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ON THE ISOTROPIC REDUCTION METHOD AND
THE MASLOV INDEX

M. A. Javaloyes P. Piccione

Abstract

We study the Maslov index of continuous paths in the Grassmannian
Lagrangian using an isotropic reduction of the symplectic space, and we
discuss a few applications.

1 Introduction

The Maslov index is a semi-integer invariant associated to continuous paths

in the Lagrangian Grassmannian of a symplectic space (see [11, 12]), and it

is one of the main tools employed in Morse theory for (periodic) solutions

of Hamiltonian systems. In semi-Riemannian geometry, the Maslov index is

usually associated to geodesics, and its value gives an algebraic counting of the

conjugate or focal points along the geodesic. Let us observe here that the notion

of Maslov index requires the choice of a fixed reference Lagrangian L0. Usually,

in the case of a Hamiltonian system in the cotangent bundle TM∗ of a smooth

manifold M , L0 represents the vertical subspace of T (TM∗). In the case of

focal points along semi-Riemannian geodesics, the Lagrangian L0 encodes the

information on the tangent space of the initial orthogonal submanifold and on

its second fundamental form in the direction of the geodesic.

It has been recently observed (see [1]), that in the case of horizontal geodesics

in the total space of a semi-Riemannian submersion, the corresponding path in

the Grassmannian Lagrangian (up to a continuous change of symplectic coor-

dinates) consists of Lagrangian spaces that contain a fixed isotropic subspace.

In this situation, the isotropic space represents the vertical Jacobi fields along
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the horizontal geodesic, that do not give any contribution to the Maslov index.

It can be easily proved that the Maslov index of a path ` of Lagrangians that

contain a fixed isotropic space S, relatively to a reference Lagrangian L0 which

is decomposable with respect to S, equals the Maslov index of the path ˜̀ in

the isotropic reduction space S⊥/S obtained by taking quotients `(t)/S. If L0

is the Lagrangian associated to the vertical distribution and its second funda-

mental form, which is one of the two O’Neill tensors of the submersion (see

[7, 8]), then L0 is decomposable, and in this way one can obtain the equality

between the focal index of the horizontal geodesic and the conjugate index of

its projection onto the underlying base manifold of the submersion.

There are interesting situations where the decomposability property of the

reference Lagrangian L0 is not satisfied, and thus the equality between the

Maslov index of the path and the Maslov index of its isotropic reduction re-

quires more work. In this paper we develop a different technique that allows

to get isotropic reduction under no assumption on the reference Lagrangian

L0 (Theorem 2.11). The proof of this result requires more involved direct cal-

culations of the Maslov index in suitable local charts (Lemma 2.9), and the

continuity of the isotropic reduction procedure is established by equivariance

with respect to a smooth transitive action (Lemma 2.7 and Lemma 2.10).

We discuss a few applications of the result. A first immediate (and sim-

ple) corollary is obtained by applying the symplectic reduction in the calcula-

tion of the Hörmander index and of the Kashiwara index (Corollary 2.13 and

Corollary 2.14). More interesting, the isotropic reduction result is employed

to obtain an estimate on the difference of Maslov indices of a Lagrangian path

relatively to the choice of two distinct reference Lagrangians (Proposition 3.7).

This provides an extension of [5, Theorem 1.1, Proposition 4.1], and it aims

at comparison results for conjugate or focal points along a semi-Riemannian

geodesic. It should be observed that several different conventions can be made

concerning the definition of Maslov index for paths whose endpoints are not

transversal to the reference Lagrangian L0. Here we are using the same con-
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vention as in [11], where the contribution of the endpoints is computed as one

half of the signature of a certain bilinear form. In [5] the focal index of a Jacobi

equation, which is an integer valued invariant, is computed by considering the

total contribution of the endpoints. This explains the presence of the extra

term ε ∈ {0, 1
2} in our estimate (3.7).

The interested reader will find more applications to the study of conjugate

and focal points in semi-Riemannian geometry in [4].

2 Isotropic reduction and Maslov index

The aim of this section is to prove an equality relating the Maslov index of

a continuous path ` of Lagrangian subspaces of a symplectic space with the

Maslov index of the path obtained as a quotient of ` by a fixed isotropic sub-

space S contained in `(t) for all t. The Maslov index is an invariant associated

to the path ` and to the choice of a fixed Lagrangian L0. We will consider

the case when L0 and S are in general position, with special interest in two

situations: when L0 contains S, and when L0 has trivial intersection with S.

2.1 Preliminaries

Let us consider a symplectic space (V, ω), with dim(V ) = 2n; we will denote

by Sp(V, ω) the symplectic group of (V, ω), which is the closed Lie subgroup of

GL(V ) consisting of all isomorphisms that preserve ω. A subspace X ⊂ V is

isotropic if the restriction of ω to X×X vanishes identically; an n-dimensional

(i.e., maximal) isotropic subspace L of V is called a Lagrangian subspace. We

denote by Λ the Lagrangian Grassmannian of (V, ω), which is the collection of

all Lagrangian subspaces of (V, ω), and is a compact differentiable manifold of

dimension 1
2n(n + 1). A real-analytic atlas of charts on Λ is given as follows.

