INCOMPRESSIBLE FLOW IN ISOTROPIC
GRANULAR POROUS MEDIA IN A TIME
DEPENDENT DOMAIN

Joao Paulo Lukaszczyk Carlos Antonio Taschetto
Leonardo Prange Bonorino

Abstract

In this work we study the existence of weak solutions to Navier-Stokes
type equations defined in a noncylindrical domain Q, where Q) is the
image of a cylinder Q of IR™*! and Q is not necessarily increasing or
decreasing in time.

1 Introduction

In this work we will prove results concerning the existence of weak solutions of a
system of partial differential equations corresponding to a generalization of the
classical Navier-Stokes equations on a noncylindrical domain. The equations

are the following:

U R
pus + pu -V (5) — pAu+nVp+pF (n)u=pnf in@Q,
divu=0 inQ, (PNQ)
u(x,0) = uo(z) , Vo € Qy,
u(z,t)=0 , Vte (0,T) ,Vz € X

Let T > 0 be a real number and {Q;},0 < ¢ < T a family of bounded open
sets of IR™ with boundary 0€);. Let us consider the noncylindrical domain of
RTL-H

Q= 0<LtJ<T Oy x {t} with lateral boundary X = 0<LtJ<T 0 x {t}.

The unknowns in the problem are u(z,t) € IR" and p(z,t) € IR, which
denote, respectively, the fluid velocity and the hydrostatic pressure at a point
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x € Q, at time t € [0,7]. We assume that the fluid viscosity, p, is a posi-
tive constant. The density, p, without loss of generality, will be assumed to
be normalized to be one. The porosity n(z,t) at a point x € Q, at a time
t € [0,7T], is defined in rough terms as the void volume divided by the total
volume of small regions in the neighborhood of x at a time ¢. Thus, n(x,t)
assumes real values between zero and one. We observe that the porosity is
one in cavities, where, therefore, the flow is free. At points (x,t) such that
the porosity is zero, the material medium is purely solid and can be excluded
from the flow region. Throughout this work, we will assume that the porosity
satisfies 0 < n(z,t) < 1. F is a force term due to the friction between the
granular porous medium and the fluid. On physical grounds, F' is a continuous
function satisfying lim, ,; F'(z) = 0 and lim,_,o F'(z) = oo (see Prieur du Plessis
and Masliyah in [8] for an expression for F'.) We remark that our results will
not depend on that particular expression for F. A known external force field,
such as gravity, is denoted g(z,t) and may be acting on the flow. In cartesian

coordinates, we have
Au = (Auy,...,Au,) and (u-Vu); = E Ujo—

Observe that the classical Navier-Stokes equations are a particular case of
these equations when n = 1. There exist several works for Navier-Stokes equa-
tions in noncylindrical domains, among them the works of J.L. Lions [6], R.
Salvi [9] and, recently, M. Milla Miranda and J. Limaco Ferrel [7].

This work is organized as follows: for the next section (Preliminaries) we will
present the notation, introduce the many functions that will be used through
the text. In the third section we establish the transformation between the
cylindrical and the noncylindrical problems. In the fourth section we define
weak solution and finally in the fifth section we prove our fundamental result
of existence of weak solution.

2 Preliminaries

Let x : [0, 7] — IR™ be a function such that (t) is a 7 x n matrix. Let Q be an
bounded open set of IR" with a smooth boundary I'. We can suppose without
loss of generality that 0 € €). Consider the sets

Y ={x=r(t)y, y€Q},
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where £ (t) = (@i (1)), n» ¥ = (¥1,..9n) € © C R" and
r=k(t)y= (Z a1 (t) Yj, ooy Zanj (t) yj) € Q. (1)

n
We use the notation o;3; = . ai3;,
i=1

k(1) = (o (t) and k() = (8 (1)), (2)

where «;;(t) are C' functions defined on [0,77] such that det x(f) > 0. To
transform a noncylindrical problem in one defined in a cylindrical domain, we

introduce the functions:

u(z,t) =v (k" () z,1), f(zt)=g (k" (t)z,1), (3)
p(z,t) =q (k7" (t)z,t), uo (z) = vo (k7 (0) ), (4)
1@t =N W),  Fa@n)=6N(KE On)). ©

We introduce the following spaces to obtain the main results:
vi={pe (D))" ;diveo=0} and

Vs (€2;) the closure of v; with the norm of (H* ())", s € R,.

