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Abstract

Three-component links in the 3-dimensional sphere were classified up
to link homotopy by John Milnor in his senior thesis, published in 1954.
A complete set of invariants is given by the pairwise linking numbers p, q
and r of the components, and by the residue class of one further integer
µ, the “triple linking number” of the title, which is well-defined modulo
the greatest common divisor of p, q and r.

To each such link L we associate a geometrically natural character-
istic map gL from the 3-torus to the 2-sphere in such a way that link
homotopies of L become homotopies of gL. Maps of the 3-torus to the
2-sphere were classified up to homotopy by Lev Pontryagin in 1941. A
complete set of invariants is given by the degrees p, q and r of their
restrictions to the 2-dimensional coordinate subtori, and by the residue
class of one further integer ν, an “ambiguous Hopf invariant” which is
well-defined modulo twice the greatest common divisor of p, q and r.

We show that the pairwise linking numbers p, q and r of the compo-
nents of L are equal to the degrees of its characteristic map gL restricted
to the 2-dimensional subtori, and that twice Milnor’s µ-invariant for L
is equal to Pontryagin’s ν-invariant for gL. We view this as a natural
extension of the familiar fact that the linking number of a 2-component
link is the degree of an associated map of the 2-torus to the 2-sphere.

When p, q and r are all zero, the µ- and ν-invariants are ordinary
integers. In this case we use J. H. C. Whitehead’s integral formula for the
Hopf invariant, adapted to maps of the 3-torus to the 2-sphere, together
with a formula for the fundamental solution of the scalar Laplacian on
the 3-torus as a Fourier series in three variables, to provide an explicit
integral formula for ν, and hence for µ. The integrand in this formula is
geometrically natural in the sense that it is invariant under orientation-
preserving rigid motions of the 3-sphere.
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The Borromean rings: p = q = r = 0, µ = ±1

We give here only sketches of the proofs of the main results, with full
details to appear elsewhere.

1 Statement of results

Consider the configuration space

Conf3S
3 ⊂ S3 × S3 × S3

of ordered triples (x, y, z) of distinct points in the unit 3-sphere S3 in R4. Since

x, y and z are distinct, they span a 2-plane in R4. Orient this plane so that

the vectors from x to y and from x to z form a positive basis, and then move

it parallel to itself until it passes through the origin. The result is an element

G(x, y, z) of the Grassmann manifold G2R4 of all oriented 2-planes through the

origin in R4. This defines the Grassmann map

G : Conf3S
3 −→ G2R4.

It is equivariant with respect to the diagonal O(4) action on S3 × S3 × S3 and

the usual O(4) action on G2R4.

The Grassmann manifold G2R4 is isometric (up to scale) to the product

S2×S2 of two unit 2-spheres. Let π : G2R4 → S2 denote orthogonal projection

to either factor.
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Figure 1: The Grassmann map

Given any ordered oriented link L in S3 with three parametrized compo-

nents

X = {x(s) | s ∈ S1} , Y = {y(t) | t ∈ S1} and Z = {z(u) | u ∈ S1},

where S1 is the unit circle in R2, we define the characteristic map of L

gL : T 3 = S1 × S1 × S1 −→ S2

by gL(s, t, u) = π(G(x(s), y(t), z(u))). In Section 3 we give an explicit formula

for this map as the unit normalization of a vector field on T 3 whose components

are quadratic polynomials in the components of x(s), y(t) and z(u).

The homotopy class of gL is unchanged under any link homotopy of L,

meaning a deformation during which each component may cross itself, but

different components may not intersect.

Theorem A The pairwise linking numbers p, q and r of the link L are equal

to the degrees of its characteristic map gL on the 2-dimensional coordinate

subtori of T 3, while twice Milnor’s µ-invariant for L is equal to Pontryagin’s

ν-invariant for gL.

Remark 1 Milnor’s µ-invariant, typically denoted µ123, is descriptive of a

single three-component link. In contrast, Pontryagin’s ν-invariant is the coho-

mology class of a difference cocycle comparing two maps from T 3 to S2 that are
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homotopic on the 2-skeleton of T 3. In particular, it assigns to any pair g, g′

of such maps whose degrees on the coordinate 2-tori are p, q and r, an integer

ν(g, g′) that is well-defined modulo 2 gcd(p, q, r). With this understanding, the

last statement in Theorem A asserts that

2(µ(L)− µ(L′)) ≡ ν(gL, gL′) mod 2 gcd(p, q, r),

for any two links L and L′ with the same pairwise linking numbers p, q and r.

We will sketch here two quite different proofs of Theorem A, a topological

one in Section 4 using framed cobordism of framed links in the 3-torus, and an

algebraic one in Section 5 using the group of link homotopy classes of three-

component string links and the fundamental groups of spaces of maps of the

2-torus to the 2-sphere.

To state the integral formula for Milnor’s µ-invariant when the pairwise link-

ing numbers are zero, let ω denote the Euclidean area 2-form on S2, normalized

so that the total area is 1 instead of 4π. Then ω pulls back under the character-

istic map gL to a closed 2-form on T 3, which can be converted to a divergence-

free vector field VL on T 3 via the formula (g∗Lω)(X,Y ) = (X × Y ) •VL. In

Section 6 we give explicit formulas for VL, and also for the fundamental so-

lution ϕ of the scalar Laplacian on the 3-torus as a Fourier series in three

variables. These are the key ingredients in the integral formula below.

