ON THE SYMMETRIC AND REES ALGEBRAS OF (n,k)-CYCLIC IDEALS

Paulo Brumatti* Aparecida Francisco da Silva

Abstract

Ordinary graph ideals were introduced and studied by Villarreal, Simis and Vasconcelos. Some higher order edge ideals have been introduced by Conca and De Negri [4], they have shown that if Γ is a tree then the ideal generated by all the square free monomial $X_{i_1} \ldots X_{i_s}$ such that $\{x_{i_1}, \ldots, x_{i_s}\}$ is a path in Γ is a normal ideal of linear type. We prove that $\dim_{Krull} S(I) = \dim_{Krull} \mathcal{R}(I)$ when Γ is a cycle and deduce whether the ideal I is of linear type or not in many cases.

1 Introduction

Let $R = F[X_1, ..., X_n]$ be a polynomial ring over a field F and I an ideal of R. We denote by S(I) and by $\mathcal{R}(I)$ the symmetric algebra and the Rees algebra of I, respectively. Suppose that Γ is a graph with vertex set $\underline{X} = \{X_1, ..., X_n\}$ and edges E. In [10], Villarreal defined the graph ideal $I(\Gamma)$ as the ideal generated by the monomials of the form X_iX_j where $(X_i, X_j) \in E$. Later, Conca and De Negri [2], generalized this notion considering the ideal $I_k(\Gamma)$ generated by all monomials $X_{i_1} ... X_{i_k}$ such that $X_{i_1}, ..., X_{i_k}$ is a path in Γ . Further they showed that if Γ is a tree then $I_k(\Gamma)$ is of linear type and $\mathcal{R}(I_k(\Gamma))$ is normal and Cohen–Macaulay. For ordinary graph ideal of trees (e.g. when t = 2) these results were already known in [8].

Let the graph Γ be a cycle of length n, and let $1 \leq k \leq n$. The main purpose of this article is to determine the lengths k of the paths in Γ such that the ideal $I_k(\Gamma)$ is of linear type.

We answer the above question for the following cases:

^{*}Partially supported by a CNPq grant

- 1) If k = n 1 then $I_{n-1}(\Gamma)$ is of linear type and $S(I_{n-1}(\Gamma))$ is Cohen-Macaulay (Theorem 3.2).
- 2) If n is odd and k = n 2 or $k = \frac{n-1}{2}$ then $I_k(\Gamma)$ is of linear type and $S(I_k(\Gamma))$ is Cohen-Macaulay (Theorem 3.4 and Corollary 3.6).
 - 3) If gcd(n, k) = r > 1 then $I_k(\Gamma)$ is not of linear type (Theorem 3.7).
- 4) If gcd(n,k) = 1 and $\left[\frac{n-1}{2}\right] < k \le n-3$ then $I_k(\Gamma)$ is not of linear type (Theorem 3.8).
- 5) If gcd(n, k) = 1, $kl \equiv 1 \pmod{n}$ and $1 < k, l \leq \left[\frac{n-1}{2}\right]$ then $I_k(\Gamma)$ is not of linear type (Theorem 3.9a).
- 6) If gcd(n, k) = 1, $kl \equiv 1 \pmod{n}$, $1 < k \leq \left[\frac{n-1}{2}\right], \left[\frac{n-1}{2}\right] < l < n$ and n = t(n-l) + a, $2 \leq a < n-l$ then $I_k(\Gamma)$ is not of linear type (Theorem 3.9b).

In Section 2, we define the (n, k)-cyclic ideal I_k , and we give a linear presentation of it when $k \geq \left[\frac{n}{2}\right]$. In the same section we use a convenient monomial order on $R[T_1, ..., T_n]$ in order to show that the Krull dimension of $S(I_k)$, $1 \leq k \leq n$, equals n+1 and so it coincides with the Krull dimension of $\mathcal{R}(I_k)$.

2 Notation and Preliminary results

Let us introduce some terminology and fix the notation that will be used throughout. $R = F[X_1, \ldots, X_n]$ will be a polynomial ring over a fixed field F. Let $I = (g_1, \ldots, g_p)$ be an ideal of R.

If I has a free presentation

$$R^m \xrightarrow{\gamma} R^p \xrightarrow{\beta} I \longrightarrow 0,$$

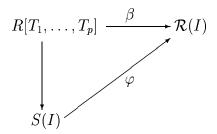
 $\gamma = (a_{ij})$ then the symmetric algebra S(I) of I is the quotient $R[T_1, \ldots, T_p]/q_{\gamma}(I)$. Here $R[T_1, \ldots, T_p]$ is a polynomial ring over R and $q_{\gamma}(I)$ is its ideal generated by the 1-forms

$$F_j = \sum a_{ij} T_i, \qquad 1 \le j \le m.$$

The Rees algebra $\mathcal{R}(I)$ of I is the subring $R[g_1T, \ldots, g_pT]$ of R[T] and hence we obtain an R-map

$$\beta \colon R[T_1, \dots, T_p] \to \mathcal{R}(I)$$
 defined by $T_i \mapsto g_i T$.