In the special cases s = 0 and s = 1, we use V () = V1 () and H () =
Vo (€). The inner product of V () , H () and (H* (€2;))"are defined by:
0u; (x) 0z (x)
0oy = [ w@n@de, (02 = [T

Q Q

and ((u,2)), = (ui, 2) s (qy) -
Remark: V, (£) is continuously imbedded in (H{} (€%))" for s > n/2, since
s>1, ViV —sH=H <>V < V.

In a similar way, we have the spaces over €Q:
v={ye (D))" ;div(s'(t)y") =0} and

V (2) the closure of v with the norm of (H?®(Q))",
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and, for s = 0 and s = 1, we also define V = V; () and H = V; (), provided
with the following inner products

(v,w)y = /vi (z) w; (v) dx, (v, w))y = 51;30(50) 812;gx)dx’

Q

and with the norms |[v||,; = (v, v)}f and ||v||;, = ((v, v))l/2 We introduce now
the bilinear and trilinear forms corresponding to the variational formulation to
the cylindrical and noncylindrical problems.

In the noncylindrical case we define

o (tu, 2) = / %&gx(f) 8?5%, (6)

i (1, 2) = a?ﬁ) % (@) aij (%) dz, (7
b (8, 2, €) / “Zém) aiz- (%ﬂ) ¢ (2) da, (8)
d (t; u,w) = / F (n) u; (z) wzsx)d@«, 9)

é (tu,w) = / us () %w (z) dz, (10)

and in the cylindrical case

1 8UZ' 8w,

1 (v, w) :éﬁﬁlj (t) Brj (t)a_%a—wdy’ (11)

an ON w;
2 (t; v, w) /ﬂl] ﬁ” ayra—ylmdy, (12)
b (t0,0,) = [ 258 () Dty (13)

) b ) N2 (2 ayl J )

Q
ON

b2 (ta v, w, ,lvb) = - Blz ( ) w]w]dy: (]‘4)

¢(tv,w) = / Bl (1) anj () aqu(ly) w"]\([y) dy, (15)
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atvw) = [ GO0 i ay, (16
ewmw=/ww%wmmy (17)

Lemma 1 If k(t) satisfies the hypotheses as stated before, then

(det (1)) _

ot n@ = (T OVRO).

3 The Equation in Q

If x € Q; and y € Q satisfy (1), using (2) we have

Ty = Qpj (t) Yy € Y= ﬁlr (t) Ly (18)
W = B (1) 30 = By (1) 3 (1), (19)
oy, _
o= By (t) (20)

From (3), u; (z,t) = v; (y,t), we get
aui (.T, t) avz (y7 ) ayl

21
Ox; oy 833] (21)
and using (20) we obtain
aui (.’L', t) av’i (y7 t)
=B (t 22
axj 5l] ( ) ayl ’ ( )

For j fixed, we also have

u; (x,t) 0 i (v, 1)\ _ 5 d [ 0v; (y,t)
et o (w0 2520 =y 5 (22),

0%v; (y,t) Oy,
oy, 0y, Oz;’

0%u; (z,t)
0’

= By (t)

SO
82 7 )
Ammn=mm@m%%%$. (23)
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On the other hand,

0 (u _ u;(z,t) Ou o (1 _
0 (w,(t) %(n) (2, 1) e (@) + i (o,0) 5 (3 ula) =
u; (, U u; (, n
- n al'z (.’L’,t) - ng a.’L'Zu (J?,t)

0 (u _ u; (z,t) Ou, u; (z,t) On
Us; (.T,t) .. (5) (.T,t) - Taxz (.T,t) - 772 6—%,“] (.T,t)

for j =1,2,...,n and using (22)

, 0 (u _ui(yt) , o 00 (yst) vy (y, t) ON
et o (2) (@) = g 20 B (0) 50, 01)
(24)
. Oui(x,t)  Oui(y,t) Oy | Ovi(y,t) .
Since o~ oy ot + 5 Using (19) we get
aui (37, t) _ al avi (y7 t) 8Ui (ya t)
ot - Blr (t) Qrj (t) Yj ayl + ot : (25)
Op (z,t) _ 0q(y,t) Oy 9q (y, 1)
F 4 h = — B,
rom (4) we have o, 9y oz, Bui (t) o hence and by (20),
T ( o oy (Bri () 5 oey Bri () ) = (Vq.li (t))i,
that is Vp (x,t) = Vq (y,t) .k (). (26)