Theorem B If the pairwise linking numbers p, q and r of the three components

of L are all zero, then Milnor’s µ-invariant of L is given by the formula

µ(L) =
1
2

∫
T 3×T 3

VL(σ)× VL(τ) • ∇σϕ (σ − τ) dσ dτ.

Here ∇σ indicates the gradient with respect to σ, the difference σ − τ is

taken in the abelian group structure of the torus, and dσ and dτ are volume

elements. The integrand is invariant under the action of the group SO(4)

of orientation-preserving rigid motions of S3 on the link L, attesting to the

naturality of the formula. We will see in the next section that the integral

above expresses the “helicity” of the vector field VL on T 3.



TRIPLE LINKING NUMBERS AND INTEGRAL FORMULAS 255

2 Background and motivation

Let L be an ordered oriented link in R3 with two parametrized components

X = {x(s) | s ∈ S1} and Y = {y(t) | t ∈ S1}.

The classical linking number Lk(X,Y ) is the degree of the Gauss map

S1 × S1 → S2 sending (s, t) to (y(t) − x(s))/‖y(t) − x(s)‖, and can be ex-

pressed by the famous integral formula of Gauss [1833],

Lk(X,Y ) =
1

4π

∫
S1×S1

x′(s)× y′(t) • x(s)− y(t)
‖x(s)− y(t)‖3

ds dt

=
∫
S1×S1

x′(s)× y′(t) • ∇x ϕ (‖x(s)− y(t)‖) ds dt,

where ϕ(r) = −1/(4πr) is the fundamental solution of the scalar Laplacian in

R3. The integrand is invariant under the group of orientation-preserving rigid

motions of R3, acting on the link L. Corresponding formulas in S3 appear in

DeTurck and Gluck [2008] and in Kuperberg [2008].

Theorems A and B above give a similar formulation of Milnor’s triple linking

number in S3. We emphasize that these two theorems are set specifically in S3,

and that so far we have been unable to find corresponding formulas in Euclidean

space R3 which are equivariant (for Theorem A) and invariant (for Theorem B)

under the noncompact group of orientation-preserving rigid motions of R3.

For some background on higher order linking invariants, see Milnor [1957]

and, for example, Massey [1969], Casson [1975], Turaev [1976], Porter [1980],

Fenn [1983], Orr [1989], Cochran [1990], and Koschorke [1997, 2004].

The helicity of a vector field V defined on a bounded domain Ω in R3 is

given by the formula

Hel(V ) =
∫

Ω×Ω

V (x)× V (y) •
x− y
‖x− y‖3

dx dy

=
∫

Ω×Ω

V (x)× V (y) • ∇xϕ (‖x− y‖) dx dy

where, as above, ϕ is the fundamental solution of the scalar Laplacian on R3.
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Woltjer [1958] introduced this notion during his study of the magnetic field

in the Crab Nebula, and showed that the helicity of a magnetic field remains

constant as the field evolves according to the equations of ideal magnetohydro-

dynamics, and that it provides a lower bound for the field energy during such

evolution. The term “helicity” was coined by Moffatt [1969], who also derived

the above formula.

There is no mistaking the analogy with Gauss’s linking integral, and no

surprise that helicity is a measure of the extent to which the orbits of V wrap

and coil around one another. Since its introduction, helicity has played an

important role in astrophysics and solar physics, and in plasma physics here

on earth.

Looking back at Theorem B, we see that the integral in our formula for

Milnor’s µ-invariant of a three-component link L in the 3-sphere expresses the

helicity of the associated vector field VL on the 3-torus.

Our study was motivated by a problem proposed by Arnol′d and Khesin [1998]

regarding the search for “higher helicities” for divergence-free vector fields. In

their own words:

The dream is to define such a hierarchy of invariants for generic vector
fields such that, whereas all the invariants of order ≤ k have zero value
for a given field and there exists a nonzero invariant of order k + 1, this
nonzero invariant provides a lower bound for the field energy.

Many others have been motivated by this problem, and have contributed

to its understanding; see, for example, Berger and Field [1984], Berger [1990,

1991], Evans and Berger [1992], Akhmetiev and Ruzmaiken [1994, 1995],

Akhmetiev [1998], Laurence and Stredulinsky [2000], Hornig and Mayer [2002],

Rivière [2002], Khesin [2003], Bodecker and Hornig [2004], and Auckly and

Kapitanski [2005].

The formulation in Theorems A and B has led to partial results that address

the case of vector fields on invariant domains such as flux tubes modeled on

the Borromean rings; see Komendarczyk [2009].
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3 Explicit formula for the characteristic map gL

View R4 as the space of quaternions, with 1, i, j, k as basis, and consider the

map F : Conf3S
3 → R3 − {0} defined by

F (x, y, z) =

 ix • y + iy • z + iz •x
jx • y + jy • z + jz •x
kx • y + ky • z + kz •x

 .