The kernel $q_{\infty}(I)$ of this map is generated by all forms $F(T_1, \ldots, T_p)$ such that $F(g_1, \ldots, g_p) = 0$. In particular $q_{\gamma}(I) \subseteq q_{\infty}(I)$ and there exist a canonical surjection $\varphi : S(I) \to \mathcal{R}(I)$ such that the following diagram is commutative:



The ideal I is of linear type if φ is an R-isomorphism of rings (ie, $q_{\gamma}(I) = q_{\infty}(I)$).

Definition 2.1 The ideal $I_k \subset R$ is (n,k)-cyclic, $1 \leq k \leq n$, if I_k is generated by the set of square free monomials M_i , i = 1, ..., n, $M_i = \prod_{v=1}^k X_{i+v}$. Here and in the sequel the indices are considered in \mathbb{Z}_n .

Remark 2.2 a) We could define I_k even for k > n. In this case $I_k = X.I_{n-k}$, where $X = X_1...X_n$ according to the definition. This way, $S(I_k) \simeq S(I_{n-k})$ and $\mathcal{R}(I_k) \simeq \mathcal{R}(I_{n-k})$. As we can see, $k \leq n$ is not a real restriction.

b) Notice that if k < n then the minimal number of generators of I is n.

Assume that $1 \leq k \leq n-1$ and let $I_k = (M_1, \ldots, M_n)$ be the (n,k)-cyclic ideal. Consider $\beta \colon R^n \to I_k$ defined by $\beta(e_i) = M_i$ where $\{e_1, \ldots, e_n\}$ is the canonical basis of R^n . It is known that $\ker \beta$ is generated by

$$\sigma_{ij} = \frac{M_i}{d_{ij}} \cdot e_j - \frac{M_j}{d_{ij}} \cdot e_i, \qquad d_{ij} = \gcd(M_i, M_j).$$

Then we have the following proposition:

Proposition 2.3 The ideal I_k admits the free presentation

$$R^m \xrightarrow{\overline{\alpha}} R^n \xrightarrow{\beta} I_k \longrightarrow 0.$$

Here $m = \binom{n}{2}$, $\overline{\alpha}$ is an $n \times m$ matrix given by the relations σ_{ij} , and $\alpha_{n \times n}$ is the submatrix of $\overline{\alpha}$,

$$\alpha = \begin{pmatrix} -X_{k+2} & 0 & 0 & \dots & 0 & X_1 \\ X_2 & -X_{k+3} & 0 & \dots & 0 & 0 \\ 0 & X_3 & -X_{k+4} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -X_{k+n} & 0 \\ 0 & 0 & 0 & \dots & X_n & -X_{k+1} \end{pmatrix}.$$

Proof. The existence of this free presentation was justified above. Since

$$\sigma_{(j-1)j} = X_j \cdot e_j - X_{j+k} \cdot e_{j-1}$$

for every j, one can rearrange the indices in an appropriate manner in order to obtain α as the submatrix of $\overline{\alpha}$ formed by its first n columns.

If $M_i = \prod_{v=1}^k X_{i+v}$, we denote $supp(M_i) = \{X_{i+1}, \dots, X_{i+k}\}$ and let N be the submodule of \mathbb{R}^n generated by the set $\{\sigma_{(j-1)j} \mid j \in \mathbb{Z}\}$. Recall that the indices are considered modulo n.

Lemma 2.4 Assume that i and j, $1 \le i < j \le n$, satisfy one of the conditions:

- (i) $supp(M_i) \cap supp(M_j) \neq \phi$,
- (ii) n = 2k and $supp(M_i) \cap supp(M_j) = \phi$, or
- (iii) n = 2k + 1 and $supp(M_i) \cap supp(M_j) = \phi$. Then $\sigma_{ij} \in N$.

Proof. If $a \in \mathbb{Z}$ we define the F-automorphism (of rings) $\varphi_a : R \to R$ by $\varphi_a(X_i) = X_{i+a}$. We will also denote by φ_a the F-isomorphism of F-vector

spaces $\varphi_a: \mathbb{R}^n \to \mathbb{R}^n$ given by

$$\varphi_a(\sum_{i=1}^n f_i e_i) = \sum_{i=1}^n \varphi_a(f_i).e_{i+a}.$$

Notice that $\varphi_a(\sigma_{ij}) = \sigma_{(i+a)(j+a)}$, therefore $\varphi_a(N) = N$ and thus we can suppose i = 1.

