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Abstract

Let C be a class of finite groups closed under taking subgroups quo-
tients and extensions. We use a pro-C analogue of the HNN-construction,
to show that every virtually torsion free pro-C group G can be embedded
in a pro-C group E such that every finite subgroup of E is – up to con-
jugation – contained in a finite subgroup of E isomorphic to the quotient
G/F , where F is an open torsion free normal subgroup of G. Moreover the
virtual cohomological dimensions of G and E coincide. As a by-result we
provide a structure theorem for cyclic p-extensions of free pro-p groups.

1 Introduction

There are various embedding theorems in profinite group theory. A. Lubotzky
and J. Wilson [6] proved a profinite analogue of the Higman, Neumann and
Neumann theorem [7] asserting that every topologically countably generated
profinite group embeds in a two generated profinite group. However, their con-
struction does not allow to control the torsion. So Z. Chatzidakis [2] returned
to the original construction of Higman, Neumann and Neumann to make it
work in the profinite and pro-p cases to prove that one can embed a countably
generated profinite (respectively, pro-p) group G in a two-generated profinite
(respectively, pro-p) group E such that every torsion element in E is conjugate
to an element in G. The same construction has been used in [11] to embed any
cyclic subgroup separable group in a two generated cyclic subgroup separable
group and in [3] to prove the existence of a 2-generated torsion free residually
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p-group whose pro-p completion contains every finite p-group. In the present
paper we use an HNN-construction in the category of pro-C groups with the
objective to diminish the torsion in a virtually torsion free pro-C groups. More
precisely, we prove the following

Theorem 1 Let C be a class of finite groups closed under forming subgroups,
products, and, extensions. Let G be a virtually torsion free pro-C group and F a
torsion free open subgroup of G. Then G can be embedded in a semidirect product
G̃ = E×G/F such that every finite subgroup of G̃ is conjugate to a subgroup of
G/F . Moreover, the cohomological dimensions of E and F coincide.

This result is in the spirit of the Higman, Neumann and Neumann theorem
which says that any countable group can be embedded in a countable group in
which all elements of the same order are conjugate. However, merely replacing
in it “group” by “profinite group” does not yield a profinite analogue. First,
every infinite profinite group is non-countable. Secondly, a p-element of infinite
order in a profinite group can not be conjugate to its p-power, since its image
and the pth power of it in some finite quotient have different orders. So, a
profinite version of the Higman Neumann Neumann result can be stated only
for elements of finite order. However even then the profinite version of it does
not hold in general (see the Example at the end of Section 3). Nevertheless, the
profinite analogue of the Higman Neumann Neumann result is valid for virtually
torsion free profinite groups.

Corollary 2 Let G be a virtually torsion free profinite group. Then G embeds
into a profinite group G̃ where all elements of the same finite order are conjugate.
Moreover, the virtual homological dimensions, vcd(G) and vcd(G̃), coincide.

Our Theorem has in part been motivated by a result of C. Scheiderer [10] –
a homological version reads as follows:

Theorem 3 Let G be a profinite group of virtual cohomological dimension d <
∞ and suppose that G does not contain subgroups isomorphic to Z/pZ×Z/pZ.
Let T be the set of all finite subgroups of G on which G acts from the right by
conjugation. Then

⊕t∈THn(G, IFp[[tG]]) −→ Hn(G, IFp)

is an isomorphism for all n > d.