Given a Lagrangian decomposition (L0, L1) of V , i.e., L0, L1 ∈ Λ are transverse

Lagrangians, so that V = L0 ⊕L1, then denote by Λ0(L1) the open and dense

subset of Λ consisting of all Lagrangians L transverse to L1. A diffeomorphism
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ϕL0,L1 from Λ0(L1) to the vector space Bsym(L0) of all symmetric bilinear

forms on L0 is defined by ϕL0,L1(L) = ω(T ·, ·)|L0×L0 , where T : L0 → L1 is the

unique linear map whose graph in L0 ⊕ L1 = V is L. The kernel of ϕL0,L1(L)

is the space L ∩L0; moreover, the differential dϕL0,L1(L0) : TL0Λ→ Bsym(L0)

does not depend on the choice of L1 ∈ Λ0(L0), so that TL0Λ has a canonical

identification with Bsym(L0).

Given any two Lagrangian decompositions (L0, L1) and (L′0, L
′
1) of V , any

isomorphism from L0 to L′0 extends to a symplectomorphism T of V with the

property that T (L1) = L′1. Let us recall a few notions related to symmetric

bilinear forms. Given a symmetric bilinear form B on a (finite dimensional)

real vector space W , the index of B is defined to be the dimension of a maximal

subspace of W on which B is negative definite. The coindex of B is the index of

−B, and the signature of B, denoted by sign(B) is defined to be the difference

coindex minus index. If W = W1 + W2, the sum being not necessarily direct,

and W1, W2 are B-orthogonal subspaces of W , i.e., B(w1, w2) = 0 for all

wi ∈ Wi, then sign(B) equals the sum of the signatures of the restrictions

of B to W1 × W1 and to W2 × W2. If f : W ′ → W is a surjective linear

map, then the signature of the pull-back f∗(B) of B by f , which is defined by

f∗(B)(v1, v2) = B
(
f(v1), f(v2)

)
for all v1, v2 ∈W ′, equals the signature of B.

Let us now briefly recall the notion of Maslov index for a continuous path

` : [a, b]→ Λ. For a fixed Lagrangian L0 ∈ Λ, the L0-Maslov index µL0(`) of `

is the half-integer characterized by the following properties:

(a) µL0 is fixed-endpoint homotopy invariant;

(b) µL0 is additive by concatenation;

(c) if `
(
[a, b]) ⊂ Λ0(L1) for some Lagrangian L1 transverse to L0, then

µL0(`) = 1
2 sign

[
ϕL0,L1

(
`(b)

)]
− 1

2 sign
[
ϕL0,L1

(
`(a)

)]
. (2.1)

If ` : [a, b]→ Λ is a curve of class C1 and the symmetric bilinear form `′(a) ∈
Bsym

(
`(a)

)
is nondegenerate on the (possibly trivial) intersection `(a)∩L0, then



ISOTROPIC REDUCTION AND MASLOV INDEX 77

for ε > 0 small enough it is `(t) ∩ L0 = `(a) ∩ L0 for t ∈ ]0, ε], and

µL0

(
`|[a,a+ε]

)
=

1
2

sign
(
`′(a)|`(a)∩L0

)
.

Given any continuous path ` : [a, b]→ Λ and any two Lagrangians L0, L
′
0 ∈

Λ, the difference µL0(`) − µL′0
(`) depends only on L0, L′0 and the endpoints

`(a) and `(b) of `. This quantity will be denoted by q
(
L0, L

′
0; `(a), `(b)

)
, and

it coincides (up to some factor which is irrelevant here) with the so called

Hörmander index. The quantity:

τ(L0, L1, L2) = q(L0, L1;L2, L0) = −q(L0, L1;L0, L2)

coincides (again up to some factor) with the Kashiwara index. The Kashiwara

index function determines completely the Hörmander index, by the identity:

q(L0, L1;L′0, L
′
1) = τ(L0, L1, L

′
0)− τ(L0, L1, L

′
1), ∀L0, L1, L

′
0, L
′
1 ∈ Λ, (2.2)

which is proved easily using the concatenation additivity property of the Maslov

index.

Given a subspace S ⊂ V , we will denote by S⊥ the symplectic orthogonal

space of S, which consists of all v ∈ V such that ω(v, w) = 0 for every w ∈ S.

Then, a subspace S is isotropic if S ⊂ S⊥, and it is Lagrangian if S = S⊥.

Given an isotropic subspace S ⊂ V , one has a natural symplectic form ω on the

quotient S⊥/S, defined by setting ω
(
v+S,w+S

)
= ω(v, w), for all v, w ∈ S⊥.

The symplectic space (S⊥/S, ω) will be called an isotropic reduction of (V, ω).

We will investigate the relations between Lagrangian decompositions and

Maslov index in a symplectic space and in one of its isotropic reductions.