Here • denotes the dot product in R4. The components of F (x, y, z) are

quadratic polynomials in the components of x, y and z in R4, and the norm

‖F (x, y, z)‖ is twice the area of the triangle in R4 with vertices at x, y and z.

This is a consequence of the fact that in R4, the area of a parallelogram with

edges a and b is given by

[
(ia • b)2 + (ja • b)2 + (ka • b)2

]1/2
.

Now let L be a three-component link in S3 with parametrized components

X = {x(s) | s ∈ S1} , Y = {y(t) | t ∈ S1} and Z = {z(u) | u ∈ S1}.

This defines an embedding eL : T 3 ↪→ Conf3S
3 given by

eL(s, t, u) = (x(s), y(t), z(u)). We compute that the characteristic map

gL : T 3 → S2 is the unit normalization of the composition F ◦ eL, that is,

gL(s, t, u) =
F (x(s), y(t), z(u))
‖F (x(s), y(t), z(u))‖

.

The derivation of this formula is based on the model of the Grassmann manifold

G2R4 as the set of unit decomposable 2-vectors in the exterior product space∧2 R4 ∼= R6, as presented in Gluck and Warner [1983].

Note that the map gL is “symmetric” in the sense that it transforms under

any permutation of the components of L by precomposing with the correspond-

ing permutation automorphism of T 3, and then multiplying by the sign of the

permutation.
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3.1 An asymmetric version of the characteristic map

Continuing to view S3 ⊂ R4, let ℘x denote stereographic projection of S3−{x}
onto the 3-space R3

x through the origin in R4 that is orthogonal to the vector

x, as shown in Figure 2.

x

−x

y

z

℘xy

℘xz

R3
x

S3

(℘xy − ℘xz)/‖℘xy − ℘xz‖

Figure 2: Stereographic projection

For any (x, y, z) ∈ Conf3S
3, consider the points ℘xy and ℘xz in R3

x. Trans-

lation in R3
x moves ℘xz to the origin, and then dilation in R3

x makes the trans-

lated ℘xy into a unit vector. Composing with ℘−1
x , we see that x has been kept

fixed, y has moved to the point (℘xy − ℘xz)/‖℘xy − ℘xz‖ on the equatorial

2-sphere S2
x = S3 ∩ R3

x, and z has moved to −x, as indicated in the figure.

This procedure defines a deformation retraction

r(x, y, z) = (x , (℘xy − ℘xz)/‖℘xy − ℘xz‖ , −x)

of Conf3S
3 onto the subspace {(x,w,−x) | x •w = 0}, which is a copy of the

unit tangent bundle US3 of the 3-sphere via the correspondence

(x,w,−x) ↔ (x,w). Let π : US3 → S2 denote the projection onto the fiber,

sending (x,w) to wx−1.

Now define the asymmetric characteristic map g̃L : T 3 −→ S2 of a link

L, as above, to be the composition π◦r◦eL. Noting that (℘xv)x−1 = ℘1(vx−1),
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we have explicitly

g̃L(s, t, u) =
℘1(yx−1)− ℘1(zx−1)
‖℘1(yx−1)− ℘1(zx−1)‖

where x = x(s), y = y(t) and z = z(u) parametrize the components of L. This

map is easily seen to be homotopic to the characteristic map gL defined above.

The restriction of g̃L to ∗×S1×S1 is the negative of the Gauss map for the

link ℘1((Y ∪ Z)x−1), and so, noting that ℘1 is orientation reversing (with the

usual sign conventions), its degree is the linking number of Y with Z. Since

gL is homotopic to g̃L, the same is true for gL. But then it follows from the

symmetry of gL that its degree on S1×∗×S1 is the linking number of X with

Z, and its degree on S1 × S1 × ∗ is the linking number of X with Y . This

proves the first statement in Theorem A.

This version g̃L of the characteristic map will also facilitate the topological

proof of the rest of Theorem A, to be given next.

4 Sketch of the topological proof of Theorem A

Starting with a link in the 3-sphere, consider the delta move shown in Figure

3, which may be thought of as a higher order variant of a crossing change. It

takes place within a 3-ball, outside of which the link is left fixed. This move

was introduced by Matveev [1987].

X X ′

Y Y ′

Z Z ′

Figure 3: The delta move L→ L′
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It was shown by Murakami and Nakanishi [1989] that an appropriate se-

quence of such moves can transform any link into any other link with the same

number of components, provided the two links have the same pairwise linking

numbers.

The key organizational idea for this proof of Theorem A is to show that

the delta move, when applied to the three components X, Y and Z of the link

L, as shown in Figure 3, increases its Milnor µ-invariant by 1, while increasing

the Pontryagin ν-invariant of its characteristic map gL by 2.

The fact that the delta move increases µ by 1 is well known to experts; our

proof relies on the geometric formula for µ due to Mellor and Melvin [2003]

in terms of how each link component pierces the Seifert surfaces of the other

two components, plus a count of the triple point intersections of these surfaces.

In particular, one can use a family of Seifert surfaces that differ only near the

delta move, as shown in Figure 4.

Figure 4: Seifert surfaces for L and L′

To see how the delta move affects the ν-invariant, we will view ν as a relative

Euler class, following Gompf [1998] and Cencelj, Repovš and Skopenkov [2007].