Here tG is the set of all conjugates of the cyclic subgroup t isomorphic to
Z/pZ considered as a subset of the space of all subgroups of G equipped with
subspace topology. Now it is desirable to apply Shapiro’s lemma to express the
homology of G in terms of the homologies of normalizers of finite subgroups, but
one needs to do it continuously and that requires a continuous section T/G −→
T . Such a section does not always exists (see [9], example 5.6.9). For virtually
free pro-p groups as well as for the Kurosh subgroup theorem the existence of
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a continuous section is even more important (see [12], [8], [4]). So it appears
useful to embed G coherently into a profinite group with similar structure where
the corresponding continuous section would exist. As an illustration we apply
our embedding result to deduce the following

Theorem 4 Let G be a pro-p group having a free pro-p subgroup F such that
G/F ∼= Cpn with n minimal with respect to this property. Then G embeds into a
free pro-p product G̃ = CG̃(Cp)qH of a free pro-p group H and the centralizer
CG̃(Cp) of a group Cp of order p. Moreover,

(i) G̃ possesses a free pro-p subgroup F̃ such that G̃/F̃ ∼= Cpn ;

(ii) The quotient group CG̃(Cp)/Cp is likewise a free product of the central-
izer of a subgroup of order p and a free pro-p factor and has a unique
conjugacy class of maximal cyclic subgroups.

We shall freely use standard notations from profinite group theory following
[9].

2 Preliminaries

In this paper C denotes a class of finite groups closed under taking subgroups,
quotients and extensions.

Definition 5 A boolean or profinite space is, by definition, an inverse limit of
finite discrete spaces, i.e., a compact, Hausdorff, totally disconnected topological
space. Morphisms in the category of boolean spaces are continuous maps.

A profinite space X with a profinite group G acting continuously on it will
be called a G-space.

Definition 6 For a virtually torsion free profinite group G let Fin(G) be the
set of its finite subgroups. As G is a projective limit of finite groups, Fin(G) is
the projective limit of the respective sets of finite subgroups – hence it carries
a natural topology (the subgroup topology) – turning it into a boolean space.
Equipped with this topology, Fin(G) with G acting by conjugation becomes a
G-space.

Definition 7 A sheaf of pro-C groups (over a profinite space X) is a triple
(G, γ,X), where G and X are profinite spaces, and γ is a continuous map from
G onto X, satisfying the following two conditions:

(i) for every x ∈ X, the fiber G(x) = γ−1(x) over x is a pro-C group;

(ii) if G2 denotes the subspace of G × G consisting of pairs (g, h) such that
γ(g) = γ(h), then the map µG : G2 −→ G, defined by µG(g, h) := g−1h ∈
G(γ(g)) = G(γ(h)) ⊆ G, is continuous.
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If there is no danger of confusion we shall write (G, X) instead of (G, γ,X).
A morphism of sheaves of pro-C groups (α, ᾱ) : (G, γ,X) → (H, η, Y ) is a

pair of continuous maps α : G −→ H, ᾱ : X −→ Y such that the diagram

G α //

γ

��

H
η

��
X

ᾱ // Y

is commutative and, for all x ∈ X, the restriction αx := α|G(x) of α to the fiber
G(x) is a homomorphism from G(x) to H(ᾱ(x)).

In the special case when Y = {y} consists of a single element set, we obtain
with H := H(y) the definition of a fiber morphism α : G −→ H, of the sheaf G of
pro-C groups to the pro-C group H. We shall say that α is a fiber monomorphism
if αx is injective for every x ∈ X.

The simplest example of a sheaf of pro-C groups is that of the constant sheaf
(G ×X, prX , X), where G is some pro-C group and prX : G ×X −→ X is the
projection. For every x ∈ X, the fiber (G×X)(x) = G× {x} is isomorphic to
G.

Next we introduce a pro-C analogue of the concept of an HNN-extension, (cf.
[7], p. 180), by generalizing the concept of pro-C HNN-extension as described
in 9.4 of [9]. Following R. Bieri [1] we shall term it a pro-C HNN-group.

Definition 8 Let H be a pro-C group and ∂0, ∂1 : (G, T ) → H fiber monomor-
phisms. A specialization into K consists of a homomorphism β : H −→ K and
a continuous map β1 : T −→ K such that for all t ∈ T and g ∈ G(t) the equality
β(∂0(h)) = β1(t)−1β(∂1(h))β1(t) is valid. We denote this situation by writing
(β, β1) : (H,G, T ) → K.