Since $X_j e_j \equiv X_{j+k} e_{j-1} \pmod{N}$ it is easy to see by induction over j-r, $1 \leq r \leq j$, in the first case and by induction over r in the second, that

$$X_r \dots X_j \cdot e_j \equiv X_{r+k} \dots X_{j+k} \cdot e_{r-1} \pmod{N} \tag{*}$$

and

$$X_{r+1} \dots X_{r+n-k} \cdot e_{r+n-k} \equiv X_1 \dots X_{n-k} \cdot e_{n-k} \pmod{N}$$
 (**)

In particular, when r = k + 1 we have:

$$X_{k+2} \dots X_n \cdot X_1 \cdot e_{n+1} \equiv X_1 \dots X_{n-k} \cdot e_{n-k} \pmod{N}$$
 (**)

In order to prove i), one observes that if $supp(M_1) \cap supp(M_j) \neq \phi$ then:

a)
$$\sigma_{1j} = X_2 \cdots X_j \cdot e_j - X_{k+2} \cdots X_{j+k} \cdot e_1$$
, if $j \leq k$ and $j + k \leq n + 1$.

b)
$$\sigma_{1j} = X_{u+1} \cdots X_j \cdot e_j - X_{k+2} \cdots X_n \cdot X_1 \cdot e_1$$
, if $j \le k, n+2 \le j+k$ and $u = j+k-n$.

c)
$$\sigma_{1j} = X_{u+1} \cdots X_j \cdot e_j - X_{j+1} \cdots X_n \cdot X_{n+1} \cdot e_1$$
, if $k < j, n+2 \le j+k$ and $u = j+k-n$.

In case a), one sets r=2 in (*) and obtains that $\sigma_{1j} \in N$. In c) one sets r=j+1 in (*), hence $\sigma_{1j} \in N$. In case b) use that j=u+n-k and it follows from (**) that $\sigma_{1j} \in N$.

The assertions ii) and iii) are dealt with in analogous way.

Proposition 2.5 Let $I_k \subset R$ be (n,k)-cyclic ideal and $k \geq \left[\frac{n}{2}\right]$. Then I_k has the following free presentation

$$R^n \xrightarrow{\alpha} R^n \xrightarrow{\beta} I \longrightarrow 0,$$

where $\beta(e_i) = M_i$ and

$$\alpha = \begin{pmatrix} -X_{k+2} & 0 & 0 & \dots & 0 & X_1 \\ X_2 & -X_{k+3} & 0 & \dots & 0 & 0 \\ 0 & X_3 & -X_{k+4} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -X_{k+n} & 0 \\ 0 & 0 & 0 & \dots & X_n & -X_{k+1} \end{pmatrix}.$$

Proof. According to the assumption $k \geq \left[\frac{n}{2}\right]$ we have that some of the conditions of Lemma 2.4 is satisfied. Then Lemma 2.4 implies that $\text{Ker}\beta = N$ where N is generated by $\{\sigma_{(j-1)j} \colon j \in \mathbb{Z}\}$.

We assume from now on that $\overline{R} = R[T_1, \ldots, T_n]$, and if $1 \leq k < n$, $\overline{\alpha}$ is the matrix defined in Proposition 2.3. We denote $q_k := q_{\overline{\alpha}}(I_k) \subseteq \overline{R}$, $q_{\infty}(k) = q_{\infty}(I_k) \subseteq \overline{R}$ and $\overline{q}_k = (g_1, \ldots, g_n)$, where $g_j = X_{j+1}T_{j+1} - X_{j+1+k}T_j$ for all j. Notice that $\overline{q}_k \subseteq q_k \subseteq q_{\infty}(k)$ and by the last Proposition $\overline{q}_k = q_k$ if $n > k \geq \left[\frac{n}{2}\right]$.

In what follows we use the reverse lexicographic order on \overline{R} induced by the following order on the variables

$$X_n > \ldots > X_1 > T_n > \ldots > T_1.$$

If $f \in \overline{R}$ we denote by in(f) the initial term of f with respect to this order. If $f, g \in \overline{R}$ we denote by S(f, g) the S-polynomial of f and g.

Proposition 2.6 Let I_k be the (n,k)-cyclic ideal. Then $dimS(I_k) = n+1 = dim\mathcal{R}(I_k)$.

Proof. Since R is a domain of dimension n, $\dim \mathcal{R}(I_k) = n+1$, so $\dim S(I_k) \geq n+1$.

If k = n we have that $I_n = (X_1 \cdots X_n)$ i.e., I_n is a free module of rank 1 and then $S(I_n) \simeq \mathcal{R}(I_n) \simeq R[T]$.

On the other hand, if $1 \leq k < n$ we know that $g = (g_1, \ldots, g_{n-1}) \subset \overline{q}_k \subseteq q_k$ and $\{g_1, \ldots, g_{n-1}\}$ is a regular sequence on \overline{R} , because $\{X_2T_2, \ldots, X_nT_n\}$ is a regular sequence and $X_{j+1}T_{j+1} = in(g_j), j = 1, ..., n-1$ [3,Proposition 15.15]. This way we have height $(q_k) \geq n-1$ and $\dim S(I_k) \leq n+1$.