To that end let L and L′ be two three-component links in S3 with the same

pairwise linking numbers p, q and r, and let L and L′ be the framed links in the

3-torus† that are the preimages of a common regular value of their characteristic
†For the reader’s convenience, all subsets of T 3 in this section are written in blackboard

bold to distinguish them from subsets of S3.
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maps gL and gL′ . Orient L and L′ so that, when combined with the pullback

of the orientation on S2 to a tangent 2-plane transverse to these links, we get

the given orientation on T 3. Since L and L′ have the same pairwise linking

numbers, their characteristic maps gL and gL′ have the same degrees on the

coordinate 2-tori in T 3 (by the first part of Theorem A, proved in Section 3),

and so the framed links L and L′ have the same intersection numbers with

these 2-tori. By Poincaré duality, it follows that L and L′ are homologous in

T 3, and then by a standard argument that L× 0 and L′× 1 together bound an

embedded surface F in T 3 × [0, 1].

The relative normal Euler class e(F) is the intersection number of F

with a generic perturbation of itself that is directed by the given framings

along L× 0 and L′ × 1, but is otherwise arbitrary. Then, according to Gompf

and Cencelj–Repovš–Skopenkov,

ν(gL′ , gL) ≡ e(F) mod 2 gcd(p, q, r).

The key step in seeing how the delta move affects the ν-invariant is to adjust

L and L′ by link homotopies so that up to isotopy

L′ = L ∪ L∗

where L∗ is a two-component link bounding an annulus A ⊂ T 3 − L with

relative normal Euler class 2. Then the surface F = (L × [0, 1]) ∪ (A × 1),

with ∂F = L′ × 1 − L × 0, has e(F) = 2, since e(L × [0, 1]) = 0. Thus

ν(gL′ , gL) ≡ e(F) = 2, showing that the delta move increases the ν-invariant of

L by 2. Explaining how this step is carried out will complete our sketch of the

topological proof of Theorem A.

We begin with the delta move as shown above and change it by an isotopy

so that it now appears as pictured in Figure 5. From this picture, we see that

the delta move can be regarded as a pair of crossing changes of opposite sign

which introduce a pair of small “clasps” −→ .
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B B

C C

X

Y

Z

X ′

Y ′

Z ′

Figure 5: A different view of the delta move

We may assume that the move takes place inside the large ball B in S3 of

radius π/2 centered at −1. If we think of 1 and −1 as the north and south

poles of S3, then B is just the southern hemisphere. Figure 5 shows that inside

B, the portions of X and X ′ lie along the great circle through 1 and i (so in

fact X and X ′ coincide) while the portions of Y , Z, Y ′ and Z ′ lie close to the

great circle C through j and k, shown in orange.

Outside B, the links L and L′ coincide and, maintaining this coincidence,

we move them into a more favorable position as follows. First unknot X = X ′

by a link homotopy, and move it to the rest of the great circle through 1

and i. Then by an isotopy move Y and Z into a small neighborhood of the

great circle C, and position them so that their orthogonal projections to C are

Morse functions with just one critical point per critical value. As intended, Y ′

and Z ′ move likewise outside B. Note that each of the aforementioned clasps

contributes two critical values to these projections, and we may assume that

no other critical values fall between these two.

Now we use the asymmetric versions g̃L and g̃L′ of the characteristic maps

T 3 → S2, identifying the target S2 with the unit 2-sphere in the purely imag-

inary ijk-subspace of the quaternions. We interpret Figure 5 as showing the

image of S3 − {1} under the stereographic projection ℘1, and view i as the

north pole of S2.
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It is straightforward to check that, under the genericity conditions imposed

above, the point i ∈ S2 is a common regular value for g̃L and g̃L′ , and that

the framed links L and L′ in T 3 that are the inverse images of i under these

maps are for the most part the same. In fact we will show that, up to isotopy

L′ = L ∪ L∗ where L∗ consists of a pair of oppositely oriented spiral perturba-

tions of S1 × pt× pt, coming from the two clasps shown in Figure 5, and that

these two spirals bound an annulus A in T 3 − L whose relative normal Euler

class e(A) is 2. The argument will be given as we explain Figures 6–8.

The discussion is independent of what the links L and L′ look like outside

the ball B shown in Figure 5. The simplest case occurs when L is the three-

component unlink, and L′ = X ′ ∪ Y ′ ∪ Z ′ is the Borromean rings, whose

stereographic image is shown in Figure 6.

−1

i

−i

∞↔ 1

C

X ′

Z ′
Y ′

Figure 6: Borromean Rings

We have, as before, that X ′ is the great circle through 1 and i, with image

the blue vertical axis, while Y ′ and Z ′ lie in a small tubular neigborhood of

the great circle C through j and k, with images shown in red and green. In

this circumstance, the general formula L′ = L ∪ L∗ has L empty, and hence

L′ = L∗.

Figure 7 shows enlargements of the two clasps between red Y ′ and green

Z ′, with points on their segments labeled by numbers on Y ′ and by letters on

Z ′, ordered consistently with their orientations.
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Y ′

Y ′
Z ′

Z ′1

2

3 4

5

6
a

b

cd

e

f

Figure 7: The two clasps

Our job is to find the preimage L′ in S1 × S1 × S1 of the regular value i of

the map g̃L′ , which means we must find the points where the vector from the

green ℘1(zx−1) to the red ℘1(yx−1) points straight up.

