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Abstract

We formulate the Leray’s problem for inhomogeneous fluids in a two-
dimensional domain and prove the existence of a solution. The given
density is assumed to be continuous and the obtained solution attains its
value in the supremum norm.

1 Introduction

Throughout Ω will denote an admissible domain of the plane in the sense of

Amick [1], i.e. a domain of the plane with two straight unbounded channels.

More precisely, Ω is an open and simply connected set of R
2 with a smooth

boundary Γ and such that Ω = Ω0 ∪ Ω1 ∪ Ω2 where Ω0 is a bounded set and,

in possibly different coordinate systems, Ω1 = {(x, y) ∈ R
2 : x < 0, −d1 <

y < d1} and Ω2 = {(x, y) ∈ R
2 : x > 0, −d2 < y < d2} for given constants

d1, d2 > 0. Cf. [1, Definition 1.1]. Also in [1] the reader can see a typical draw

of Ω; [1, Figure 1].

We consider a stationary inhomogeneous incompressible planar fluid in Ω,

where ‘inhomogeneous’ stands for variable density. The mass density, velocity,

pressure and the given constant viscosity of the fluid are denoted, respectively,

by ρ, v = (v1, v2), p, and ν. The stationary Navier-Stokes equations describing

such a fluid are the following:
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{

ν∆v = ρ(v · ∇)v + ∇p
∇ · v = 0, ∇ · (ρv) = 0 .

(1)

The first equation represents the conservation of momentum and the second and

third equations represent the incompressibility of the fluid and the conservation

of mass, respectively.

Inhomogeneous fluids are important to be investigated in both mathematical

and physical aspects. They can model, for instance, stratified fluids, see e.g. [7].

From the mathematical point of view, some challenging questions are pertinent

to domains with unbounded channels even for the case of constant density. For

instance, the solvability of the nonlinear Leray’s problem under no restriction

on the size of the fluid fluxes through the cross sections of the channels is still

an open problem. It consists of finding a solution of (1) such that the fluid flows

are Poiseuille flows (i.e. parallel flows) at large distances. This problem seems

to have been proposed, in the 1950s, by Jean Leray to Olga A. Ladyzhenskaya,

cf. [1, p. 476]. Despite the effort made by brilliant mathematicians, see e.g. [5],

up to now its solution is known only in the case of Poiseuille flows with small

fluxes, a result due to Charles J. Amick [1, Theorem 3.8]. Not surprisingly, the

main difficulty in solving the problem is to deal with the nonlinear term in the

Navier-Stokes equations. This difficulty is overcome by seeking a solution with

the velocity field v in the form v = u + a, for a new unknown u, where a is a

suitable extension of the given Poiseuille flows. It turns out that the nonlinear

term can be estimated by the fluxes of the Poiseuille flows [1], thus the result

comes off under the restriction that these fluxes are small, in comparison with

the viscosity of the fluid. In the case of inhomogeneous fluids, besides the

given values for the fluid velocity at the ends of the channels, we give values

for the density in the ‘incoming channel’ (i.e. in the channel where the fluid is

incoming).

We extend Amick’s theorem [1, Theorem 3.8], in the two dimensional case,

to inhomogeneous fluids with a continuous density. Our solution is based on

the streamline formulation, an approach strictly inherent to the two dimensional
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case and which was used first by N.N. Frolov [2] to solve the boundary value

problem for inhomogeneous fluid in a bounded domain. Indeed, the density

ρ we obtain is of the form ρ = ω(ψ) where ψ is a streamline function, i.e. a

scalar function such that ∇⊥ψ = v (∇⊥ψ := (−∂2ψ, ∂1ψ)), and ω is some scalar

function connected to the given values for the density and velocity at the end

of the incoming channel; see (26).

We use the Sobolev embedding W 2,2(Ω′) ⊂ C(Ω′), where Ω′ is any smooth

bounded domain contained in Ω, to get the decay of the solution to the given

Poiseiulle flow vi at infinity in the supremum norm (see (13)) and, as a conse-

quence, the density decays to the given density ρ1 at infinity in the supremum

norm as well; see (10). Our solution, which is given in Theorem 1, has some

extra properties. We compute explicitly the flux βi of the momentum ρv on the

channel Ωi, namely, βi = (−1)i
∫ ψ(x,−d1)

ψ(x, d1)
ρ1

(

ψ−1
1 (s)

)

ds, where ψ1 is a streamline

function associated with v1, i.e. ∇⊥ψ1 = v1; see (11) and Remark 1. Moreover,

the density satisfies the ‘maximum principle’ sup |ρ| ≤ sup |ρ1| and we compute

for the velocity an analogue estimate one has when the density is constant,

yielding the explicit dependence on the given density; see (12).