For each i fixed, from (22), the following relations hold:

8u, x,t aU, y,t) Ou; (x,t)
Z B (t m and div u (x,t) Z ar,
avi (y: t)

Therefore div u (x,t) = By (t) 5
Yi

So
O st v, ))} ,

div u (z,t) = [881 (Brivi (y, 1)) + 8
] o' (y,1))

div u (z,t) = [((%1, ey %)

therefore

div u (z,t) = div (' (t).0" (y,1)) - (28)
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N
From (5) %_g—yz% by (20), we have
J

=505 (29)

o _oxou o

ot oy ot ot
8 ON ON

—5zt() ()y’6 +§- (30)

Replacing (23) to (30) in (PNC), we conclude for i =1,....,n

On the other hand, using (19) we get

i , 8 i , 82 % ’
B (1) oy ()32 a(yyl 0, o éff Dy (485 0 ﬁ+
+ 2 % 2 Bi; (1) avg(yy’t) - Uj](\l,lé 2 Bij (t) g;vvz (y, )+
-1

oy
So

o = g (30 () 21 ) 4 D g ) O 1)

0y, :

v (y, ) ON ov (y,1)
Bij (1) 52— ay, v (y,t) + B, (1) arj (1) vy By +

q N, )VQ(.% )- "(t) + uG (N (y,t)) v (y,t) = N (y,t) g (y,t) in Q
div [k 1 (t).v" (y,t)] =0 in Q

v=0in X
v (y,0) = vo (y) with y € Q.

\

(PC)

4 Definition of Weak Solution
Definition 1 Notion of weak solution to the problem (PNC).

To define the weak solution of (PNC) we will eliminate the pressure as in clas-
sical Navier-Stokes equations. For that, we make the inner product in L? (Q2)
of the equation (divided by n) by a function of V' and observing that

du_u'u_n'
a\n) n 7
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we can rewrite (PNC) in the following way:
For f,n and ug given, with f € L? (O,T, V (Qt)') and ug € H () we have
to find u satisfying v € L? (0,7, V (£%;)) and:

(5= (ee) = (G () ) (0w ()
1 (V (), V() 1) +p (@uf) = (£, ¥eeVinD'(0,T)

u(0) =g € H.

(31)

Integrating in [0, 7], and making use of (6) and (10), we obtain

((we L2(0,T,V () N L™ (o T, H (%))

—fouﬁl/N Qt)dt—l-ufo tuﬁdt—i—,ufoal tu{f)dt-l—

} Job(tuu&)dt+ [d(tu,&)di+ [ é(tu,&)dt = [ (f,6)pq,d
VE € L2(0,T;V () N L™ ()"), € € L2(0,T; H (X))

£(0)=0,¢(T) =
u (0) = uo.

(PNC1)

Definition 2 Notion of weak solution to the problem (PC).

In this case we divide (PC) by N, then multiply by a suitable function
and integrate in 2, obtaining

’ %) ; v (v,
fn“ﬁwy—fnﬁ— (0 0050y 0 50 ) i + 1 2 250y ) 220
, ON 1 o

o 0 g, ) OX (v, ¢dy+fQN@T()am(nyja—ylwdw

+ [ Va(y,t) 67" (t) Ydy +fQ )vwdy—fggwdy

Ydy

Making use of (11) to (17), we have
" uN N’ :
[y = f, ((?V - ) .w+qjv—2¢) dy = (59 ) +e(t:v,v)

fov3 (@J()@.j()a—;)wdy fi iy 080y 0 52 2 (%) =

131 Ov; ON 1
o0 0) By () 5 55y = [ By 0) By (0) 0y =

—al(t U’w)—{_a@(t v w)
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5 0
o O () vy = o Bu6) i3 2
8N
fgﬂlz N3a U]w]dy_bl (t U7Ua¢)+62(t v,V w)