We pause to see the effect of right multiplication by x−1. Let x travel along

X = X ′ from 1 to −i to −1 to i and back to 1, which is the direction in which

this component is oriented. Then right multiplication by x−1 gradually rotates

this component in the opposite direction. In the image 3-space, it looks like

the vertical axis is moving downwards. At the same time, the great circle C

through j and k is gradually rotated in the direction from j towards −k. A

small tubular neighborhood of C follows this rotation and twists as it goes,

dragged by the downward motion of the vertical axis.

Now focusing on the left clasp, and starting with x = 1, we see that the

arrow ~f2 from green f to red 2 points up. As x moves around X ′ from 1

towards −i (up on the blue vertical axis) a loop of upward pointing vectors is

traced out, passing successively through ~e1, ~d2, ~e3, and finally back to ~f2. In

Figure 8, the 3-torus is depicted as a cube, in which this loop is shown near the

front left corner of the bottom red-green square, traced in a counterclockwise

direction. When the progression of x(s) values is taken into account, we get

the orange spiral curve shown above this loop. This is one component of L′,

and is oriented according to the convention for framed links.

Focusing on the right clasp and repeating the above procedure, we get the

orange spiral curve shown at the right rear, lying over the loop ~a5 ~b6 ~c5 ~b4.
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T 3

A

f e d c b a

6
54

3
2

1

s

t

u

Figure 8: Computing e(A) = 2

This is the other component of L′, and is also oriented according to convention.†

Together, the components of L′ bound the orange annulus A shown in the

cube. This annulus is constructed as follows. Each point on the left spiral loop

is joined to the point on the right spiral loop at the same height s by a straight

line segment in the 2-torus s×S1×S1. The t-coordinate moves steadily so that

y(t) travels along the arc of Y ′ which lies in the ball B and the u-coordinate

moves steadily so that z(u) travels along the arc of Z ′ which lies in B. It is

easy to see that this annulus A is embedded in the 3-torus and that, even in

the general case where L is not empty, it would still be disjoint from L.

Now since A lies in T 3, its relative normal Euler class e(A) (when viewed as

a surface in T 3 × [0, 1]) can be computed as the intersection number of A with

the inverse image of any other regular value of g̃L′ . In particular, the point −i
is also a regular value, and its inverse image L̂′ is calculated from an analysis

of the clasps, just as we did for the inverse image of i. It consists of two spirals,

which can be obtained from the spirals in L′ by moving them half-way along in

†In fact, one need not go through the careful analysis to determine the orientations of the
spirals. All that is important is that they are oppositely oriented, which follows from the
fact that the pairwise linking numbers for the Borromean rings are zero.
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the vertical (blue) direction. We show L̂′ in Figure 8 as a pair of purple spirals,

which are oriented the same way as the orange spirals.

It is seen in this figure that the purple spirals pierce the orange annulus

twice in the positive direction, confirming that

e(A) = A • L̂′ = 2,

and completing the sketch of the topological proof of Theorem A.

5 Sketch of the algebraic proof of Theorem A

This proof is organized around the following key diagram:

[[S1 ∪ S1 ∪ S1, S3]] � H(3)

[S1 × S1 × S1, S2]

g
?

� π1Maps(S1 × S1, S2)

G
?

(∗)

The left half represents the geometric-topological problem we are trying to

solve, and is devoid of algebraic structure. The right half represents the alge-

braic structures that we impose on the left half via the two horizontal maps in

order to solve the problem.

In the upper left corner of (∗) we have the set of link-homotopy classes of

three-component links in the 3-sphere S3, and in the lower left corner the set

of homotopy classes of maps of the 3-torus to the 2-sphere. The vertical map g

between them assigns to the link-homotopy class of L the homotopy class of its

characteristic map gL. Theorem A describes g and asserts that it is one-to-one.

In the upper right corner of (∗) we have the group H(3) of link-homotopy

classes of three-component string links. A k-component string link consists

of k oriented intervals embedded disjointly in a cube, with their tails on the

bottom face, their tips on the top face directly above their tails, and their

interiors in the interior of the cube. The terminology was coined by Habegger

and Lin [1990]. The product of two k-component string links with endpoints

in a common position is given by stacking the second one on top of the first.
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When a string link moves by a link homotopy, each strand is allowed to cross

itself, while different strands must remain disjoint, just as for links. Then the

above product induces a group structure on the set H(k) of link homotopy

classes of k-component string links.

P Q R

==

PQP−1Q−1 = B

P

Q

P−1

Q−1

Figure 9: Generators for H(3)

Following Habegger and Lin, we derive the following presentation for H(3):

H(3) = 〈P,Q,R,B | [P,Q] = [Q,R] = [R,P ] = B,

[P,B] = [Q,B] = [R,B] = 1〉

The string links P , Q, R and B are those shown in Figure 9.

Using this presentation, elements of H(3) can be written uniquely in the

form

P pQqRrBµ , for p, q, r, µ ∈ Z.