3 Are (n,k)-cyclic ideals of linear type?

The main purpose of this section is to determine pairs $(n, k), 1 \le k \le n$ that we can decide if I_k is of linear type or not.

If k = n then I_n is a free R-module of rank 1 and $S(I_n) \simeq \mathcal{R}(I_k) \simeq R[T]$. Hence I_k is the linear type and $S(I_k)$ is a regular ring.

When k = 1 we have that $I_1 = (X_1, ..., X_n)$ is generated by a regular sequence. Thus is follows from [3] that it is of linear type.

In the case n is odd and k = 2, it was proved by Villarreal in [10] that I_2 is of linear type.

Hence, till the end of this section, we will suppose that $n \geq 5$ and $3 \leq k \leq n-1$. For readers' convenience we summarize the contents of the section.

- 1) If k = n 1 then I_{n-1} is of linear type and $S(I_{n-1})$ is Cohen-Macaulay.
- 2) If n is odd and k = n 2 or $k = \frac{n-1}{2}$ then I_k is of linear type and $S(I_k)$ is Cohen-Macaulay.
 - 3) If gcd(n, k) = r > 1 then I_k is not of linear type.
 - 4) If gcd(n,k) = 1 and $\left[\frac{n-1}{2}\right] < k \le n-3$ then I_k is not of linear type.
- 5) If gcd(n,k) = 1, $kl \equiv 1 \pmod{n}$, and $1 < k, l \leq \left\lfloor \frac{n-1}{2} \right\rfloor$ then I_k is not of linear type.

6) If gcd(n,k) = 1, $kl \equiv 1 \pmod{n}, 1 < k \leq [\frac{n-1}{2}], [\frac{n-1}{2}] < l < n$ and $n = t(n-l) + a, 2 \leq a < n-l$ then $I_k(\Gamma)$ is not of linear type.

Using the notation adopted we have $S(I_k) \simeq \overline{R}/q_k$. From Proposition 2.3 $\overline{q}_k \subseteq q_k$ and further if $k \geq \left[\frac{n}{2}\right]$, according to Proposition 2.5, we have that $\overline{q}_k = q_k$. It is well-known that I_k is of linear type if and only if q_k is a prime ideal. Therefore we have to verify whether q_k is prime or not.

Let $\overline{\alpha}$ be the matrix given by the Proposition 2.3 and $1 \leq t \leq n$, the ideal generated by the $t \times t$ minors of $\overline{\alpha}$ will be denoted by $I_t(\overline{\alpha})$. With this notation we have:

Lemma 3.1 Let $I_k \subset R$ be (n,k)-cyclic ideal, $1 \leq k \leq n-1$. Then $n-1 = rank(\overline{\alpha})$ and $height(I_t(\overline{\alpha})) \geq n-t+1$ for all $t, 1 \leq t \leq n-1$, i.e., I_k satisfies \mathfrak{F}_1 .

Proof. Since $rank(I_k) = 1$ and $R^m \xrightarrow{\overline{\alpha}} R^n \xrightarrow{\beta} I_k \longrightarrow 0$, we have that $n - 1 = rank(\overline{\alpha})$.

Now, by Proposition 2.3 we know that α , given by Proposition 2.5, is a submatrix of $\overline{\alpha}$, hence $I_t(\alpha) \subseteq I_t(\overline{\alpha})$. It is easy to see that for every $t, 1 \le t \le n-1$, $I_t(\alpha)$ contains the ideal J_t where J_t is the ideal generated by all square free monomials of degree t. Further it is well know by the theory of Stanley-Reisner rings that $height(J_t) = n - t + 1$. Thus the lemma is proved.

Theorem 3.2 If k = n - 1 then I_k is of linear type and $S(I_k)$ is Cohen-Macaulay.

Proof. In this case

$$\overline{q}_{n-1} = q_{n-1} = (X_2 T_2 - X_1 T_1, \dots, X_n T_n - X_{n-1} T_{n-1}, X_1 T_1 - X_n T_n)$$

and it is easy to see that $q_{n-1} = (f_1, \ldots, f_{n-1})$ where $f_j = X_j T_j - X_1 T_1$. In other words we have the following presentation for I_{n-1} :

$$R^{n-1} \xrightarrow{\alpha'} R^n \longrightarrow I_{n-1} \longrightarrow 0,$$

where α' is the $n \times (n-1)$ matrix

$$\alpha' = \begin{pmatrix} -X_1 & -X_1 & \dots & -X_1 \\ X_2 & 0 & \dots & 0 \\ 0 & X_3 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & X_n \end{pmatrix}.$$

Since $rank(\alpha') = n - 1$ then I_{n-1} is an ideal of projective dimension 1. But we know that if $height(I_t(\alpha')) \ge n - t + 1$, $1 \le t \le n - 1$, thus by [4, Theorem 1.1] we obtain that I_{n-1} is of linear type and $S(I_{n-1})$ is Cohen-Macaulay.