Besides this Introduction, this paper contains the next Section in which we

formulate the density-dependent Leray problem and prove the existence of a

weak solution in the case of given Poiseuille flows with small fluxes.

2 Density-dependent Leray’s problem

Together with equations (1) we take the following boundary conditions. First

we assume that the fluid is non slippery on the boundary of Ω, i.e.

v = 0 on Γ . (2)

Second, the fluid flow is a Poiseuille flow at the end of the channel Ωi, i = 1, 2,

i.e.

lim
x→−∞

v = v1 and lim
x→∞

v = v2 (3)
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where lim x→(−1)i∞ v, in the coordinate systems of Ωi, stands for

limx→(−1)i∞ v(x, y) with (x, y) ∈ Ωi and vi = vi(y), −di < y < di, is a given

Poiseuille flow in Ωi; see (6) below. We suppose that the fluid is incoming in

Ω1 and outgoing in Ω2, i.e. v1 and −v2 are pointing toward Ω0. Since the

conservation of mass equation, ∇· (ρv) = 0, for smooth solutions is a transport

equation with transport vector given by v, it is natural to give the density only

at the end of the channel Ω1 where the fluid is incoming. Then we set

lim
x→−∞

ρ = ρ1, (4)

where ρ1 is a given function in Cb(Σ1), Σi := (−di, di), i = 1, 2. Here and

throughout, if X is a topological space, Cb(X) will denote the space of bounded

and continuous functions defined on X, endowed with the supremum norm

||f ||Cb(X) := supx∈X |f(x)|. We call the problem (1)-(4) density-dependent

Leray’s problem.

Before state our main result, Theorem 1 below, we need some more nota-

tions. First, let

αi =

∫

Σi(x)

vi · ni, i = 1, 2 (5)

(the flux of the Poiseuille flow vi in Ωi) where ni is the unit normal to Σi(x) :=

{x}× (−di, di) (a cross section of Ωi) pointing toward |x| = ∞, i.e. pointing to

the exterior of Ω0; see Remark 1 below. In the coordinates systems of Ωi, we

have ni = (±1, 0) and

vi ≡ vi(y) = (θi(y), 0) for θi(y) = ±
3

4d3
i

αi(d
2
i − y2), y ∈ (−di, di) (6)

where the sign ± is − if i = 1 and + if i = 2; cf. [1, p.485]. Because the

incompressibility equation ∇ · v = 0, condition (2) and Divergence Theorem,

we assume the compatibility condition α1 + α2 = 0, i.e. α2 = −α1. Since the

fluid is incoming in Ω1 (and outgoing in Ω2) we have α1 < 0 (and so α2 > 0)

which is an accordance with the direction of ni, i.e. the incoming given velocity

v1 in Ω1 is pointing to the opposite direction of n1 and v2 in Ω2 is pointing to

the same direction of n2.
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Let Hk,loc(Ω) be the space of vector fields v in Ω such that v belongs to the

Sobolev space W k,2(Ω′), for any open bounded subset Ω′ of Ω, v is divergent

free, i.e. ∇ · v = 0, and whose derivatives up to order k − 1 have null trace on

Γ. Let also V be the space of the vector fields Φ in C∞
0 (Ω) (the underscript ‘0’

stands for compact support, i.e. the support set of Φ is a compact set contained

in Ω) and Φ is divergent free.

Our main result is the following Theorem.

Theorem 1 Assume that ρ1 ∈ Cb(Σ1) and let l := ||ρ1||Cb(Σ1). Then there is a

constant c = c(Ω) > 0 such that for cα2l < ν, the problem (1)-(4) has a weak

solution (ρ,v) ∈ Cb(Ω) × H1,loc(Ω), in the following sense:

i.

ν

∫

Ω

∇v · ∇Φdx =

∫

Ω

ρ(v · ∇Φ) · vdx, (7)

for all Φ = (Φ1,Φ2) in V, where ∇v · ∇Φ := ∇v1 · ∇Φ1 +∇v2 · ∇Φ2 and

v · ∇Φ := (v · ∇Φ1,v · ∇Φ2),

ii.
∫

Ω

ρv · ∇ϕdx = 0 for all ϕ in C∞
0 (Ω), (8)

iii.

v − vi ∈ W 2,2(Ωc
t), i = 1, 2, for some t > 0, (9)

where Ωc
t := ∪2

i=1Ω
c
i,t, Ωc

i,t := {(x, y) ∈ Ωi ; |x| > t}; and

iv.