Two elements P pQqRrBµ and P p
∗
Qq
∗
Rr
∗
Bµ
∗

are conjugate if and only if

p = p∗, q = q∗, r = r∗ and µ ≡ µ∗ mod gcd(p, q, r).

A string link S can be closed up to a link Ŝ by joining the tops of the strands

to their bottoms outside the cube, without introducing any more crossings. For

example, the closure of the three-component string link B is the Borromean

rings, as shown in Figure 10.



268 DETURCK GLUCK KOMENDARCZYK MELVIN et al

=

B̂

Figure 10: The string link B closes up to the Borromean rings B̂

Thus the Borromean rings, a “primitive example” in the world of links, is

the closure of a string link which is itself a commutator of simpler string links.

The closing-up operation descends to link homotopy classes and provides

the upper horizontal map in (∗). That the closure of the string link P pQqRrBµ

has pairwise linking numbers p, q and r is apparent for the generators P , Q and

R depicted in Figure 9, and then follows in general because pairwise linking

numbers of the closure are additive under composition of string links. That

the Milnor invariant of the closure is congruent to µ mod gcd(p, q, r) follows

from the formula for this invariant given in Mellor and Melvin [2003] which we

referred to in the previous section.

It then follows from Milnor’s theorem that the closing-up map is onto.

Furthermore, its point inverse images are the conjugacy classes in H(3), a

special circumstance for links with three components which fails for four or

more components.

In the lower right corner of (*) we have the union of the fundamental groups

of the components of the space of continuous maps of the

2-torus to the 2-sphere, with one group π1Mapsp(S1 × S1, S2) for each choice

of degree p of these maps. The work of Fox [1948] on torus homotopy groups

(the case p = 0) can be generalized to provide explicit presentations for these

groups:

π1Mapsp(S
1 × S1, S2) = 〈Up, Vp,Wp | [Up, Vp] = W 2

p , W
2p
p = 1,

[Up,Wp] = [Vp,Wp] = 1〉.
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These presentation also follow as a special case of a more general result of

Larmore and Thomas [1980] on the fundamental groups of the connected com-

ponents of the space of sections of certain 3-plane bundles over surfaces, which

is proved using Postnikov invariants.

Using this presentation, elements of π1Mapsp(S1 × S1, S2) can be written

uniquely in the form

Uqp V
r
p W

ν
p , for q, r, ν ∈ Z with 0 ≤ ν < 2|p|.

Two elements Uqp V
r
p W

ν
p and Uq

∗

p V r
∗

p W ν∗

p are conjugate if and only if q = q∗,

r = r∗ and ν ≡ ν∗ mod 2 gcd(p, q, r).

A direct argument using framed links shows how the generators Up, Vp and

Wp of π1Mapsp(S1 × S1, S2) can be represented by specific maps

S1×S1×S1 → S2, all agreeing with some fixed map of degree p on ∗×S1×S1.

In addition to this common feature, the representatives for Up, Vp, Wp have de-

grees q = 1, 0, 0 on S1×∗×S1, degrees r = 0, 1, 0 on S1×S1×∗, and Pontryagin

invariants ν = 0, 0, 1 relative to the chosen basepoint for π1Mapsp(S1×S1, S2).

The lower horizontal map in the key diagram takes a homotopy class of

based loops in the space Maps(S1×S1, S2), ignores basepoints, identifies S1×S1

with ∗ × S1 × S1, and then regards this class as a homotopy class of maps of

S1 × S1 × S1 → S2. Given a loop λ : S1 → Maps(S1 × S1, S2), the map

f : S1 × S1 × S1 → S2 is defined by f(s, t, u) = λ(s)(t, u). In particular, the

element Uqp V
r
p W

ν
p of π1Mapsp(S1×S1, S2) is taken to a map with degrees p, q

and r on the 2-dimensional coordinate subtori, and – this is the key observation

– with Pontryagin invariant ν mod 2 gcd(p, q, r) relative to the image of the

basepoint map. This lower horizontal map is onto, and point inverse images

are conjugacy classes in π1Mapsp(S1 × S1, S2).

The final step will be to define the vertical map G on the right side of

the key diagram to make the whole diagram commutative, and to be a group

homomorphism, insofar as possible. The hedge “insofar as possible” refers to

the fact that we have a group H(3) in the upper right corner of the diagram,
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but only a union of groups π1Mapsp(S1×S1, S2) in the lower right corner. We

deal with this disparity by demoting H(3) to a union of groups as follows.

Let H0(3) denote the subgroup of H(3) consisting of string links with the

second and third strands unlinked, and with presentation:

H0(3) = 〈Q,R,B | [Q,R] = B , [Q,B] = [R,B] = 1〉.

Consider the left cosets Hp(3) = P pH0(3) of H0(3), and convert each of them

into a subgroup isomorphic to H0(3) by using left translation to transfer the

group structure from subgroup to coset. Adopting the notations Qp = P pQ,

Rp = P pR and Bp = P pB for the generators of Hp(3) in this borrowed group

structure, we get the presentation

Hp(3) = 〈Qp, Rp, Bp | [Qp, Rp] = Bp , [Qp, Bp] = [Rp, Bp] = 1〉.