2.2 Lagrangian decompositions of an isotropic reduction

Isotropic subspaces can always be enlarged to Lagrangian subspaces, in the

following strong way:
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Lemma 2.1. If L0 ⊂ V is a Lagrangian subspace, S ⊂ V is an isotropic

subspace and L0 ∩ S = {0} then there exists a Lagrangian subspace L ⊂ V

containing S with L0 ∩ L = {0}.

Proof: It suffices to show that if S is not Lagrangian then there exists an

isotropic subspace S̃ of V containing S with L0∩ S̃ = {0} and S 6= S̃. If we can

find v ∈ S⊥ with v 6∈ L0 +S, then the isotropic subspace S̃ can be obtained by

setting S̃ = S+Rv. Thus, we have to show that S⊥ is not contained in L0 +S.

But S⊥ ⊂ L0 +S implies (L0 +S)⊥ ⊂ (S⊥)⊥ = S, i.e., L⊥0 ∩S⊥ = L0∩S⊥ ⊂ S.

Then L0∩S⊥ ⊂ L0∩S = {0}. Since S is not Lagrangian, dim(S⊥) > n, hence

L0 ∩ S⊥ 6= {0} and we obtain a contradiction.

Given any Lagrangian L, then (L∩S⊥)+S is another Lagrangian. Namely,

such space is clearly isotropic, moreover, its dimension is easily computed as

follows:

dim(L∩S⊥) = dim
(
(L+S)⊥

)
= 2n− dim(L+S) = n− dim(S) + dim(L∩S),

and so:

dim
(
(L ∩ S⊥) + S

)
= dim(L ∩ S⊥) + dim(S)− dim(L ∩ S ∩ S⊥)

= dim(L ∩ S⊥) + dim(S)− dim(L ∩ S) = n.

Let us recall the following result on the Kashiwara index from [6]:

Lemma 2.2. Given any three Lagrangians L0, L1, L2 ∈ Λ and any isotropic

subspace S ⊂ (L0 ∩ L1) + (L0 ∩ L2) + (L1 ∩ L2), then, denoting by LS
i =

(Li ∩ S⊥) + S, i = 0, 1, 2, one has:

τ(L0, L1, L2) = τ(LS
0 , L

S
1 , L

S
2 ).

Proof: See [6, Proposition 1.5.10].

There is a natural way of obtaining Lagrangian subspaces of an isotropic

reduction using Lagrangian subspaces of V , described in the following:
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Lemma 2.3. Let S be an isotropic subspace of V and consider the quotient

map q : S⊥ → S⊥/S onto the symplectic space (S⊥/S, ω).

(a) If L is a Lagrangian subspace of V then q(L∩S⊥) is a Lagrangian subspace

of S⊥/S. In particular, if L is a Lagrangian subspace of V containing S

then L/S is a Lagrangian subspace of S⊥/S.

(b) If (L0, L1) is a Lagrangian decomposition of V then the following two

conditions are equivalent:

• L1 ∩ S = {0} and
(
q(L0 ∩ S⊥), q(L1 ∩ S⊥)

)
is a Lagrangian decom-

position of S⊥/S;

•
(
(L0 ∩ S⊥) + (L1 ∩ S⊥)

)
∩ S = L0 ∩ S.

Proof: For part (a) it is immediate that q(L ∩ S⊥) is isotropic. To compute

the dimension of q(L∩S⊥), observe that q(L∩S⊥) is the image of the restriction

of q to L ∩ S⊥ and that the kernel of such restriction is L ∩ S⊥ ∩ S = L ∩ S.

Thus:

dim(L ∩ S⊥) = dim(L ∩ S) + dim
(
q(L ∩ S⊥)

)
. (2.3)

But L ∩ S⊥ = (L+ S)⊥ and therefore:

dim(L ∩ S⊥) = 2n− dim(L+ S). (2.4)

Combining (2.3) and (2.4) and using that dim(L+S)+dim(L∩S) = n+dim(S)

we get dim
(
q(L ∩ S⊥)

)
= n − dim(S) = 1

2 dim(S⊥/S). This proves part (a).

Part (b) follows from an immediate Linear Algebra argument.

If T ∈ Sp(V, ω) is such that T (S) ⊂ S, and hence also T (S⊥) ⊂ S⊥, then

the restriction T |S⊥ : S⊥ → S⊥ induces an isomorphism T : S⊥/S → S⊥/S,

i.e., we have a commutative diagram:

S⊥
T |

S⊥ //

q

��

S⊥

q

��
S⊥/S

T

// S⊥/S

(2.5)
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where q : S⊥ → S⊥/S denotes the quotient map. It is easy to see that T

preserves ω, i.e., T ∈ Sp(S⊥/S, ω). In fact, a more general statement holds:

Lemma 2.4. Let ` ⊂ V be a Lagrangian subspace and let S ⊂ ` be any sub-

space. Consider the quotient symplectic form ω on S⊥/S; then, given any

symplectomorphism T of (S⊥/S, ω) with T (q(`)) = q(`), there exists a sym-

plectomorphism T of (V, ω) such that T (S) = S (hence also T (S⊥) = S⊥),

T (`) = `, and such that (2.5) commutes.

Proof: See for instance [9, Lemma 1.4.42, p. 39].