lim
x→−∞

||ρ(x, ·) − ρ1||Cb(Σ1) = 0. (10)

Furthermore, the flux of v in Ωi is equal to αi and the flux βi of the momentum

ρv in Ωi (see Remark 1 below) can be written as

βi = ±

∫ 0

α1

ρ1

(

ψ−1
1 (s)

)

ds, (11)
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where ψ1 is a stream function associated with v1, i.e. ψ1
′ = −θ1; more precisely,

we take ψ1(y) = −
∫ y

−di
θ1(y

′) dy′, y ∈ Σi. Finally, we have ||ρ||Cb(Ω) ≤ l and

||∇(v − vi)||L2(Ωi) + ||∇v||L2(Ω0) ≤ C|αi|

(

1 +
ν + |αi|l

ν − c|αi|l

)

(12)

for some other constant C = C(Ω).

Equations (7) and (8) are just the weak formulations (in the sense of distrib-

utions) of the conservation of momentum and mass equations, respectively, i.e.

just multiply these equations by the indicated (in (7) and (8)) test functions and

formally integrate them by parts. In equation (7) the pressure p is canceled out

because the (vector valued) test functions Φ are divergent free. It is classical

that we can recover the pressure from (7); see e.g. [9, Propositions I.1.1 and

I.1.2, p. 14] or [3, Corollary III.5.2]. The incompressibility equation, ∇ · v = 0,

is inserted in the space H1,loc(Ω). Condition (9) implies that v ∈ Cb(Ω
c
t) and

lim
|x|→∞

||v(x, ·)− vi||Cb(Σi) = 0, i = 1, 2. (13)

Indeed, since Ωc
i,t is bounded in one direction, from the Sobolev Imbedding

Theorem, we have v − vi ∈ Cb(Ω
c
i,t) and there is a constant k, independent of

|x| > t+ 1, such that

||v(x, ·) − vi||Cb(Σi) ≤ ||v − vi||Cb(Ω
c
i,|x|−1

) ≤ k||v − vi||W 2,2(Ωc
i,|x|−1

);

thus

lim
|x|→∞

||v(x, ·) − vi||Cb(Σi) ≤ k lim
|x|→∞

||v − vi||W 2,2(Ωc
i,|x|−1

) = 0 . (14)

Before proving Theorem 1 we give some important remarks.

Remark 1 Since v ∈ W
1,2
loc (Ω), it is classical that v has a trace on the cross

section Σi(x), so the flux
∫

Σi(x)
v · ni of v through the cross section Σi(x) is

well defined. The same conclusion holds true for the flux of the momentum

βi :=
∫

Σi(x)
ρv · ni, but here we use that ρv belongs to L2(Ω′) for each bounded

subset Ω′ of Ω and ∇ · (ρv) = 0 in the sense of distributions (see (8)), then
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ρv has a normal trace on each cross section Σi(x), see e.g. [9, Theorem I.1.2].

Moreover, since ∇·v = ∇·(ρv) = 0 in Ω, the fluxes
∫

Σi(x)
v·ni and βi are constant

with respect to x (−∞ < x < 0 if i = 1 and 0 < x <∞ if i = 2). We also note

that in the local coordinates of Ωi we have
∫

Σi(x)
v · ni = ±

∫ di

−di
v1(x, y) dy and

βi = ±
∫ di

−di
(ρv1)(x, y) dy.

Remark 2 If v = ∇⊥ψ and ρ = ω(ψ) for some ω ∈ Cb(R), the equation

∇ · (ρv) = 0 is automatically satisfied in the weak sense. More precisely, we

have (8) if ρ = ω(ψ) with ω ∈ Cb(R) and ψ ∈ W
2,2
loc (Ω). Indeed, for a smooth ω

it is straightforward to obtain ∇· (ω(ψ)∇⊥ψ) = 0 in the classical sense, and for

ω ∈ Cb(R), we can obtain the result by passing to the limit in (8) with ρ = ωε(ψ)

and v = ∇⊥ψ, with ε tending to zero, where ωε is a sequence of standard

mollifications of ω. In this passage to the limit we use the compact embedding

of W 2,2(Ω′) into Cb(Ω
′) for a smooth bounded domain Ω′ in Ω containing the

support of the test function ϕ ∈ C∞
0 (Ω). Indeed, let ϕ ∈ C∞

0 (Ω) and Ω′ ⊃ spt.ϕ,

where spt.ϕ stands for the support set of ϕ. Then ∇ · (ωε(ψ)v) = (ωε)′(ψ)∇ψ ·

∇⊥ψ = 0 and

|

∫

Ω

ρv · ∇ϕdx|

= |

∫

Ω′

ω(ψ)v · ∇ϕdx−

∫

Ω′

ωε(ψ)v · ∇ϕdx|

≤
(

supx∈Ω′ |ω(ψ(x)) − ωε(ψ(x))|
)