Now assume that $\left[\frac{n-1}{2}\right] \leq k \leq n-2$ and denote r=n-k-1. Consider $I_r=(\tilde{M}_1,\ldots,\tilde{M}_n)$ where $\tilde{M}_j=X_{j+1}\ldots X_{j+r}$. Let ψ_r be the column matrix given by

$$\psi_r = \begin{pmatrix} \tilde{M}_{k+2} \\ \tilde{M}_{k+3} \\ \vdots \\ \tilde{M}_{k+n} \\ \tilde{M}_{k+n+1} \end{pmatrix} = \begin{pmatrix} \tilde{M}_{k+2} \\ \tilde{M}_{k+3} \\ \vdots \\ \tilde{M}_{k} \\ \tilde{M}_{k+1} \end{pmatrix}.$$

Proposition 3.3 If $\left[\frac{n-1}{2}\right] \le k \le n-2$ and r=n-k-1 then

$$0 \longrightarrow R \xrightarrow{\psi_r} R^n \xrightarrow{\alpha} R^n \xrightarrow{\beta} I_k \longrightarrow 0$$

is a minimal free resolution of I_k . Here α is the matrix of the presentation given by Proposition 2.5.

Proof. A direct verification shows that $\alpha \psi_r = 0$. Notice that $rank(\alpha) = n-1$ and $grade(I_1(\psi_r)) \geq 2$ since $r \leq \frac{n}{2}$. Hence by the acyclicity criterion of Buchsbaum and Eisenbud we have that the complex

$$0 \longrightarrow R \xrightarrow{\psi_r} R^n \xrightarrow{\alpha} R^n \xrightarrow{\beta} I_k \longrightarrow 0$$

is a free resolution of I_k .

This resolution is minimal because $\psi_r(R) \subseteq \mathbf{m}R^n$ and $\alpha(R^n) \subseteq \mathbf{m}R^n$ where $\mathbf{m} = (X_1, \dots, X_n)$.

Theorem 3.4 If n is odd and k = n - 2 then I_k is of linear type and $S(I_k)$ is Cohen-Macaulay.

Proof. Observe that if k = n - 2 then r = n - k - 1 = 1 and the entries of the column ψ_1 form a regular sequence. Since I_{n-2} satisfies \mathcal{F}_1 , by Theorem 7.5.1 of [9] and by Proposition 3.3 we have that $(I_{n-2})_{\mathbf{m}}$, where $\mathbf{m} = (X_1, \dots, X_n)$, is of linear type and $S((I_{n-2})_{\mathbf{m}}) = \frac{R_{\mathbf{m}}[T_1, \dots, T_n]}{(\overline{q}_k)_{\mathbf{m}}}$ is Cohen-Macaulay. Then $(S(I_{n-2}))_{\overline{\mathbf{m}}}$ with $\overline{\mathbf{m}} = (X_1, \dots, X_n, T_1, \dots, T_n)$ is a Cohen-Macaulay domain, and by [1,Corollary 2.2.15], it follows that $S(I_{n-2})$ is Cohen-Macaulay domain.

Now consider the case $3 \le k \le n-2$ with $\gcd(k,n)=1$. Let $2 \le l \le n-2$ be such that $lk \equiv 1 \pmod{n}$ and set l'=n-l. Define the F-automorphism δ_k of the ring $\overline{R}=R[T_1,\ldots,T_n]$ by $\delta_k(X_i)=T_{il'}$ and $\delta_k(T_i)=X_{il'}$. Let k'=n-k and observe that $\delta_k^{-1}=\delta_l$, where $\delta_l(X_i)=T_{ik'}$ and $\delta_l(T_i)=X_{ik'}$.

Lemma 3.5 If $3 \le k \le n-2$ and gcd(n, k) = 1 then:

- a) $\delta_k(\overline{q}_k) = \overline{q}_l$
- b) $\delta_k(q_{\infty}(k)) = q_{\infty}(l)$ and $\mathcal{R}(I_k) \simeq \mathcal{R}(I_l)$