1 0v; Y;
o B (003 (50 = [ By (000 (6355 oy = (50,0

J o Va1t (t).bdy = [ q.div (7 (t)¥") dy = 0.

fQG(N)

SO

( veL2(0 T:V)n L>® (0,T; H)
T

T T
—/ dt+,u/atv¢dt+/b1 tvvqﬁdt—i—/bz(t;v,v,w)dt

0 0 0 0
T T T
+/ctvwdt+ /dtvwdt—i-/etvw =
0

I
Oe L2(0,T;V L™ ()", ¢’6L2(8, T;H)
| (0)= $(T) =0, v(0)=wo

vy = [ G (N o by = d (10,9) and [ g0y = [ 03y = (9, )

(g9,%)dt

o\ﬂ

(PC1)

Theorem 1 Problems (PNC1) and (PC1) are equivalent.
Proof. Recalling from (1),(2) and (3) we have

=~k (t) Y, y= Hil (t) T, Ty = QrjlYj, Yy = /Blrxr )

we have established that u (z,t) = v (k7! (t) 2, ).
Let & (z,t) = |det k= (£)| 9 (7' (¢) x, ). Then

ai ) - az ’ a az ’ B ,
(50 g 1(,5)‘( b0 ity t))+|dem L) v 1),

i
ot

8& (.’E,t) _ |det/€71 (t)| <a¢zﬁlr Y +

,1 !
5 ) + |det & (2)] s, (32)
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Now we compute each integral in €, of problem (PNC1) and making use of
(32) we have

!

£ v; Oy vi oY; 1 (detk(t)) B
(v 5),{@) ) / (et 555 37 ey ) ka0

(33)
On the other hand Bj,a,; = t, (k7! (t))' & (¢)) then, by lemma 1
;o (det w(2))
BlraTl - det K/(t) ) (34)

where ¢, (A) denotes the trace of the n x n matrix A.
Let F' be the following vector field {0, ..., Vit ﬁlrar]y],(), ...,0) where the

non null component ocupies the /—position , then

divF = n <W’ 1Bty J]> o <”]$) (Blranjys) + vﬁ’ (Birarjys) =

1 81)2 ¢z Uzl/JZ
= N a wlﬂlra”y] + U'Layl ( ) ﬂlr riY;j Yj + ﬁlra ( ijj)’

but
a(a--)—a(a + oo+ Qplp) = @
511/1 ri¥Yj) = 511/1 riY1 rnYn) = Qyrl,
then L9 ¢ -
. (% i VY4
divF = Na l¢zﬁlrarjy] + Vi 7— 3yl ( ) ﬂlr ij] + N ﬁl'ra/’rla

and making use of (34)

1 0y o (vi\ 1 (det x(t))
divF = N a djzﬁlrar]y] + V57— al/l (N) ﬁlra’my] - NWU”%'

From Green’s Theorem, [ div Fdy = [ F.ij ds =0, then

1 v, bi (det &(t)) _
/ (N a %5” r]y] + Vi 7 — 3yz < ) ﬂlr r]y] NW”Z¢Z> dy - Oa
Q

and

v; 0Y; (det K’(t))l _
_/( Blr T3] j NWU1¢1> dy—

Q
1 5llr04ry 81},
/ (vzwz By, ( ) ﬁlr oY + N 77bz dy,

Q
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combining (35) and (33), we get

¢ [ v O /Bl’ram 5% o (1Y) B
<U’7 N7 H) B A N ot N ¢z Zd]’ayl N 5lr04my]dy|detm (t)‘,

_ (u,%>H(m)= {—( ;/’V) et o,0) + (0 1/1] det s~ (8)],  (36)

where

0 1 , _
/Uﬂl’ia—yl (N) B crjyidy ‘det K (t)‘ = c1 (t0,9).
Q

From (6) and making use of (22) we have

a(tu,§) = / %g:‘;;”:dy] |det k™" (1)] = au (t;0,9) [det 671 ()], (37)
but
o auz( ) 9 (1\  _
al(tauag)_z gz( )83','] <77) dr =
/ N25zg ) Brj (t) y( y) ON (y) dy |det K (t)‘ = ay (t;v,v) ‘det Kkt (t)‘ )
(38)
From (8), b(t; u, u, &) =
i Ov; i _
= %ﬁlj (t) 8—’;% (y)dy — %/sz( )Uaa V5 ( )dy] |det ™" ()]
Q Q
then by (13) and (14), we have
b (t;u,u, &) = (by (t;0,v,9) + by (£ 0,0, %)) [det 61 (¢)] . (39)
From (9)
d(tu,€) = /G y dy|det 1 (8)] = d (t;v; ) [det s (1)) . (40)
We also have from (10)
ON ON
¢(t50,6) = | o 50280 (0 i o 0) o + o S8 0 ) | et ()