|Ω′|1/2||v||W 1,2(Ω′)||ϕ||L∞(Ω′)

tends to zero as ε → 0, because ωε tends to ω as ε → 0 uniformly on compact

sets and W 2,2(Ω′) ⊂ Cb(Ω′), so ψ(x) lies in a compact set for x ∈ Ω′.

Remark 3 If v = ∇⊥ψ then ψ|Γ is constant on each component of Γ, because

v|Γ ≡ 0; see (2). In particular, ψ(x,±di) is independent of x. Then we may

fix arbitrarily the constant value ψ(x,−di), since v does not change by modi-

fying ψ by a constant. We set ψ(x,−di) ≡ 0. Then from αi =
∫

Σi(x)
v · ni =

±
∫ di

−di
v1(x, y) dy = ±

∫ di

−di
(−ψy(x, y)) dy we have ±ψ(x, di) = −αi.
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To prove Theorem 1, let Ωt = ∪2
i=2{(x, y) ∈ Ωi ; |x| < t} ∪ Ω0 (t > 0) and a

be a smooth vector field in H1,loc(Ω) such that it coincides with the Poiseuille

flow vi in Ωc
i,t for some t > 0 and

||∇a||L2(Ωt) ≤ ctα2 (15)

for some constant ct depending only on t and Ω. For a construction of a, see

[1, §3.1/Theorem 3.3(b)] and [4, Lemma XI.3.1]. First we look for a weak

solution of (1)-(3). In view of Remark 2, we reformulate this problem in the

following way: Given ω ∈ Cb(R), find u = ∇⊥ψ − a, such that

ν

∫

Ω

∇(u + a) · ∇Φ =

∫

Ω

ω(ψ)((u + a) · ∇Φ) · (u + a) (16)

for all Φ ∈ V. With this reformulation, equations (7) and (8) (the generalized

form of equations (1)) are automatically satisfied with v = u+a and ρ = ω(ψ).

Afterwards we will chose ω appropriately (see (26)) such that all the other

statements in Theorem 1 are satisfied. We shall seek a solution u of (16) in the

closure of V with respect the Dirichlet norm ||∇u||L2(Ω). We denote this space

by V.

Theorem 2 Let lω := ||ω||Cb(R). Then there is a constant c = c(Ω) > 0 such

that for cα2lω < ν, the equation (16) has a solution u ∈ V.

Proof: Given an orthonormal basis {Φk} ⊂ V of V, we consider the approxi-

mated problem














um =
∑m

k=1 ξkmΦk, um + a = ∇⊥ψm

ν

∫

Ω

∇(um + a) · ∇Φk =

∫

Ω

ω(ψm)((um + a) · ∇Φk) · (um + a),

k = 1, 2, · · · , m.

(17)

We remark that the existence of a scalar function ψm such that um + a =

∇⊥ψm, a stream function associated with the vector field vm := um + a, is

assured because vm is a smooth vector field with null divergent and Ω is an

open simply connected set of R
2. Besides, in view of Remark 3, we may assume

ψm(x,−di) ≡ 0, ψm(x, di) ≡ α1 for i = 1, 2.
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For each m ∈ R
m, (17) is a system of nonlinear algebraic equations for the

unknown ξ = (ξ1m, · · · , ξ1m) ∈ R
m. In fact, setting

Fk(ξ) := ν

∫

Ω

∇(um + a) · ∇Φk −

∫

Ω

ω(ψm)((um + a) · ∇Φk) · (um + a)

equation (17) becomes the problem of finding a singular point of the vector field

F := (F1, · · · , Fm) in R
m, i.e. a point ξ ∈ R

m such that F(ξ) = 0. An enough

condition to this holds is that F(ξ) points towards the exterior of some ball

Br(0) (an open ball in R
m of radius r centered at the origin) at every point of

its border (the sphere in R
m of radius r centered at the origin) i.e. F(ξ)·ξ > 0 for

every |ξ| ≡ |ξ|Rm = r for some r > 0. (This fact can be inferred by contradiction

from Brouwer’s fixed point theorem; see e.g. [4, Lemma VIII.3.1].) Thus we

estimate F(ξ) · ξ: First we note that

F(ξ) · ξ = ν|ξ|2 − ν

∫

Ω

∆a · um −

∫

Ω

ω(ψm)((um + a) · ∇um) · a , (18)

which can be easily verified from (17) and using that
∫

Ω

ω(ψm) ((um + a) · ∇um) · um = 0 . (19)