2.3 Isotropic reduction and Maslov index

In this section we consider a fixed 2n-dimensional symplectic space (V, ω) and

an isotropic subspace S of V ; we will consider the symplectic form ω on the

quotient S⊥/S.

Lemma 2.5. If L0 is a Lagrangian subspace of V then there exists a Lagrangian

subspace L1 of V with L0 ∩ L1 = {0} and:

(
(L0 ∩ S⊥) + (L1 ∩ S⊥)

)
∩ S = L0 ∩ S. (2.1)

Proof: Observe that the righthand side of (2.1) is a subspace of the lefthand

side of (2.1), for any choice of L1. Let S′ be a subspace of S with:

S = (L0 ∩ S)⊕ S′.

Since S′ is an isotropic subspace with L0∩S′ = {0}, by Lemma 2.1, there exists

a Lagrangian subspace L of V containing S′ with L0∩L = {0}. Let L1 ∈ Λ0(L0)

be such that the symmetric bilinear form ϕL,L0(L1) in L is positive definite.

To prove (2.1), let v ∈ L0 ∩ S⊥, w ∈ L1 ∩ S⊥ be fixed with v + w ∈ S. Write

v + w = u1 + u2 with u1 ∈ L0 ∩ S and u2 ∈ S′. The proof will be concluded if

we show that u2 = 0. Denote by T the linear map T : L→ L0 whose graph in
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L⊕ L0 is L1. We have:

L1 3 w = u2 + (u1 − v),

with u2 ∈ S′ ⊂ L and u1 − v ∈ L0, so that u1 − v = T (u2). Thus:

ϕL,L0(L1)(u2, u2) = ω
(
T (u2), u2

)
= ω(u1 − v, u2) = 0,

u1 ∈ S ⊂ S⊥, v ∈ S⊥ and u2 ∈ S. But ϕL,L0(L1) is positive definite and

therefore u2 = 0.

Let us recall the following result concerning the smoothness of equivariant

maps. Recall that if M and N are smooth manifolds endowed with a smooth

(left) action of the Lie group G, then a map φ : M → N is said to be G-

equivariant if φ(g · x) = g · φ(x) for all x ∈M and all g ∈ G.

Proposition 2.6. Let M,N be manifolds and let G be a Lie group that acts

differentiably on both M and N . If the action of G on M is transitive, then

every equivariant map φ : M → N is differentiable.

Proof: See for instance [9, Corollary 2.1.10, p. 66].

Lemma 2.7. The set: {
L ∈ Λ : L ∩ S = {0}

}
(2.2)

is open in Λ and the map (recall part (b) of Lemma 2.3):{
L ∈ Λ : L ∩ S = {0}

}
3 L 7−→ q(L ∩ S⊥) ∈ Λ(S⊥/S) (2.3)

is differentiable.

Proof: The set (2.2) is open in Λ because, by Lemma 2.1, it is equal to the

union: ⋃
`∈Λ
`⊃S

Λ0(`).
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Let G be the closed (Lie) subgroup of Sp(V, ω) consisting of those symplecto-

morphisms T : V → V such that T (S) = S. The canonical action of Sp(V, ω) on

Λ restricts to a differentiable action of G on (2.2). We also have a differentiable

action of G on Λ(S⊥/S) given by:

G× Λ(S⊥/S) 3 (T, L̃) 7−→ T (L̃) ∈ Λ(S⊥/S),

where T is the symplectomorphism induced by T on S⊥/S (see (2.5)). The map

(2.3) is obviously equivariant. The conclusion will follow from Proposition 2.6

once we show that the action of G on (2.2) is transitive. To this aim, let L1, L2

be in (2.2). By Lemma 2.1 there exist Lagrangians L′1, L′2 containing S such

that L1 ∩ L′1 = {0} and L2 ∩ L′2 = {0}. Now choose an arbitrary isomorphism

from L′1 to L′2 that preserves S and let T be a symplectomorphism of V that

extends such isomorphism and such that T (L1) = L2.

Corollary 2.8. Given Lagrangian subspaces L0, ` of V with S ⊂ ` there exists

a Lagrangian subspace L1 of V with L0 ∩L1 = {0}, `∩L1 = {0} and such that

(2.1) holds.

Proof: By Lemma 2.7 the set:

{
L ∈ Λ : L ∩ S = {0} and q(L ∩ S⊥) ∩ q(L0 ∩ S⊥) = {0}

}
(2.4)

is open, being the inverse image by the continuous map (2.3) of the open subset

Λ0
(
q(L0 ∩ S⊥)

)
of the Lagrangian Grassmannian of S⊥/S. By part (b) of Lemma 2.3 the

Lagrangian L1 whose existence is granted by Lemma 2.5 is in (2.4). Using the

fact that the set of Lagrangians transverse to a given Lagrangian is open and

dense, it follows that the intersection of (2.4) with Λ0(L0)∩Λ0(`) is nonempty.