= [—c1 (0,9) + e (v, 9)] [det 571 (2)]
(41)
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Finally, integrating both sides of expressions (36) to (41) and adding term by
term we conclude that problems (PNC1) and (PC1) are equivalent.

Define the forms concerning to the cylindrical problem:

(o) = an(Gv,w)+ o (o) = 60650 505 (5)dv. (@)
Q

b(t;v,w,¥) = by (t;v,w,¥) + by (t;v,w, ) = /5” (t) U"aiyl (%) %dy
Q

(43)

Definition 3 Let A(t): (Hg ()" — (H™'(Q))" be the operator defined by
_ 10 v (ya t) 1 n
AWv =5 (8 05,0 ) por ve@@) @y
Lemma 2 The linear form a(t;v,w) defined in (42) and the operator A (t)
defined in (44) satisfy
i. (A)v, w)y=a(t;v,w), Yo,weV
it. |a(t;v,w)| < C|v|||w] , Yv,weV.

Lemma 3 The linear form ay (t;v,w) as defined in (11) is coercive and con-
tinuous, that is,

i. ay (t;v,0) > ao ||v|°, Yo € V, where ag > 0

i. a1 (t;v,w) < C|||||wl], Yo,w € V.

Lemma 4 Let b(t;v,w,v) , c(t;v,w), d(t;v,w) and e (t;v,w) the multilinear
forms defined by (43) , (15), (16) and (17) respectively. Then

i b (v, w, )| < Cloll [[wll 14llyagny» Yo,w €V andy € VN (L™ (Q))".
ii. b(t;v,v,w) = =b(t;v,w,v) Yv €V and w € V; (), where s = g

iwi. Forv € V, the linear form w — b (t;v,v,w) is continuous on V; (Q) (s = g)
and b(t;v,v,w) = (B (t)v, w)yw,, where B(t)v € V] () and
2 L, 11 1
1B (@) ol < C ol with =5 - 5 (49

. |c(t;v,w) <C|w|l||w|] Yv,w € H.
v. Forv €V, the linear form w — c(t;v,w) is continuous on H and

c(t;v,w)= (C{t)v,wygm = (C(t)v,w),
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where C (t)v € H' = H and |C (t)v| < C||v].
vi. For v € V, the linear form w — d (t;v,w) is continuous on H,

d(t;v,w) = (D () v,w)ma = (D (t) v, w),

and |D (t)v| < C|lv]|.
vii. For v € V, the linear form w — e (t;v,w) is continuous on H,

e(t;v,w) = (E(t)v,w)mn = (E(t) v,w)

and |E (t)v] < C ]|
vigi. L*(0,T;V) N L®(0,T; H) € L*(0, T (LP(Q))"), where p is given by (45).

The three last lemmas can be found in MIRANDA [7], pg 253-254.

5 Existence of Solution
In this section we will prove the following result
Theorem 2 (ezistence of weak solutions)

Let 2 C IR",with n = 2,3 , be an open bounded set with regular boundary
and T > 0. Also, let be given, up € H (Qr) , g € L*(0,7,V](Qr)) and a
continuous function F : (0,1] — IR*. Suppose that the porosity n: Q — (0,1]

satisfies )
0<ng<n(z,t) <l V(z,t) €Q

n' € L? (o,T,L% (QT)) N L' (0,T, L*® (Qr))
Vn e L*(0,T,L* (Qr)) N L* (0, T, L? (7))
Then, there exists a solution u € L?(0,T,V (7)) N L* (0,7, H (Qr)) of
(PNC1).
Proof. For s = n/2 the injection V; < H is compact, since V, C Vi1 =V — H
and Hj (Q) is compactly imbedded in L? (Q2) (see Lions[6], pg 66).
This result guarantees the existence of solution to the spectral problem