This last identity is obviously true in the case of a smooth ω. Indeed,

um + a = ∇⊥ψm so ∇ · (ω(ψm)(um + a)) = 0 ;

besides,

ω(ψm) ((um + a) · ∇um) · um =
1

2
(ω(ψm)(um + a)) · ∇|um|

2,

so (19) can be derived from integration by parts. For the case of a non smooth

ω ∈ Cb(R), the identity (19) can be proved by using a sequence of mollifiers ωε

(ε → 0) approximating ω. Indeed, let Ω′ ⊂ Ω be a smooth bounded domain

containing spt.um. Then

|

∫

Ω

ω(ψm) ((um + a) · ∇um) · um|

= |

∫

Ω′

ω(ψm)(vm · ∇um) · um −

∫

Ω′

ωε(ψm)(vm · ∇um) · um|

≤
(

supx∈Ω′ |ω(ψm(x)) − ωε(ψ(ψm(x))|
)

||(vm · ∇um) · um||L∞(Ω′)
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tends to zero as ε→ 0; cf. Remark 2. Now we estimate each term in (18). The

strategy is to split the integrals
∫

Ω
over the domains Ωt and Ωc

t = Ωc
1,t∪Ωc

2,t and

use (15) and a = vi on Ωc
i,t, with the help of Hölder inequalities and Sobolev

embedding type estimates. Using (6), Fubini’s theorem and that um has null

flux on each cross section Σi(x) of Ωi (recall that um|Γ = 0 and um ∈ V, so

∇ · um = 0), we have
∫

Ωc
i,t

∆a · um =

∫

Ωc
i,t

θ′′(y)ni · um dxdy = −(± 3
2d3i
αi)

∫

Ωc
i,t

um · ni dxdy

= − 3
2d3i
αi

∫ ±∞

±t

(

∫

Σi(x)

um · ni dy)dy = 0 ,

so

|

∫

Ω

∆a · um| = |

∫

Ωt+1

∆a · um|

= | −

∫

Ωt+1

∇a · ∇um +

∫

Σ2(t+1)

um · ∂a
∂n2

+

∫

Σ1(−t−1)

um · ∂a
∂n1

|

= | −

∫

Ωt

∇a · ∇um −
∑2

i=1

∫

Ωt+1∩Ωc
i,t

∇vi · ∇um

+

∫

Σ2(t+1)

um · ∂v2

∂n2
+

∫

Σ1(−t−1)

um · ∂v1

∂n1
|

≤ ||∇a||L2(Ωt)||∇um||L2(Ωt) + cα2 ||∇um||L2(Ωt+1∩Ωc
i,t)

+ cα2 ||um||L2(∂Ωt+1)

≤ cα2 ||∇um||L2(Ω) + cα2 ||∇um||L2(Ω) + cα2 ||∇um||L2(Ωt+1)

≤ cα2 ||∇um||L2(Ω) = cα2 |ξ| ,

where above and from now on c stands for some constant depending only on Ω;

cf. [4, XI.(3.8)] and [1, (3.15)]. For the second integral, we start with

|

∫

Ωc
i,t

ω(ψm)(um · ∇um) · a|

≤ lω

(

±

∫ ±∞

±t

∫ di

−di

|θi(y)um|
2dydx

)1/2

||∇um||L2(Ωc
i,t)

≤ lω

(

±

∫ ±∞

±t

(

∫ di

−di

|θi(y)|
4dy)1/2(

∫ di

−di

|um|
4dy)1/2dx

)1/2

||∇um||L2(Ωc
i,t)

≤ c lω|αi|

(

±

∫ ±∞

±t

||um||
2
L4( (−di,di) )dx

)1/2

||∇um||L2(Ωc
i,t)

≤ c lω|αi|

(

±

∫ ±∞

±t

||∇um||
2
L2( (−di,di) )dx

)1/2

||∇um||L2(Ωc
i,t)

= c lω|αi| ||∇um||
2
L2(Ωc

i,t)
≤ c lω|αi| ||∇um||

2
L2(Ω) = c lω|αi| |ξ|

2.
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Analogously, we have

|

∫

Ωc
i,t

ω(ψm)(a · ∇um) · a| ≤ c lω|αi|
2 |ξ| .