The desired Lagrangian L1 can be taken to be a member of such intersection.
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Lemma 2.9. Let (L0, L1) be a Lagrangian decomposition of V such that (2.1)

holds, so that L1 ∩ S = {0} and (L̃0, L̃1) =
(
q(L0 ∩ S⊥), q(L1 ∩ S⊥)

)
is a

Lagrangian decomposition of S⊥/S (recall part (b) of Lemma 2.3). Given a

Lagrangian subspace ` of V containing S then:

(a) ` ∩ L1 = {0} if and only if q(`) ∩ L̃1 = {0}.

Assuming that a given Lagrangian ` containing S is transverse to L1 then:

(b) The pull-back by the surjective map q|L0∩S⊥ : L0∩S⊥ → L̃0 of ϕL̃0,L̃1

(
q(`)

)
is equal to the restriction of ϕL0,L1(`) to L0 ∩ S⊥.

(c) If π : V → L0 denotes the projection with respect to the decomposition

V = L0 ⊕ L1 then L0 = π(S) + (L0 ∩ S⊥).

(d) If π is as in part (c) then the spaces π(S) and L0 ∩ S⊥ are orthogonal

with respect to the symmetric bilinear form ϕL0,L1(`).

(e) The restriction of the symmetric bilinear form ϕL0,L1(`) to π(S)× π(S)

is independent of `.

Proof: Since ` contains S and L1 ∩ S = {0} it follows that q(`) ∩ L̃1 =

q(`)∩q(L1∩S⊥) = {0} if and only if `∩ (L1∩S⊥) = {0}. Item (a) then follows

by observing that ` is contained in S⊥. Let T : L0 → L1 be the linear map

whose graph in L0 ⊕ L1 is equal to ` and let T̃ : L̃0 → L̃1 be the linear map

whose graph in L̃0 ⊕ L̃1 is equal to q(`). Let v ∈ L0 ∩ S⊥ be fixed. We have

v+T (v) ∈ ` ⊂ S⊥ and thus T (v) ∈ L1∩S⊥. Therefore q(v) ∈ L̃0, q
(
T (v)

)
∈ L̃1

and q(v) + q
(
T (v)

)
∈ q(`). This implies that q

(
T (v)

)
= T̃

(
q(v)

)
. Now, given

w ∈ L0 ∩ S⊥ we have:

ϕL0,L1(`)(v, w) = ω
(
T (v), w

)
= ω

(
q(T (v)), q(w)

)
= ω

(
T̃ (q(v)), q(w)

)
= ϕL̃0,L̃1

(
q(`)

)(
q(v), q(w)

)
,
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proving (b). To prove (c), we will show that dim
(
π(S) + (L0 ∩ S⊥)

)
= n. We

have:

dim
(
π(S) + (L0 ∩ S⊥)

)
= dim

(
π(S)

)
+ dim(L0 ∩ S⊥)

− dim
(
π(S) ∩ (L0 ∩ S⊥)

)
. (2.5)

Since S ∩ L1 = {0}, we have:

dim
(
π(S)

)
= dim(S). (2.6)

Moreover:

dim(L0 ∩ S⊥) = dim
(
(L0 + S)⊥

)
= 2n− dim(L0 + S) (2.7)

= n− dim(S) + dim(L0 ∩ S).

Let us now prove that:

π(S) ∩ (L0 ∩ S⊥) = L0 ∩ S. (2.8)

Notice that combining (2.5), (2.6), (2.7) and (2.8) we will conclude the proof of

part (c). Clearly L0∩S = π(L0∩S) ⊂ π(S) and thus L0∩S ⊂ π(S)∩(L0∩S⊥).

Now let v ∈ S be such that π(v) ∈ L0 ∩S⊥ and let us show that π(v) ∈ S. We

have v− π(v) ∈ L1, v ∈ S ⊂ S⊥, π(v) ∈ S⊥, so that v− π(v) ∈ L1 ∩ S⊥; then:

v = π(v) +
(
v − π(v)

)
∈ (L0 ∩ S⊥) + (L1 ∩ S⊥),

and it follows from (2.1) that v ∈ L0 ∩ S. Thus π(v) = v ∈ S. This proves

(2.8) and concludes the proof of part (c). To prove part (d), pick v ∈ S,

w ∈ L0 ∩ S⊥ and let us show that ϕL0,L1(`)
(
π(v), w

)
= 0. Since v ∈ ` we can

write v = u+ T (u), with u ∈ L0; then π(v) = u. Now:

ϕL0,L1(`)
(
π(v), w

)
= ω

(
T (u), w

)
= ω

(
u+ T (u), w

)
− ω(u,w) = 0,



ISOTROPIC REDUCTION AND MASLOV INDEX 85

since u + T (u) = v ∈ S, w ∈ S⊥ and u,w ∈ L0. To prove (e), let `, `′ ∈ Λ be

Lagrangians transverse to L1 containing S. Set T : L0 → L1 be the linear map

whose graph is `, and T ′ : L0 → L1 be the linear map whose graph is `′. The

proof will be concluded if we show that T and T ′ agree on π(S). Given v ∈ S,

write v = v0 + v1, with v0 = π(v) ∈ π(S) ⊂ L0 and v1 ∈ L1. Since v ∈ ` and

v ∈ `′ we have T
(
π(v)

)
= v1 and T ′

(
π(v)

)
= v1. This concludes the proof.