(w,v)) gs(y = A(w,v) Vv € V(). (46)

Consider an orthonormal basis of V; (2) generated by a countable set of eigen-
vectors (wy) corresponding to the set of positive eigenvalues (A,). We will use
(wy) in Galerkin’s methods. For each m we define an approximate solution vy,
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to the problem (PC1). Let V,, be the subspaces generated by the first vectors
W1, vy Wy, that is, if vy, (t) € Vip, then

Jj=1

where hj,, are scalar functions defined in [0,7]. Consider the approximate

problem

Vi (1)
N
+ud (t; vy, () ,wj) = (g, w;) j=1,...,m and vy, (0) = vom, vom — vo in H.
(47)
Observe that (47) is a system of nonlinear differential equations where h;,, are

,w,-) + pa (8 vm (8) , w5) + b (& vm (8) v (8) s w5) + ¢ (8 vm (2) , )

the unknowns. In fact, we have

(e 22 o 0+ (501 07) + 60 10) + 01, 05) i 0

—|—b (t; wi,wl,wj) hzm (t) hlm (t) = (g,wj) ] = 1, I and hjm (0) ’U)j =  Vom

Since w; are linearly independent, the matrix with the entries given by

VN’ VN

to obtain the nonlinear system

w; W, . . . . .
( - J ) is nonsingular. Then we can use the inverse of this matrix
1<4,5<n

{ Pim () = 05 () — (aji () + Bji () + 653 (£)) Bimm (8) = Vein (£) him (¢) P (2)
hjm (0) = ith component vg,, j=1,...m

where «j; (t), Bji (t), 65 (), Vkik (t) € IR . From Caratheodory’s theorem (see
Hale [4] pg 28), this system has a maximal solution defined in some interval
0,tn,). If t, < T, then |hj,| diverge to +oo as t — t,,, but this cannot
happen due to the first estimates that will be proved further. So t,, = T. Since
the applications ¢ — (g(t), w;) belong to L? (0,T; H), the same result holds to
the functions hjy,, hence

U € L2 (0,T;V) and v!, € L*(0,T;V), (48)

for any m. Now we will show the first estimates, that not depend on m, to the
functions v,,. After that we will make the limit.

First Estimates
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If we multiply (47) by hjn, (t) and sum for j = 1,...,m, we have

!
(15200 ) 0050 0) 4 8 ) 4050 0) 4 1 0,0

= (9,Vm) »

From part (ii) of Lemma 4, b (£; vy, Um, ) = 0 and, by (48)
. _1d |vg (1)
N ™) T 2

N
1d v ()]
5% \/N + 56 (t; Umavm) + pay (t; Umavm) + pay (t; Umavm)+
¢ (t; Um, Um) + pd (t; Um, vm) = (g, Um) )

2

1
+ §€(t; Vmy Um)

SO

hence

2
+ par (8 vm, vm) + pd (& Vm, V) = (9, Vm) —

t)

N | —

PV
(t; Vi, Vm) + pag (6 Vm, Um) + ¢ (8 Vm, Um) | -

d v
d[t (49)
Now observe that, from part (ii) of lemma 3,

ao [vml|” < a1 (t; Vm, vm) ,

from part (iv) of lemma 4 and Young’s inequality,

2
¢ (& Vm, vm)| < Clomll | —

<e¢ ||vm|| +C,
TV

(95 vm) < N9l -2 [lomll < Ce llgllg=s + € llomll®

OV | |ON | | Vi
|as (t; 0m, vm) | < [ 1815 )] 1B (2)] ol
<C /[, a(;);i o |Umi| dy using VN € L? (0, T; L™ (2))

Ui

S CNIVN| ooy fQ By | [Vmil &Y < CIVN| oo ) [0l [vm] <

2
U,

< 5||Um||2+06||VN||i°°(Q) \/N
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!