The pro-C HNN-group is then a pro-C group G together with a specialization
(υ, υ1) : (H,G, T ) −→ G, with the following universal property: for every pro-C
group K and every specialization (β, β1) : (H,G, T ) → K, there exists a unique
homomorphism

ω : G −→ K,

such that ωυ1 = β1 and β = ωυ. We shall denote G by HNNC(H,G, T ) or
simply by HNN(H,G, T ) when there is no danger of confusion.

Let us compare our definition with [7], p.180 for injective β1: First, H is the
base group. Setting At := ∂0(G(t)) and Bt := ∂1(G(t)), a family f := {ft :| t ∈
T} of isomorphisms is induced setting ft(at) := ∂1(gt) for the unique gt ∈ G(t)
with at = ∂0(gt). Thus, the family f satisfies ft(at) = att for all at ∈ At and
t ∈ T , and T plays the role of a space of stable letters. In fact, below we shall
make use of the abstract HNN-group, and denote it by HNNabs(H,A, f, T ). For
T a singleton set, identifying G(t) with its image under ∂0 and setting f := ∂1,
the definition of a pro-C-HNN extension given in 9.4 in [9] is recovered.
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Proposition 9 Let H be a pro-C group, (G, T ) a sheaf of pro-C groups and
∂0, ∂1 : (G, T ) → H fiber monomorphisms. Then there exists a unique pro-C
HNN-group G = HNN(H,G, T ).

Proof: Uniqueness follows easily from the universal property. We give an
explicit construction of G to prove its existence. As above consider the fam-
ily f constituted of isomorphisms ft : ∂0(G(t)) → ∂1(G(t)). Form Gabs :=
HNNabs(H,A, f, T ) and denote by ϕabs : H −→ Gabs the natural embedding.
Let N be the collection of all normal subgroups N of Gabs with Gabs/N ∈ C, the
preimage (ϕabs)−1(N) open in H and continuous natural map T −→ TN/N .
Define G = KN (Gabs) to be the completion of Gabs with respect to N . Let
ι : Gabs −→ G be the natural homomorphism. Put ϕ = ιϕabs. We check the
universal property for G and ϕ.

Let (β, β1) : (H,G, T ) −→ K be a specialization to some K ∈ C. Then, by
the universal property for abstract HNN-groups, there is a unique homomor-
phism ωabs : Gabs −→ K with ωabs(t) = β1(t) such that the diagram

Gabs

ωabs

!!
H

ϕabs

OO

ψ // K

is commutative. It follows that (ϕabs)−1(ker(ωabs)) = ker(ψ) is open in H and
ωabs

|T is continuous, therefore since K ∈ C, one has that ker(ωabs) ∈ N ; Hence
there exists a continuous homomorphism ω : G −→ K with ωabs = ωι. Thus
the diagram

G

ω

��

Gabs

ι

OO

ωabs

''OOOOOOOOOOOOO

H

ϕ

GG

ϕabs

OO

ψ
// K

is commutative. This means that ψ = ωϕ and ω(t) = β1(t) for all t ∈ T .
Uniqueness of ω follows from the fact that G = 〈ϕ(H), ι(T )〉.

A pro-C HNN-group is a special case of the fundamental pro-C group Π1(G,Γ)
of a profinite graph of pro-C groups (G,Γ) as introduced in [15]. Namely, a pro-C
HNN-group can be thought as Π1(G,Γ), where Γ is a bouquet (i.e., a connected
profinite graph having just one vertex – an isolated point of Γ – that serves as a
maximal subtree). Note that acyclicity and simply connectivity do not coincide
in the pro-C situation, though they do when C consists of soluble groups only.
The pro-C analogue of a maximal subtree is a maximal C-simply connected
subgraph. In general a maximal C-simply connected subgraph in a connected
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profinite graph might not exist. When it exists the definition of the fundamental
pro-C group Π1(G,Γ) of a graph of pro-C groups can be given along the lines of
the abstract situation as has been done in [14], Section 3, for finite Γ.