We also need the following analogue of Lemma 2.7:

Lemma 2.10. The set: {
L ∈ Λ : L ⊃ S

}
(2.9)

is a closed submanifold of Λ and the map:

{
L ∈ Λ : L ⊃ S

}
3 L 7−→ L/S ∈ Λ(S⊥/S) (2.10)

is differentiable.

Proof: Let G be as in the proof of Lemma 2.7. Clearly the action of G

on Λ(V ) preserves (2.9). We claim that the action of G on (2.9) is transitive.

Namely, given L1, L2 in (2.9) then pick any isomorphism T from L1 to L2 that

preserves S and choose any symplectomorphism of V that extends T . Clearly,

(2.9) is equal to the intersection:⋂
v∈S

{
L ∈ Λ : L 3 v

}
and therefore it is closed. Thus, (2.9) is a closed orbit of the action of G on

Λ, and therefore it is a smooth embedded submanifold of Λ (see [13, Theo-

rem 2.9.7]). If we consider the action of G on Λ(S⊥/S) defined in the proof

of Lemma 2.7 then clearly the map (2.10) is G-equivariant and therefore, by

Proposition 2.6, it is differentiable.

We are finally ready for the main result of this section.
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Theorem 2.11. Let us assume that ` : [a, b] → Λ is a continuous path; let S

be an isotropic subspace of V such that S ⊂ `(t) for all t ∈ [a, b]. Denote by

q : S⊥ → S⊥/S the quotient map. Let ˜̀ : [a, b]→ Λ(S⊥/S, ω) be the continuous

path given by ˜̀(t) = q
(
`(t)
)

and by L̃0 the Lagrangian

L̃0 = q(L0 ∩ S⊥) ∈ Λ(S⊥/S, ω). (2.11)

Then:

µL0(`) = µL̃0
(˜̀). (2.12)

Proof: The continuity of the path ˜̀ follows from Lemma 2.10. By the

continuity of `, Corollary 2.8 tells us that one can find a partition of the interval

[a, b], a = a0 < a1 < . . . < aN = b, and Lagrangians L1, . . . , LN ∈ Λ such that:

(i) Li ∩ L0 = {0} for all i = 1, . . . , N ;

(ii) Li ∩ `(t) = {0} for all t ∈ [ai−1, ai] and for all i = 1, . . . , N ;

(iii)
(
(L0 ∩ S⊥) + (Li ∩ S⊥)

)
∩ S = L0 ∩ S for all i = 1, . . . , N .

Thus, each (L0, Li) is a Lagrangian decomposition of V for all i and, by part (b)

of Lemma 2.3, setting L̃i = q(Li∩S⊥), (L̃0, L̃i) is a Lagrangian decomposition

of S⊥/S. By (ii) above, `|[ai−1,ai] has image in the domain of the chart ϕL0,Li

for all i, and by part (a) of Lemma 2.9, ˜̀|[ai−1,ai] has image in the domain of

the chart ϕL̃0,L̃i
for all i. In order to prove the theorem, it suffices to show

that:

1
2 sign

[
ϕL0,Li

(
`(ai)

)]
− 1

2 sign
[
ϕL0,Li

(
`(ai−1)

)]
= 1

2 sign
[
ϕL̃0,L̃i

(˜̀(ai)
)]
− 1

2 sign
[
ϕL̃0,L̃i

(˜̀(ai−1)
)]
,

for all i. This follows easily from parts (b), (c), (d) and (e) of Lemma 2.9.

Namely, for t ∈ [ai−1, ai], the signature of Bt = ϕL0,Li

(
`(t)
)

is given by the

sum of the signatures of the restrictions of Bt to π(S) and to L0 ∩ S⊥, by

part (c) and part (d) of Lemma 2.9. The signature of the restriction of Bt
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to L0 ∩ S⊥ equals the signature of ϕL̃0,L̃i

(˜̀(t)), by part (b) of Lemma 2.9.

Finally, the signature of the restriction of Bt to π(S) is independent of t, by

(e) of Lemma 2.9. This concludes the proof.

An interesting immediate consequence of Theorem 2.11 is the following:

Corollary 2.12. Let S be an isotropic subspace of V , and let ` : [a, b]→ Λ be

a continuous curve such that S ⊂ `(t) for all t ∈ [a, b]. If L0 and L′0 are two

Lagrangians such that:

(L0 ∩ S⊥) + S = (L′0 ∩ S⊥) + S, (2.13)

then µL0(`) = µL′0
(`).

Proof: Simply note that if (2.13) holds, then q(L0 ∩ S⊥) = q(L′0 ∩ S⊥).

Another immediate consequence1 of Theorem 2.11 and Lemma 2.2 is the

following:

Corollary 2.13. Let L0, L1, L2 ∈ Λ any three Lagrangians, and let S be an

isotropic subspace contained in the sum (L0∩L1)+(L0∩L2)+(L1∩L2). Then:

τ(L0, L1, L2) = τ(L̃0, L̃1, L̃2),

where L̃i = q(Li ∩ S⊥) and q : S⊥ → S⊥/S is the quotient map.