Proof. a) Since $\delta_k^{-1} = \delta_l$ it is sufficient to observe that

$$\delta_k(X_i T_i - X_{i+k} T_{i-1}) = X_{n-il} T_{n-il} - X_{(n-il)+l} T_{(n-il)-1}.$$

b) Let $B=\overline{R}[t]$ be a polinomial ring over \overline{R} , it is known that $q_{\infty}(k)=J\cap\overline{R}$, where $J=(T_1-tM_1,\ldots,T_n-tM_n)\subset B$. J is a binomial ideal and by [3,corollary 3.1], $q_{\infty}(k)$ is a binomial ideal, ie, $q_{\infty}(k)$ is generated by polynomials of type $F=NT_{i_1}T_{i_2}\cdots T_{i_r}-LT_{j_1}\cdots T_{j_r}$, where N,L are monomials in $R, i_1\leq i_2\cdots\leq i_r, \ j_i\leq\cdots\leq j_r$ and $j_r\leq i_r$. For all $i,X_iT_i\equiv_{\overline{q}_k}X_{i+k}T_{i-1}$ and $q_{\infty}(k)$ is a prime ideal it is easy to show using induction over r and i_r-j_r that $X^mF\in\overline{q}_k$ for some $m\in\mathbb{N}$, where $X=X_1\ldots X_n$. So, if m is sufficiently great $X^mq_{\infty}(k)\subseteq\overline{q}_k$, but $\delta_k(X)=T=T_1\cdots T_n$ and $\delta_k(\overline{q}_k)=\overline{q}_l$ then $T^m\delta_k(q_{\infty}(k))\subseteq\overline{q}_l\subseteq q_{\infty}(l)$. Observe that $\delta_k(q_{\infty}(k))$ and $q_{\infty}(l)$ are prime ideals and they have the same height, so $\delta_k(q_{\infty}(k))=q_{\infty}(l)$ and $\mathcal{R}(I_k)\simeq\mathcal{R}(I_l)$.

Corollary 3.6 If n is odd and $l = \frac{n-1}{2}$ then I_l is of linear type and $S(I_l)$ is Cohen-Macaulay.

Proof. Obviously $\frac{n-1}{2}(n-2) \equiv 1 \pmod{n}$, and by Lemma 3.2 we have that $\delta_k(q_k) = q_l$ where k = n-2. But $S(I_k) = \overline{R}/q_k$ and $S(I_l) = \overline{R}/q_l$ because $l = \frac{n-1}{2}$. Therefore $S(I_k) \simeq S(I_l)$ and by Theorem 4.2 we are done.

Theorem 3.7 If $3 \le k \le n-2$ and gcd(k,n) = r > 1 then I_k is not of linear type.

Proof. If $X = X_1 \dots X_n$, t = n/r and s = k/r then

$$X^{s} = X_{1}^{s} \dots X_{n}^{s} = (X_{1} \dots X_{k})(X_{k+1} \dots X_{2k}) \dots (X_{(t-1)k+1} \dots X_{tk})$$

and we rewrite it in the following form

$$X^{s} = (X_{2} \dots X_{k+1})(X_{k+2} \dots X_{2k+1}) \dots (X_{(t-1)k+2} \dots X_{tk} X_{1}).$$

Then $g = T_n T_k \dots T_{(t-1)k} - T_1 T_{k+1} \dots T_{(t-1)k+1}$ is some relation of the Rees algebra of I_k but it is not in the defining ideal of $S(I_k)$.

Our next goal is to deal with the case when $\gcd(n,k)=1$ and $\left[\frac{n}{2}\right] \leq k \leq n-3$.

In what follows, we use the reverse lexicographic order on $\overline{R} = R[T_1, \dots, T_n]$ as defined in the second paragraph.

In [4, Proposition 1.10] Eisenbud and Sturmfels proved the following proposition.

Proposition [E-S] Let B be a binomial ideal and let M be a monomial ideal in $\overline{R} = F[X_1, ..., X_n, T_1, ..., T_n]$. If $f \in B + M$ and f' is the sum of those terms of f that are not individually contained in B + M then $f' \in B$.

Theorem 3.8 If $\left[\frac{n}{2}\right] < k \le n-3$ with gcd(n,k) = 1 then I_k is not of linear type.

Proof. We have that $S(I_k) \simeq \overline{R}/q_k$ where $q_k = (g_1, \ldots, g_n)$,

$$g_i = X_{i+1}T_{i+1} - X_{i+1+k}T_i, \qquad 1 \le i \le n-2,$$

 $g_n = X_{k+1}T_n - X_1T_1$ and $g_{n-1} = X_nT_n - X_kT_{n-1}$.

Set $h_1 = S(g_n, g_{n-1})$ and if $2 \le i \le k+1$, define by induction $h_i = S(h_{i-1}, g_{n-i})$. An easy induction argument shows that

$$h_i = (\prod_{w=w_0}^{k+1} X_w) T_{n-i} - X_1 (\prod_{v=v_0}^{n} X_v) T_1$$

where $w_0 = k - i + 1$ and $v_0 = n - i + 1$.

Let $t, a \in \mathbb{N}$ be such that $n = t(n-k) + a, 1 \le a < n-k$. Since $\gcd(k, n) = 1$ and $\left[\frac{n}{2}\right] < k \le n-3$ we have that $t \ge 2, k-a = (t-1)(n-k)$ and $t(n-k) \ge k+1$.

Now we consider two cases.

First case. $t(n-k) \ge k+2$.