Next, using in particular (15), we obtain

|

∫

Ωt

ω(ψm)(um · ∇um) · a| ≤ lω || |um| |a| ||L2(Ωt) ||∇um||L2(Ωt)

≤ lω ||um||L4(Ωt)||a||L4(Ωt)||∇um||L2(Ωt)

≤ c lω ||∇um||L2(Ωt)||∇a||L2(Ωt)||∇um||L2(Ωt)

≤ c lω ||∇um||L2(Ωt)||∇a||L2(Ωt)||∇um||L2(Ωt)

≤ c lω |αi| ||∇um||
2
L2(Ωt)

= c lω |αi| |ξ|
2.

Analogously,

|

∫

Ωt

ω(ψm)(a · ∇um) · a| ≤ c lω |αi|
2 |ξ| .

From the above estimates and (18) we arrive at

F(ξ) · ξ ≥ (ν − c lω|αi|)|ξ|
2 − (ν + |αi|lω)c|αi| |ξ| .

Then F(ξ) ·ξ > 0 if c lω|αi| < ν and |ξ| = r for any r > c|αi|
ν+|αi|lω
ν−c lω|αi|

. Therefore

the system (17) has a solution um =
∑m

k=1 ξkmΦk and ||∇um||L2(Ω) = |ξ| satisfies

the following estimate

||∇um||L2(Ω) ≤ c|αi|
ν + |αi|lω
ν − c|αi|lω

(20)

for some constant c = c(Ω) > 0. Then, by Banach-Alaoglu’s theorem, there

exists a subsequence (umk
) that converges weakly to some u in V. Since it holds

Poincaré’s inequality

||z||L2(Ω) ≤ c||∇z||L2(Ω), ∀ z ∈ V , (21)

(where c is a constant depending only on Ω; notice that (21) holds separately

in each Ωi, i = 0, 1, 2, because Ωi is bounded in some direction) we may assume

that (umk
) also converges weakly to u in W 1,2(Ω) and, by Rellich-Kondrachov’s

theorem, strongly in L
p
loc(Ω) for any p ∈ [1,∞). As a consequence (possibly
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taking another subsequence of (mk)), (ψmk
) converges weakly to some function

ψ in W
2,2
loc (Ω), such that ∇⊥ψ = u + a. We recall that ψm is defined in (17) by

the equation um + a = ∇⊥ψm. Noting that W 2,2(Ω′) is compactly embedded

in Cb(Ω′) for any smooth bounded open subset Ω′ of Ω, we deduce that ω(ψmk
)

converges to ω(ψ) strongly in Cb(Ω
′). Then we can verify that u = ∇⊥ψ − a

satisfies (16) for all Φ in V. Indeed, let Ω′ ⊂ Ω be a smooth bounded domain

containing spt.Φ. From the weak convergence of (umk
) to u in V, it is obvious

that the left hand side of the second equation in (17),
∫

Ω
∇(umk

+ a) · ∇Φ =
∫

Ω
∇umk

·∇Φ+
∫

Ω
∇a ·∇Φ, converges to

∫

Ω
∇(u+a) ·∇Φ . Regarding the right

hand side of the second equation in (17), let let v := u + a and vm := um + a

(as we defined right after (17)). Then we can write

∫

Ω

ω(ψmk
)((umk

+ a) · ∇Φ) · (umk
+ a) =

∫

Ω′

ω(ψmk
)(vmk

· ∇Φ) · vmk

=

∫

Ω′

[ω(ψmk
) − ω(ψ)](vmk

· ∇Φ) · vmk
+

∫

Ω′

ω(ψ)(vmk
− v) · ∇Φ) · vmk

+

∫

Ω′

ω(ψ)(v · ∇Φ) · vmk

≡ I + II + III .

The first term I converges to zero (as mk → ∞) since

|I| ≤ (sup
x∈Ω′

|ω(ψmk
(x)) − ω(ψ(x))|)||vmk

||L4(Ω′)||Φ||L∞(Ω′),

(ψmk
) converges to ψ in Cb(Ω′) (cf. Remark 2) and (vmk

) is bounded in L4(Ω′)

(it converges strongly in Lp(Ω′) for any p ∈ [1,∞). For the second term II, we

have

|II| ≤ lω||∇Φ||L∞(Ω′)||umk
− u||L2(Ω′)||vmk

||L2(Ω′)

so it converges also to zero, since (umk
) converges strongly to u in L2(Ω′) and

(vmk
) is bounded in L2(Ω′). Finally, the third term III converges to

∫

Ω′

ω(ψ)(v·

∇Φ) · v =

∫

Ω

ω(ψ)(v · ∇Φ) · v from previous arguments or because it equals to
∫

Ω′

ω(ψ)(v ·∇Φ) ·umk
+

∫

Ω′

ω(ψ)(v ·∇Φ) ·a and the functional z 7→

∫

Ω′

ω(ψ)(v ·

∇Φ) ·z is a bounded linear functional on V and (umk
) converges weakly to u in
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V. Therefore, by passing to the limit when m ≡ mk → ∞, from (17) we obtain

(16).