Using formula (2.2) we have an analogous result for the Hörmander index:

Corollary 2.14. Let L0, L1, L2, L3 ∈ Λ any four Lagrangians, and let S be an

isotropic subspace contained in (L0 ∩ L1). Then:

q(L0, L1;L2, L3) = q(L̃0, L̃1; L̃2, L̃3),

where L̃i = q(Li ∩ S⊥) and q : S⊥ → S⊥/S is the quotient map.

1Corollary 2.13 might have a direct proof using the definition of Kashiwara index in terms
of index of a quadratic form, as in [6].
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3 Comparison of Maslov indexes

Throughout this section, we will fix a symplectic space (V, ω) with dim(V ) =

2n. Let us consider a continuous Lagrangian path ` : [a, b] → Λ and two

distinct fixed Lagrangians L0, L
′
0 ∈ Λ, and we want to compare the Maslov

indexes µL0(`) and µL′0
(`). Let us start with a preliminary result that has

some interest of its own.

Lemma 3.1. Assume that ` : [a, b]→ Λ is a continuous curve such that there

exists some L ∈ Λ with `(t) ∩ L = {0} for all t ∈ [a, b]. Then for any other

Lagrangian L0 ∈ Λ, |µL0(`)| ≤ n.

Proof: We claim that there exists L1 ∈ Λ0(L0) such that `(t) ∩ L1 = {0} for

all t ∈ [a, b]. To prove this assertion, consider the set:

Λ2
∗ =

{
(α, β) ∈ Λ× Λ : α ∩ β = {0}

}
,

which is an open (and dense) subset of Λ×Λ. The compact set `
(
[a, b]

)
×{L}

is contained in Λ2
∗, and thus there exists an open neighborhood U of L in Λ

such that `
(
[a, b]

)
× U is also contained in Λ2

∗. Since Λ0(L0) is an open dense

subset of Λ, by Baire’s theorem the intersection V ∩Λ0(L0) is non empty. The

desired Lagrangian L1 is any element of this intersection.

Now, to compute µL0(`), we use the chart ϕL0,L1 , whose domain contains

entirely the support of the curve `. We thus obtain:

|µL0(`)| =
∣∣∣ 12 sign

[
ϕL0,L1

(
`(b)

)]
− 1

2 sign
[
ϕL0,L1

(
`(a)

)]∣∣∣ ≤ n,
which concludes the proof.

Lemma 3.2. Assume that `(a) ∩ L′0 = `(b) ∩ L′0 = {0}. Then:

∣∣µL0(`)− µL′0
(`)
∣∣ ≤ n. (3.1)
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Proof: Choose any continuous path ` : [b, c] → Λ0(L′0) with `(b) = `(b) and

`(c) = `(a). Such choice is possible, because the open set Λ0(L′0) is diffeomor-

phic to a vector space, thus it is arc-connected. Denote by ˜̀ the concatenation

` � ` : [a, c]→ Λ, which is a closed loop, and so:

µL0(`) + µL0(`) = µL0(˜̀) = µL′0
(˜̀) = µL′0

(`) + µL′0
(`).

Since `(t) ∈ Λ0(L′0) for all t, it follows that µL′0
(`) = 0, hence:

∣∣µL0(`)− µL′0
(`)
∣∣ = |µL0(`)|.

Since `
(
[b, c]

)
⊂ Λ0(L′0), by Lemma 3.1 |µL0(`)| ≤ n, which concludes the proof.

We want to find an estimate of the difference
∣∣µL0(`)− µL′0

(`)
∣∣ for an arbi-

trary curve `, and the following technical result will be needed:

Lemma 3.3. Given three Lagrangians `0, L0, L1 ∈ Λ, there exists a continuous

(in fact, smooth) curve `± : [a, b]→ Λ with the following properties:

(a) `±(a) = `0;

(b) `±(t) ∈ Λ0(L0) ∩ Λ0(L1) for all t ∈ ]a, b];

(c) µL0(`±) = µL1(`±) if dim(L0 ∩ `0) ≡ dim(L1 ∩ `0) mod 2;

(d) µL0(`±)− µL1(`±) = ± 1
2 if dim(L0 ∩ `0) 6≡ dim(L1 ∩ `0) mod 2.

Proof: One can find a symmetric bilinear form B± on `0 such that the

restrictions of B± to `0 ∩ L0 and to `0 ∩ L1, denoted respectively by B0
± and

B1
±, are both nondegenerate. Moreover, if dim(`0 ∩ L0) and dim(`0 ∩ L1)

have the same parity, B± can be chosen so that the signatures of B0
± and B1

±

coincide. If dim(`0 ∩ L0) and dim(`0 ∩ L1) have different parities, then B can

be chosen in such a way that the difference sign(B0
±) − sign(B1

±) = ±1. Let

now `± : [a, b]→ Λ be any smooth curve such that `±(a) = `0 and `′±(a) = B.