N

1
56 (t, Uma Um)

2
Um

VN

G (N
(50 00)] < J o A oy < €

<C [o|N'] |vm|* dy < CINll oo

2
Um

VN

or |d (t;Vm, vm)| =

Replacing the last six inequalities in (49), we get

2
1d vy, @) G (N
5t |2t ool + sy S o < Cullalfye e ol +
2 2
! Um 2 2 Um 2
+C||N|, ——=| t+elvall” + ClIVN o |—=| +€llvml”+
(%) m Leo(9) m
o VN VN
+C. |—=
VN
d [vm () [? am |
U 2 2
&N + 2 (pag — 3¢) |lvm||” + 24 N Um| = Cellglly-1+
v |? U |? v |?
! m 2 m m
+C||N||L°°(Q) N + C[|[VN| oo (q) Wi AW
Take € > 0 such that pag — 3¢ > 0, then
d | vy, (1) 2 9 9 ) v |2
v
0( VN|%.. +1) Ym_
” ”L (Q) \/N
or @ ) )
d Um t 2 2 Um
— + [lop||” < C 2+ | —| , 50

where ®(t) = C | V|

Loy TC ||VN||%OO(Q) + 1). Using Gronwall and observ-
ing that @ is integrable in [0, T], we get

t

< exp/@(s) ds
0

? U (0)

U (1)
N (0)

VN

t
+ [ Clallyds<c
0
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Hence v, € L™ (0,T; H) . Integrating expression (50) in [0,¢] with ¢t < T we
have vy, (t) € L? (0,T; V), therefore

(U\”}%)> is uniformly bounded in L™ (0,T; L* (2)) and (51)

VUp (t) is uniformly bounded inL? (0,7; V)

v ()

2

t Vo, 1
f() N +’Umv (N) L
C+C [\ |VN[dt then “W’” € L2(0,T; HL (Q)) .

dt <

Second Estimates

Let P, : H — V,, be the orthogonal projection of H onto V,,, that is,

m

Pro =Y (0, w;) w;.

Jj=1

Note that P,, € £ (V;,V;). In fact, since V; is dense in H and V; — V — H,
we can restrict P, to the space V for our estimates. Consider the orthonormal

basis (w;) and Y\ of H and Vs, respectively. Then, using (46), we get

\/)Tj

[Pl e vyy = sup |[Pmglly, = sup
lelly, <1 lelly, <1

m 2

(%),

o0
< sup | Y

o)

= sup
llellv, <1\ =1 lellv, <t \ =1
therefore
1Pl vy < 1
thus, by standard arguments:
1Pl vzvzy < 1

Observe that

Um ! m U;n N/ m . h;m

Fm (W) - ]; (W - /Umm,wj) wj = ; <Z—Z1 — (Wi, wy)wj—
3 ’ u I'm m N’ U;,L N’ Um '
_Zzzjlhzm]\ﬂ ('LUZ,’LU]))’U)] - ]2::1 ]Ww] - jz::lhzmm’wj = W — ’Umﬁ — (W)
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Hence, if we multiply the equation (47) by w; and sum for j = 1,...,m, we
have

(4, (1) < z

2\ Ty Wi Jwit 3 a(tvm (t), ws) w4+ 30 b (6 v (), vm (B), wy) wit
Jj=1 j=1 j=1

+ Zlc(t;vm (t),wj)wj—i—,uzld(t;vm (t),w;)w; = Zl(g,wj)wj

j= = j=

Since

and using the notation of lemmas 2 and 3

P, (%) + < E (t) Um, w; >wj+zl(,u<A(t)vm,wj > wj+ < B (t) vy, wj > w;)
J:

+ 3 (< C ) vm,w; > wj + 1 < D (t) vy, wj > wj) =Y (g, w)) wy;
7j=1 7j=1
hence, and from (52),
(ﬂ)l—i< —(LA(t) + B(t) +C(t) + uD () + E (1)) > w;
N/ = = g— K Um, W5 > Wy,

since g — pA (t) vy — B (t) v — C (t) v, — uD (t) vy — E (t) vy € V., we have

’
Um

(W) = P* (g — pA () vy — B () v — C (£) v — uD (£) Vs — E (£) vn) -
(53)
Then taking the norm of (%) in V/, applying the triangular inequality, using
|1 Pzl vy <1 and applying the Young’s inequality repeatedly, it follows that
12 2

H (2m)

N7 Mvie
2 2 2

4 (18D (1) vl 0y + 1 (1) vl + 10y -

< 4 (154 (4) vl + 1B (1) vl ey + 1€ () vy +

Now we estimate each term of the right hand side of the last expression:
e from part (iii) of lemma 2,

|1 A () vmlly; = S < pA () vy w > < Clomllyy [[wlly, < Cllomlly,
w Vs
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and
T

T T
| A ® vallyayds < € [ omllyayds <€ [l ey ds < oo,

since, from (51), v, € L?(0,T;V) and V < V..
e from part (iii) of lemma 4

1 1 1
2
||B (t) vm”w(n) S O ||Um||(LP(Q))"7 Where 5 = 5 — %.