�

Proof of Theorem 1: From Theorem 2, there exists a constant c = c(Ω)

such that for any ω ∈ Cb(ω) satisfying cα2lω < ν, equation (16) has a solution

u ∈ V. As we noticed right before the statement of Theorem 2, the pair of

functions v = u+a = ∇⊥ψ (ψ ∈ W
2,2
loc (Ω)) and ρ = ω(ψ) satisfies equations (7)

and (8). From u ∈ V, ω ∈ Cb(R) and the Sobolev embedding W 2,2(Ω′) ⊂ C(Ω′)

for any bounded open subset of Ω, it is clear that (ρ,v) ∈ Cb(Ω) × H1,loc(Ω).

Then we proceed to prove the other statements (9)-(12).

From (16) we have that u = v − vi, along with some pressure function

τ ∈ L2
loc(Ωi), is a weak solution of the Stokes equation

ν∆u = ∇τ + f , (22)

in the domain Ωc
i,t, where

f := ρ(v · ∇)v = ρ(u · ∇)u + ρ(a · ∇)u + ρ(u · ∇)a,

with ρ = ω(ψ) and ∇⊥ψ = v. Here we used that a coincides with the Poiseuille

flow vi in Ωc
i,t (in particular, ν∆a = ν∆vi = ∇p̃ for some function p̃ ∈ L2

loc(Ω
c
i,t)

and a · ∇a = vi · ∇vi = 0). For 0 ≤ x1 < x2, let Ωi,x1,x2
:= {(x, y) ∈ Ωi : x1 <

|x| < x2}. For any j = 0, 1, 2, · · · , using Hölder inequality and the Sobolev

embedding W 1,2(Ωi,x1,x2
) ⊂ L6(Ωi,x1,x2

), we have

||ρu · ∇u||L3/2(Ωi,t+j,t+j+1) ≤ lω||u||L6(Ωi,t+j,t+j+1)||∇u||L2(Ωi,t+j,t+j+1)

≤ c lω||∇u||2L2(Ωi,t+j,t+j+1)

where from now on c is a constant depending only on Ω.Summing over j, we

obtain

||ρu · ∇u||L3/2(Ωc
t)
≤ c lω||∇u||2L2(Ω). (23)

We also have,

||ρa · ∇u||L3/2(Ωi,t+j,t+j+1) ≤ lω ||a||L6(Ωi,t+j,t+j+1)||∇u||L2(Ωi,t+j,t+j+1);
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notice that

||a||2L6(Ωi,t+j,t+j+1)
=

∫ t+j+1

t+j

∫ di

−di

|vi|
6 dy dx =

∫ di

−di

|vi|
6 dy ,

since a = vi in Ωc
t and vi does not depend on x; then

||ρa · ∇u||L3/2(Ωc
t )
≤ lω ||vi||L6((−di,di))||∇u||L2(Ω). (24)

Analogously to (23) and (24), we obtain

||ρ(u · ∇)a||L3/2(Ωc
t)
≤ c lω ||∇vi||L2((−di,di))||∇u||L2(Ω). (25)

From (23)-(25) and [3, Lemma VI.1.2] together with its footnote [3, p.314], we

obtain

||u||W 1,3/2(Ωc
t+1

) ≤ c lω(||∇u||L2(Ω) + 1)||∇u||L2(Ω) .

Since ||u||L∞(Ωc
t+1

) ≤ c||u||W 1,3/2(Ωc
t+1

), it follows the estimate

||f ||L2(Ωc
t+1

) ≤ lω

(

||u||L∞(Ωc
t+1

)||∇u||L2(Ωc
t+1

)

+ ||vi||L∞(Ω)||∇u||L2(Ωc
t+1

) + ||∇a||L∞(Ω)||u||L2(Ωc
t+1

)

)

≤ c lω
(

lω(||∇u||L2(Ω) + 1)||∇u||L2(Ω) + 1
)

||∇u||L2(Ωc
t+1

).