Since B0
± and B1

± are nondegenerate, then for b − a > 0 sufficiently small,
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`±(t) ∈ Λ0(L0) ∩ Λ0(L1) for all t ∈ ]a, b]. Moreover, the Maslov index µLi(`±)

of such a curve is given by half of the signature of the restriction of `′±(a) to

`±(a) ∩ Li = `0 ∩ Li, for i = 0, 1. The conclusion follows easily.

Corollary 3.4. Given any continuous curve ` : [a, b] → Λ and any pair

L0, L1 ∈ Λ of Lagrangians, then:∣∣µL0(`)− µL1(`)
∣∣ ≤ n+

1
2
. (3.2)

If:

dim
(
L0∩ `(a)

)
+dim

(
L1∩ `(a)

)
+dim

(
L0∩ `(b)

)
+dim

(
L1∩ `(b)

)
∈ 2Z, (3.3)

then: ∣∣µL0(`)− µL1(`)
∣∣ ≤ n. (3.4)

Proof: By Lemma 3.3 we can find continuous curves `i : [ai, bi]→ Λ, i = 1, 2,

such that `1(a1) ∈ Λ0(L0) ∩ Λ0(L1), `1(b1) = `(a), `2(a2) = `(b), `2(b2) ∈
Λ0(L0) ∩ Λ0(L1) and with

µL0(`i)− µL1(`i) ∈
{

0,± 1
2

}
, i = 1, 2, (3.5)

depending on the parity of the dimensions of `(a) ∩ L0, `(a) ∩ L1, `(b) ∩ L0,

and `(b) ∩ L1. More precisely, using parts (c) and (d) of Lemma 3.3 one sees

that the quantity:

µL0(`1)− µL1(`1)− µL0(`2) + µL1(`2)

can be made equal to 0 if the numbers

dim
(
`(a) ∩ L0

)
− dim

(
`(a) ∩ L1

)
and dim

(
`(b) ∩ L0

)
− dim

(
`(b) ∩ L1

)
have the same parity, i.e., if

dim
(
L0 ∩ `(a)

)
+ dim

(
L1 ∩ `(a)

)
+ dim

(
L0 ∩ `(b)

)
+ dim

(
L1 ∩ `(b)

)
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is an even number, and equal to ± 1
2 otherwise.

Now, choose any continuous curve ` : [c, d]→ Λ0(L1) such that `(c) = `2(b2)

and `(d) = `1(a1), and thus, by Lemma 3.1:

|µL0(`)| ≤ n, µL1(`) = 0. (3.6)

Now consider the closed loop ˜̀given by the concatenation ` � `2 � ` � `1, which

gives:

µL0(`) + µL0(`2) + µL0(`) + µL0(`1) = µL0(˜̀)
= µL1(˜̀) = µL1(`) + µL1(`2) + µL1(`) + µL1(`1),

and so, using (3.6):

∣∣µL0(`)− µL1(`)
∣∣

≤
∣∣µL1(`1)− µL0(`1) + µL1(`2)− µL0(`2)

∣∣+
∣∣µL0(`)

∣∣+
∣∣µL1(`)

∣∣
≤ n+

∣∣µL1(`1)− µL0(`1) + µL1(`2)− µL0(`2)
∣∣.

The conclusion follows easily.

We will now establish a more precise inequality for the difference µL0(`)−
µL′0

(`) using a symplectic reduction.

Proposition 3.5. Given any continuous curve ` : [a, b] → Λ and any pair

L0, L1 ∈ Λ of Lagrangians, then:∣∣µL0(`)− µL1(`)
∣∣ ≤ n− dim(L0 ∩ L1) + ε, (3.7)

where ε = 0 if (3.3) holds, and ε = 1
2 otherwise.

Proof: Consider the isotropic space S = L0 ∩ L1; denote by q : S⊥ → S⊥/S

the quotient map and, for L ∈ Λ, by L̃ the Lagrangian in the isotropic reduction

S⊥/S given by q(L ∩ S⊥). By Corollary 2.14:

µL0(`)− µL1(`) = q
(
L0, L1; `(a), `(b)

)
= q
(
L̃0, L̃1; ˜̀(a), ˜̀(b)).
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By Corollary 3.4:∣∣q(L̃0, L̃1; ˜̀(a), ˜̀(b))∣∣ ≤ 1
2 dim(S⊥/S) + ε = n− dim(L0 ∩ L1) + ε,

where ε = 0 if

dim
(
L̃0 ∩ ˜̀(a)

)
+ dim

(
L̃1 ∩ ˜̀(a)

)
+ dim

(
L̃0 ∩ ˜̀(b))+ dim

(
L̃1 ∩ ˜̀(b)) (3.8)

is an even number and ε = 1
2 otherwise. Since S = L0 ∩ L1, it is easily

computed:

dim(L̃ ∩ L̃i) = dim(L ∩ Li)− dim(L ∩ L0 ∩ L1)

for all L ∈ Λ and i = 0, 1. It follows easily that (3.8) and the integer in (3.3)

have the same parity, which concludes the proof.
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