Then
T 2 T 4
A|B@%M@®SA<N%MWW®

By (51) , it holds that v,, € L? (0,T;V) N L*° (0,T; H). Thus, from part (viii)
of lemma 4, v,, € L*(0,7T; (L? (2))"). Hence and from the last inequality,

T
/ 1B (£) vl 0 ds < 00
0
e from part (iv) of lemma 4
1C () vmllyy) < 1C @) vim| < Cllvmlly; @) »

that implies

T T
| 1@ unliyds < [ Cllonllyayds < o

® [lgllyria) < 19l -
Therefore

!

(”Wm) is bounded in L2 (0,7; V! (). (54)
Define

’

Um Um
W= {vm; e L2 (0,T; Hy (©)) and (W) € 12(0,T;V! (Q))},

with the norm [[vm || 20,7y + 1Vl 220 vi(y) - Since V — H and Hy (Q) —
L*(Q) — V! (Q) compactly, by Aubim-Lions theorem W < L?(0,T; L*(f2))
compactly. From this and by (51) there exists a subsequence of me , still

denoted by (me), and a function v such that :

U — v weakly in L? (0,7T;V) (55)
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7 — = Weakly in L*(0,T; H () (56)
U —" v weakly-star in L™ (0,7; H) (57)
1;('; —* N weakly-star in L™ (O,T;L2 (Q)) (58)
v 2 (0.7 2
{ NN strongly in L? (0,7 L? (Q))
(%%
N

strongly in L? (0,7 L? (Q2)) ) and a.e. in Q

(¥) -

(N) weakly in L2 (0,T; V! () (60)
Let ¥ (¢t) be in C§° (0, T); multiplying the equation (47) by W (¢) and integrating
with respect to ¢, we have

e
fie

(t vm,wj)\Ildt-l—fO pd (t; U, Twy) dt—i—fo pe (t; v, Yw;) dt = [ (g, Yw;)d
Taking the limit for each term, by (58)

/;((%”)I,\Ifwj)dt:—/o ( dt—>/ dt,
/0 ' 0 (t; Uy, Qw;) dt = / / Bi; By <a”""

wj;
S ay,( ))d dt—)/ (t; 0, Twy) dt
by (56), due to lemma 3.2 TEMAN [10], pg 285

/c(t; U, w;) Udt = 7/51’r (t) ouj (1) yjavmi (y) wi ()

N
F(t) = B, (t) an; (1) ijj;\;y) € Hy (9) and G (1) = =52 % € 12(9) 50
T

/c(t; Oy 105) \I!dt:/(F (1), G (1) dt

T
= [ @), Gao)as
0 0
converges (see pg 248 TEMAN [10])

) , Yw, dt—l—fo pa (t; vm, Yw,) dt—i—fo (&5 Vm, U, Yw;) di+

T

/d(t Uy V) dt—)//
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due to (59)

T T
/,ue (t; vm, Yw;) dt—>//vZ NZwﬂ( y) Ydydt
0 00

!

T
N
since // Vi ( v; (y)) NQwJZ( y) Ydydt| — 0
0

/

N
due to (57) with the following statement: Nz ~—wji (y) ¥ € L' (0,T, L* (2)) since

T
HNQW )\IIH dt < c/ HNH llw;i (y)]| dt < oo from N' € L' (0, T, L*® (<)).
0

Therefore, the theorem holds. The initial condition v (0) = v is achieved from
(55) and (60), that is, v,, — v weakly in L? (0,7,V,) and v,, — v weakly-*
L?(0,T,V,) hence v € W2 (0,T,V,) = u € C(0,T,V,) and V, C H C V},
veVand we H, (v,w)VsVSf = (v,w)y.
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