According to the expression for h_i we have that

$$h_a = (\prod_{w=w_1}^{k+1} X_w) T_{t(n-k)} - X_1 (\prod_{v=1}^{a} X_{t(n-k)+v}) T_1$$

where $w_1 = k - a + 1 = (t - 1)(n - k) + 1$. Define $m_1 = S(h_a, g_{(t-1)(n-k)})$ and $m_s = S(m_{s-1}, g_{(t-s)(n-k)})$ for $2 \le s \le t - 1$. Then by induction one obtains $m_{t-1} = X_1(U_1 - U_2) \in q_k$, where

$$U_1 = (\prod_{w=k-a+2}^{k+1} X_w) (\prod_{q=1}^t T_{q(n-k)}), \quad U_2 = (\prod_{v=1}^a X_{t(n-k)+v}) (\prod_{q=1}^{t-1} T_{q(n-k)+1}).T_1.$$

If we suppose that q_k is a prime ideal then $U = U_1 - U_2 \in q_k$. But T_n and X_1 do not divide any term of U, then $U \in B + M$ where $B = (g_1, \ldots, g_{n-2})$ and $M = X_k T_{n-1} \cdot \overline{R}$.

Since $in(g_i) = X_i T_i$ for all $i, 1 \le i \le n-2$ we have that $\{g_1, \ldots, g_{n-2}\}$ is a Gröbner basis for B, because $\gcd(in(g_i), in(g_j)) = 1$, for $1 \le i < j \le n-2$.

Observe that T_{n-1} does not divide U_2 , thus if $U_2 \in B + M$ we have that $U_2 \in B$. But this is impossible because X_iT_i does not divide U_2 for any i = 1, 2, ..., n-2.

Since $U = U_1 - U_2 \in B + M$ and $U_2 \notin B + M$ we have that $U_1 \notin B + M$. Thus, by Proposition E-S, $U \in B$. But $U_1 = in(U)$, therefore X_iT_i divides U_1 for some $i, 1 \le i \le n-2$. Then there exists $w, (t-1)(n-k) + 2 \le w \le k+1$, and s, 2 les $\le t$ such that w = s(n-k). Hence s = t and $t(n-k) \le k+1$ which is a contradiction with $t(n-k) \ge k+2$. Therefore $U \notin q_k$ and q_k is not a prime ideal.

Second case. t(n-k) = k+1.

Let b = n - k - 2, then we have

$$h_b = \left(\prod_{w=(t-1)(n-k)+2}^{k+1} X_w\right) \cdot T_{k+2} - X_1 \left(\prod_{v=k+3}^n X_v\right) \cdot T_1.$$

Set $H_1 = S(h_b, g_{w_1})$ where $w_1 = (t-1)(n-k)+1$, and define inductively $H_j = S(H_{j-1}, g_{(t-j)(n-k)+1})$ for $2 \le j \le t-1$. It is easy to see that

$$H_{t-1} = X_2 \left(\prod_{w=w_1+2}^{k+1} X_w \right) \left(\prod_{r=1}^t T_{r(n-k)+1} \right) - X_1 \left(\prod_{v=k+3}^n X_v \right) \cdot T_1 \left(\prod_{r=1}^{t-1} T_{r(n-k)+2} \right).$$

Define $H = S(H_{t-1}, g_{n-k})$, then $H = X_1(W_1 - W_2) = X_1W$ where

$$W_1 = X_2 \left(\prod_{w=w_1+2}^{k+1} X_w \right) \cdot T_{n-k} \cdot \left(\prod_{r=2}^{t} T_{r(n-k)+1} \right),$$

$$W_2 = X_{n-k+1} \left(\prod_{v=k+3}^{n} X_v \right) \cdot T_1 \cdot \left(\prod_{v=1}^{t-1} T_{v(n-k)+2} \right).$$

Now, arguments similar to those of the previous case show that $W \notin q_k$. Therefore q_k is not prime.

When $k \leq \left[\frac{n-1}{2}\right]$, by Proposition 2.3,we have that $q_k = \overline{q}_k + q'_k$, where q'_k is generated by binomials of degree $\geq k$ in the variables X_1, \ldots, X_n .

Theorem 3.9 Let $k \geq 3$, gcd(n, k) = 1 and $lk \equiv 1 \pmod{n}$, $1 \leq l < n$. Then I_k is not of linear type in the following cases:

a)
$$1 < l, k \le \left[\frac{n-1}{2}\right]$$

b)
$$1 < k \le \left[\frac{n-1}{2}\right]$$
, $\left[\frac{n-1}{2}\right] < l \text{ and } n = t(n-l) + a, \text{ with } 2 \le a < n-l$