We are now ready to define the vertical map G on the right side of (∗) so as

to make the whole diagram commutative, and at the same time to be a union

of homomorphisms from the groups Hp(3) to the groups π1Mapsp(S1×S1, S2).

To do this, we start with specific string links to represent the elements of

Hp(3). For purposes of illustration, we choose p = 2, and show in Figure 11

the string links 12 = P 2, Q2 = P 2Q and R2 = P 2R, and under them the

three-component links we get by closing them up.

The 3-component links 12, Q2 and R2 shown in Figure 11 differ only in their

first (blue) component, and even these have the same “bottom point”. Thus

the corresponding characteristic maps from S1 × S1 × S1 → S2 all restrict to

the same map of degree 2 on ∗ × S1 × S1, and therefore all three represent

elements of the fundamental group π1Maps2(S1 × S1, S2) based at this map.

We denote these three images by G2(P 2), G2(P 2Q) and G2(P 2R), with the

intent of forcing commutativity in the key diagram. In fact, we can do this for

all the string links P 2QqRrBµ, and a simple geometric argument shows that

composition in the group H2(3) carries over in this way to multiplication in

the group π1Maps2(S1 × S1, S2).
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12 Q2 R2

1̂2 Q̂2 R̂2

Figure 11: Closing up the generators of H2(3)

Furthermore, a direct argument using framed links shows that the elements

G2(P 2Q) and G2(P 2R) may serve as the elements U2 and V2 in the above

presentation for π1Maps2(S1 × S1, S2), so that G2 takes P 2Q to U2 and P 2R

to V2. It then follows that G2 maps P 2B = [P 2Q,P 2R] to [U2, V2] = W 2
2 .

The value p = 2 used above was just for purposes of illustration, and the

corresponding results are true for all values of p. Thus we have defined the

vertical map G on the right side of our key diagram to be a union of homo-

morphisms Gp : Hp(3) → π1Mapsp(S1 × S1, S2) making the whole diagram

commutative.

Now let L be any three-component link in S3 with pairwise linking numbers

p, q and r and Milnor invariant µ. Then L is link homotopic to the closure

of P pQqRrBµ. By commutativity of the key diagram, the homotopy class of

the characteristic map gL is the image under the lower horizontal map of the

element Gp(P pQqRrBµ) = Uqp V
r
p W

2µ
p of π1Mapsp(S1 × S1, S2), and therefore

has Pontryagin invariant 2µ, as desired.

This completes our sketch of the algebraic proof of Theorem A.
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6 Sketch of the proof of Theorem B

Let L be a 3-component link in S3 with pairwise linking numbers p, q and

r all zero. We saw in Theorem A that these numbers are the degrees of the

characteristic map gL : T 3 → S2 on the 2-dimensional coordinate subtori. Thus

gL is homotopic to a map which collapses the 2-skeleton of T 3, and so is in

effect a map of S3 → S2. The Hopf invariant of this map, which we will regard

as the Hopf invariant of gL, is equal to Pontryagin’s ν-invariant comparing gL

to the constant map, and we will denote this by ν(gL).

To calculate this Hopf invariant, we adapt J. H. C. Whitehead’s integral

formula for the Hopf invariant of a map from S3 → S2 to the case of a map

from T 3 → S2, and show how to make the calculation explicit.

Using Hopf’s definition of his invariant of a map f : S3 → S2 as the linking

number between the inverse images of two regular values, Whitehead [1947]

expressed this as follows. Let ω be the area 2-form on S2, normalized so that∫
S2 ω = 1. Then its pullback f∗ω is a closed 2-form on S3 which is exact

because H2(S3; R) = 0. Hence f∗ω = dα for some 1-form α on S3, and

Whitehead showed that

Hopf(f) =
∫
S3
α ∧ f∗ω,

the integral being independent of the choice of α.

We recast Whitehead’s formula in terms of vector fields by letting Vf be

the vector field on S3 corresponding in the usual way to the 2-form f∗ω. Then

Vf is divergence-free, since f∗ω is closed, and is in fact in the image of curl

since f∗ω is exact. Thus Vf = ∇×W for some vector field W on S3, and the

integral formula for the Hopf invariant becomes

Hopf(f) =
∫
S3
W • Vf d(vol),

independent of the choice of W .

To make Whitehead’s formula more explicit, one needs a way to produce a

vector field W whose curl is Vf . On R3 this can be done by viewing Vf as a
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flow of electric current and then calculating the corresponding magnetic field

BS(Vf ) using the classical formula of Biot and Savart [1820]:

BS(Vf ) = −∇×Gr(Vf ),

where Gr is the Green’s operator that inverts the vector Laplacian. Then

∇× BS(Vf ) = Vf

by Ampere’s Law. The justification for these statements, and a nice explana-

tion, can be found in Chapter 5 – Magnetostatics in Griffiths [1989].

The explicit formula for the Green’s operator on R3 is given by convolution

with the fundamental solution ϕ(r) = −1/(4πr) of the scalar Laplacian, and

hence

BS(Vf )(y) =
∫

R3
Vf (x)×∇yϕ (‖y − x‖) dx,

assuming that V is compactly supported, to guarantee that the integral con-

verges. The corresponding formula on S3 was given by DeTurck and Gluck [2008]

and by Kuperberg [2008].

