric (v) > (n — 1) [1 5 « ]

Tovn 1 Vol
where a = \/% K\/m — 1) VS —nH? — (\/er 1) \/W} . It follows
from (10) that Ric (v) > 0, forall z € M™, v € TM, || v |= 1if S <
2v/n — 1 on M™ and then by Myers’ theorem, M™ is compact and T (M") is
finite.

If n = 2, applying the Gauss-Bonnet formula, we obtain part (a) of Theorem
1.2.

If n =3 and m(M?) = 0, (b) follows by employing Hamilton’s theorem [H].

If n = 4, since S < 2v/3 < 4, by using theorem 4 of [LS], we obtain that
Hy(M*,Z) = 0. Let now 7 : M* — M* be the covering map. The above
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arguments applied to the isometric immersion f o m to S**™, tells us that
HQ(M47 Z ) = 0. But since that m;(M?) is finite then Hy(M*, Z) is finite ([B],
p.174, theorem 3.4) and the case n = 4 follows directly from lemma 2.3.

Remark 3.1. Formula (9) was obtained by Leung [L].

Proof of Corollary 1.3. If Sup S < 2y/n — 1 then by using (10), we obtain
that Ric (v) > § > 0, where

d = n2— 1(2\/n — 1 —Sup 9).

Then, the result follows from Bonnet-Myers’ theorem.
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