The following is the only result in this note involving fundamental pro-C
groups of profinite graphs of pro-C groups and is needed in the next section. We
use notation from [15] during the proof.

Lemma 10 Let G = HNN(H,G, T ) be a pro-C HNN-group and U an open
subgroup of G such that U ∩ υ(G(t)) = 1 for all t ∈ T . Then U is a free pro-C
product of conjugates U ∩ υ(H)g, for certain g ∈ G and a free pro-C group. In
particular, if U ∩ υ(H) is free, then so is U .

Proof: Repeating the proof of Proposition 4.4 in [15] one obtains that U is
the fundamental group Π1(U ,∆) of a profinite graph of free pro-C groups with
trivial edge groups. Then by the universal property one deduces that Π1(U ,∆)
is a free pro-C product of the vertex groups and the fundamental group π1(∆).
The vertex groups are of the form U ∩ υ(H)g, g ∈ G and π1(∆) is free pro-C by
Theorem 2.11 in [13]. The result follows.

3 Embedding

We shall need the following criterion for embedding a pro-C group H as a base
group into a pro-C HNN-group HNN(H,G, T ), whose proof is based on Zoé
Chatzidakis’ ideas [2]. Let ∂0, ∂1 : (G, T ) → H be fiber monomorphisms, where
the restriction of ∂0 to At is the identity. Recall the family f of isomorphisms
ft : At → Bt as described in connection with Definition 8 and let us write ϕ for υ.
If V is an open normal subgroup ofH we writeGabsV := HNNabs(H/V,AV , fV , T )
for the abstract HNN-group, where AtV = AtV/V , BtV = BtV/V are associated
subgroups with isomorphisms ftV : AtV/V −→ BtV/V induced by ft (and we
use this notation omitting V if V is trivial). We also shall use the natural
injection υabs1V : T → HNNabs(H/V,Av, T ) arising from the abstract situation
and let ϕabs : H → HNNabs(H,G, T ) denote the canonical embedding.

Theorem 11 The pro-C HNN-group G := HNN(H,G, T ) is proper, i.e., the
natural map ϕ : H −→ G is mono, if and only if for every open normal subgroup
U of H there exists an open normal subgroup V of H contained in U such that

ft(At ∩ V ) = Bt ∩ V

and, the intersection of normal subgroups N with GabsV /N ∈ C and (υ1
abs)−1(gN)∩

T clopen in T for all g ∈ GabsV , is trivial.

Proof: It suffices to prove that ker(ϕ) = K, where

K =
⋂
{U | U /o H, ft(At ∩ U) = Bt ∩ U, t ∈ T}.
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We adapt the proof of 9.4.3 [9].
Let Gabs = HNNabs(H,A, f, T ) be the abstract HNN-group and identify H

with its natural image in Gabs. Denote the collection of all normal subgroups N
of Gabs with Gabs/N ∈ C such that (ϕabs)−1(N) is open in H and (υabs1 )−1(gN)
clopen in T for every g ∈ Gabs, by N . From the explicit construction of G =
HNN(H,A, f, T ) (compare the proof of Proposition 9) it follows that

ker(ϕ) =
⋂
N∈N

(N ∩H).

Since N ∩H is an open normal subgroup of H for any N ∈ N , we deduce from
ft(At ∩N) = (At ∩N)t = At ∩N = Bt ∩N , that K ≤ ker(ϕ).