Therefore, by employing [3, Lemma VI.1.2] again, we arrive at (9), with t+1 in

place of t, and we have the estimate ||u||W 2,2(Ωc
t+1

) ≤ c(||f ||L2(Ωc
t)

+ ||∇u||L2(Ωc
t )
),

i.e.

||u||W 2,2(Ωc
t+1

) ≤ c
(

l2ω(||∇u||L2(Ω) + 1)||∇u||L2(Ω) + l + 1
)

||∇u||L2(Ωc
t)
.

Next, as we shall see, to have condition (10) satisfied it is enough to choose

ω in Cb(R) such that

ω(ψ1(y)) = ρ1(y) . (26)

We recall that we defined ψ1 in Theorem 1 as ψ1(y) = −
∫ y

−d1
θ1(y

′) dy′. We

also note that ψ1 is a monotonic function for y ∈ (−d1, d1), thus there exists

a function ω in Cb(R) satisfying (26), i.e. ω(s) = ρ1(ψ
−1
1 (s)), ∀ s ∈ Imψ1

and outside the interval Imψ1 (the image set of ψ1, which is defined in Σ1 =
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(−d1, d1)) ω is arbitrary but continuous and bounded in R. Now, since u = v−

v1 ∈ W
1,2
0 (Ω), from Remark 3 and Poincaré’s inequality, we have that ψ−ψ1 ∈

W 2,2(Ω1). (Note that Ω1 is bounded in one direction and ψ − ψ1 vanishes on

the ‘horizontal boundary’ of Ω1, so we can apply Poincaré’s inequality.) Thus,

reasoning as in (14), we obtain limx→−∞ ||ψ(x, ·) − ψ1||Cb(Σ1) = 0. Then, ψ is

bounded in Ω1 and given any ε > 0 there exists a s > 0 such that |x| ≥ s

implies

|ρ(x, y) − ρ1(y)| = |ω(ψ(x, y))− ω(ψ1(y))| < ε,

for all y ∈ Σ1 = (−d1, d1), since ω is locally uniformly continuous. Thus we

have condition (10) satisfied.

With the above choice for ω, we set W (s)
def
=

∫

0

s

ω(r) dr and using Remark 3

and Remark 1, we compute the flux of the momemtum on Ωi to verify (11):

βi :=

∫

Σi(x)

ρv · ni = ±

∫ di

−di

ρv1(x, y) dy = ±

∫ di

−di

ω(ψ)(−ψy(x, y)) dy

= ±

∫ di

−di

(−∂yW (ψ(x, y))) dy = ± (W (ψ(x,−di)) −W (ψ(x, di))

= ±

∫ ψ(x,−di)

ψ(x,di)

ω(s) ds =

∫ 0

α1

ω(s) ds =

∫ 0

α1

ρ1(ψ
−1
1 (s)) ds .

Imposing on ω, besides (26), the condition ||ω||Cb(R) ≤ l, we get ρ = ω(ψ)

satisfying also ||ρ||Cb(Ω) ≤ l.

Finally, we have (12) by the following steps:

||∇(v − vi)||L2(Ωi) = ||∇(a− vi)||L2(Ωi) + ||∇u||L2(Ωi)

= ||∇(a− vi)||L2(Ωi∩Ωt) + ||∇u||L2(Ω)

≤ c|αi| + ||∇u||L2(Ω) ≤ c|αi| + c|αi|
ν+|αi|l
ν−c|αi|l

,

where we used that u satisfies the same estimate as (20) and lω = l;

||∇v||L2(Ω0) = ||∇(u + a)||L2(Ω0) ≤ ||∇a||L2(Ω0) + ||∇u||L2(Ω0)

≤ c|αi| + ||∇u||L2(Ω)

≤ c|αi| + c|αi|
ν+αl
ν−cαl

.

�
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Remark 4 (on uniqueness). The uniqueness of solution of Problem (1)-(4)

is not clear for us, since following the usual procedure of taking the difference

v = v1 − v2, ρ = ρ1 − ρ2 of two solutions (ρ1,vi), i = 1, 2, we get stuck with

the term
∫

Ω
ρ(vi∇v) · vi. We conjecture that uniqueness of the velocity field is

true under an assumption of smallness on the density, i.e. if we assume that

||ρ||Cb(Ω) is sufficiently small, but some new ingredient is necessary to improve

the usual prove (or to find a new one). Regarding the uniqueness of the density,

it is necessary to find new criteria to select the physically relevant solution (cf.

[6, p.34]), unless the velocity vector field has not undesirable singularities, in a

way that its stream lines foliate Ω. In this case, if the velocity v is unique then

the density ρ is also unique, because the equations ∇ · (ρv) = 0 and ∇ · v = 0

imply that ρ is constant along the stream lines of v.
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