We can summarize the calculation of the Hopf invariant in the single formula

Hopf(f) =
∫
S3

BS(Vf ) • Vf d(vol)

which was Woltjer’s original expression for the helicity of the vector field Vf .

A routine check shows that the above formula, with the integration over

T 3 instead of S3, yields the value of the Hopf invariant of the characteristic

map gL : T 3 → S2. This provides a formula for Pontryagin’s ν-invariant, and

portrays it as the helicity of the associated vector field VgL
, which for simplicity

we denote by VL:

ν(gL) = Hopf(gL) = Hel(VL) =
∫
T 3

BS(VL) • VL d(vol). (‡)

A straightforward calculation shows that

VL =
Ft × Fu • F

4π‖F‖3
∂/∂s+

Fu × Fs • F
4π‖F‖3

∂/∂t+
Fs × Ft • F

4π‖F‖3
∂/∂u,
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where F : T 3 → R3−{0} is the map defined in Section 3, and where subscripts

denote partial derivatives.

Therefore, to make the integral formula (‡) explicit, it remains to obtain an

explicit formula for the Biot-Savart operator on the 3-torus. As in the case of

R3, this depends on having an explicit formula for the fundamental solution of

the scalar Laplacian.

6.1 The fundamental solution of the Laplacian on the
3-torus

Proposition 1 The fundamental solution of the scalar Laplacian on the

3-torus T 3 = S1 × S1 × S1 is given by the formula

ϕ(x, y, z) = − 1
8π3

∞∑
m,n,p=−∞

m2+n2+p2 6=0

ei(mx+ny+pz)

m2 + n2 + p2
.

Even though we have expressed ϕ in terms of complex exponentials, the

value of ϕ is real for real values of x, y and z because of the symmetry of the

coefficients, and can therefore also be expressed as a Fourier cosine series.

Figure 12 shows the graph of the corresponding fundamental solution of the

scalar Laplacian on the 2-torus S1 × S1, displayed over the range

−3π ≤ x, y ≤ 3π. If we think of the 2-torus as obtained from a square by

identifying opposite sides, then this shows the function ϕ to have a negative

infinite minimum at the single vertex, two saddle points in the middle of the

two edges, and a maximum in the middle of the square. Presumably the fun-

damental solution ϕ on the 3-torus displays a corresponding distribution of

critical points.

To see why the proposition is true, begin with functions u and v in C∞(T 3),

with Fourier series

u =
∑

umnpe
i(mx+ny+pz) and v =

∑
vmnpe

i(mx+ny+pz),

where the sums are over all (m,n, p) ∈ Z3. The following observations result

from elementary calculations (ignoring convergence issues):
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Figure 12: Fundamental solution of the scalar Laplacian on S1 × S1

• ∆u = −
∑

(m2 + n2 + p2)umnpei(mx+ny+pz), so v is in the image of the

Laplacian if and only if the Fourier coefficient v000 = 0, i.e., iff v has

average value 0.

• The Fourier series of the convolution u ∗ v is given by coefficient-wise

multiplication, i.e.,

u ∗ v = 8π3
∑

umnpvmnpe
i(mx+ny+pz).

Thus, if v has average value zero, we have that ∆(ϕ ∗ v) = v, and so ϕ is

the fundamental solution of ∆.

The theory of Sobolev spaces provides the analytical justification of these for-

mal observations in order to prove the proposition.

6.2 Completing the proof of Theorem B

Now we have an explicit formula for the fundamental solution ϕ of the scalar

Laplacian on the 3-torus T 3, and just as in R3, both the scalar and vector
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Green’s operators act by convolution with ϕ. In particular, if V is a smooth

vector field on T 3, then Gr(V ) = V ∗ ϕ, that is,

Gr(V )(τ) =
∫
T 3
V (σ)ϕ(τ − σ) dσ.

To obtain the formula for the magnetic field BS(V ), we take the negative

curl of the above formula and get

BS(V )(τ) = −∇τ ×Gr(V )(τ) = −
∫
T 3
∇τ × (V (σ)ϕ(τ − σ)) dσ

=
∫
T 3
V (σ)×∇τϕ(τ − σ) dσ.

Then the helicity of V is given by

Hel(V ) =
∫
T 3
V (τ) • BS(V )(τ) dτ

=
∫
T 3×T 3

V (σ)× V (τ) • ∇σϕ(σ − τ) dσ dτ.

Applying this to the vector field VL associated with our 3-component link

L, we get the desired formula for the Pontryagin invariant ν of gL:

ν(gL) = Hopf(gL) = Hel(VL) =
∫
T 3

BS(VL) • VL d(vol)

=
∫
T 3×T 3

VL(σ)× VL(τ) • ∇σϕ(σ − τ) dσ dτ.

Hence by Theorem A, Milnor’s µ-invariant of the 3-component link L is

given by

µ(L) =
1
2
ν(gL) =

1
2

∫
T 3×T 3

VL(σ)× VL(τ) • ∇σϕ(σ − τ) dσ dτ,

completing the proof of Theorem B.
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