Proof. a) Here, we define $h_1 = S(g_n, g_k)$ and $h_i = S(h_{i-1}, g_{ik})$. It is not difficult to see that

$$h_i = X_{(i+1)k+1} (\prod_{v=0}^i T_{vk}) - X_1 (\prod_{t=0}^i T_{tk+1}).$$

Thus, we have that for i = l - 1,

$$h_{l-1} = X_2(\prod_{v=0}^{l-1} T_{vk}) - X_1(\prod_{t=0}^{l-1} T_{tk+1}).$$

Set $H = S(h_{l-1}, g_1)$, hence $H = T_1G$ where

$$G = X_{2+k}T_nT_k \dots T_{(l-1)k} - X_1T_2T_{k+1} \dots T_{(l-1)k+1}.$$

Now, if q_k is a prime ideal then $G \in q'_k = \overline{q}_k + q'_k$. But q'_k is generated by binomials of degree $\geq k$ in the variables X_1, \ldots, X_n , and thus $G \in q_k$. Observe that T_1 and X_2 do not divide any term of G, therefore $G \in B' + M'$ where $B' = (g_2, \ldots, g_{n-1}), M' = (X_{k+1}T_n)\overline{R}$ and $\{g_2, \ldots, g_{n-1}\}$ is a Gröbner basis for B'.

On the other hand $2 \not\equiv bk \pmod{n}$ for every $0 \leq b \leq l-1$, because $l \leq \left[\frac{n-1}{2}\right]$. Therefore $in(G) = G_1 = X_{2+k}T_nT_k \dots T_{(l-1)k}$.

Continuing as in the proof of the last theorem, we obtain that $G \in B'$. Hence there exists b, $1 \leq b \leq l-1$ such that, $k+2 \equiv bk \pmod{n}$. Then $1+2l \equiv b \pmod{n}$, but this is impossible since 2l < n. Therefore q_k is not a prime ideal.

b) Since $k(n-l) \equiv -1 \pmod{n}$ and n = t(n-l) + a, with $2 \leq a < n-l$, we have sn = k(n-l) + 1 with s > 1. Then (s-1)n + a - 1 = (k-t)(n-l) and so

k > t. Now, substituting k by l in Proposition 3.8 follows that the polynomial U (in the First case) or the polynomial W (in the Second case) given in the proof of the proposition are not in $q_l = \overline{q}_l$. But U (or W) is a binomial of degree t in the variables T_1, \ldots, T_n and so $\delta_l(U)$ (or $\delta_l(W)$) has degree t in the variables X_1, \ldots, X_n , where δ_l is the automorphism defined in Lemma 3.5. As t < k, $\delta_l(U) \in q_k$ if, and only if, $\delta_l(U) \in \overline{q}_k$, but $\delta_l(\overline{q}_l) = \overline{q}_k$ though $\delta_l(U)$ (or $\delta_l(W)$) is not in q_k , anyway, by Lemma 3.5 $\delta_l(U) \in q_\infty(k)$ (or $\delta_l(W) \in q_\infty(k)$).

Remark 3.10 The only exception in our description is the case n = k(n - l) + 1. We performed some tests using Macaulay software and obtained pairs (n, k) like n = 16 = 3.5 + 1 and k = 2 or k = 5 where I_k is not of linear type and, if n = 10 = 3.3 + 1 and k = 3, and in this case I_k is of linear type. From these results we can see that ideals (n, k) cyclic with n = k(n-l)+1 could be of linear type or not.

References

- [1] Bruns, W.; Herzog, J., Cohen-Macaulay Rings, 1993 Cambridge University Press, Cambridge, U.K.
- [2] Conca, A.; De Negri, E., M-sequences, graphs ideals and ladder ideals of linear type, J. Algebra 211, No. 2 (1999), 599–624.
- [3] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry, 1995 Springer-Verlag New York, Inc.
- [4] Eisenbud, D.; Sturmfels, B., Binomial ideals, Duke Math. J. 84 (1996), 1–45.
- [5] Huneke, C., On the symmetric and Rees algebra of an ideal generated by a d-sequence, J. Algebra 62 (1980), 268–275.
- [6] Huneke, C., On the symmetric algebra of a module, J. Algebra 69 (1981), 113–119.

- [7] Simis, A.; Vasconcelos, W. V., Krull dimension and integrality of symmetric algebras, Manuscripta Math. 61 (1988), 63–78.
- [8] Simis, A.; Vasconcelos, W. V.; Villarreal, R., On the ideal theory of graphs,J. Algebra 167 (1994), 389–416.
- [9] Vasconcelos, W. V., Arithmetic of Blowup Algebras, London Math. Soc. Lecture Notes Series 195, Cambridge Univ. Press, 1994.
- [10] Villarreal, R., Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), 277– 293.

IMECC/UNICAMP

Caixa Postal 6065

13083-970 Campinas, SP

Brazil

E-mail: brumatti@ime.unicamp.br

UNESP/IBILCE

Departamento de Matemática Rua Cristovão Colombo, 2265

15040-000, São José do Rio Preto, SP

Brazil

E-mail: afsilva@mat.ibilce.unesp.br