Conversely, pick 1 6= h ∈ H. We shall construct an epimorphism η of G
onto a C-group such that η(h) 6= 1. Let U be an open normal subgroup of H,
not containing h, such that ft(At ∩ U) = Bt ∩ U for all t ∈ T and such that
the set NU of all normal subgroups N of GabsU := HNNabs(H/U,AU , fU , T ) with
GabsU /N ∈ C and (υabs1U )−1(N)∩T clopen in T for all g ∈ GabsU , intersects trivially.
Then there exists a normal subgroup N ∈ NU with h 6∈ N and we denote by
π : GabsU → Gabs/N the canonical epimorphism.

G oo υ1

η:=ωU

**

T
υabs
1U //

β1

""E
E

E
E

E GabsU
π

{{vvv
vv

vv
vv

H

ϕ

^^========

β
//_______

ϕabs
U

FF

GabsU /N

Define a specialization (β, β1) : (H,G, T ) → GabsU /N by setting β := πϕabsU
and β1 := πυabs1U , where ϕabsU is the natural homomorphism. By the universal
property of G = HNN(H,G, T ) there is continuous homomorphism ωU : G →
GabsU /N which satisfies (β, β1) = ωU (ϕ, υ1). Set η := ωU , then, keeping in mind
that ϕ identifies H with its image in G, one can see that η(h) 6= 1.

Let G be a pro-C group and T a closed subset of Fin(G). Define a sheaf
(G, T ) putting G = {(g, t) ∈ G × T | g ∈ t} and defining γ : G −→ T to be the
restriction to G of the natural projection G× T −→ T .

Theorem 12 Let G = F×K with F a torsion free normal subgroup and K a
finite C-group and let (G, T ) be a sheaf as described above. Define fiber monomor-
phisms ∂0, ∂1 : (G, T ) → G putting ∂0 to be the restriction of the natural projec-
tion G × T −→ G and ∂1 to be the restriction of the map G × T −→ G which
sends ((f, k), t) ∈ (F×K)× T to k.

Then G̃ := HNN(G,G, T ) is virtually free pro-C and enjoys the following
properties:

(i) G canonically embeds in G̃.
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(ii) G̃ = F̃×K is again a semidirect product where F̃ is a free pro-C-product
of copies of F and some free pro-C group.

(iii) In G̃ every finite subgroup is conjugate to a subgroup of G. Moreover
every At is G̃-conjugate to a subgroup of K.

Proof:
(i). We want to use Theorem 11, let G play the role of H there, and explore

its notation. Let U ≤ F be an open normal subgroup of G. Since Bt ≤ K for
all t ∈ T , all groups G(t) are finite. Then U ∩At = {1} for all t ∈ T , and hence
{1} = ft(At ∩ U) = Bt ∩ U holds. Define the quotient sheaf (GU , γU , T ) by
setting GU = G/∂−1

0 (U) and γU being induced by the projection from G onto T .
Then fiber monomorphisms ∂0U , ∂1U : (GU , T ) → G/U can be defined, giving
rise to a family fU of isomorphisms fUt : AUt −→ BUt of associated subgroups
of G/U , with AUt := AtU/U and BUt := fUt(AUt) = BtU/U . Denote by GabsU
the abstract HNN-extension HNNabs(G/U,AU , fU , T ). In order to prove the
assumptions of Theorem 11 to hold, it suffices to find for given 1 6= x ∈ GabsU
a normal subgroup N of GabsU with x 6∈ N , (υabs1U )−1(gN) open in T for all
g ∈ GabsU , and, GabsU /N ∈ C.

For every open normal subgroup V of G with V ≤ U one can form the sheaf
(GU,V , TV ) with TV the quotient space mod the relation t ∼ t′ if and only if
tV = t′V and GU,V (tV/V ) := G(t) (recall that elements of T are finite subgroups
of G). Since fU respects the clopen relation on T , it factors through a map fU,V
and one may consider the HNN-extension GabsU,V := HNN(G/U,AU,V , fU,V , TV ).

First we claim that there exists an open normal subgroup V of G with V ≤ U
such that x does not belong to the kernel of χV , where χV is the canonical
epimorphism from GabsU to GabsU,V . In fact, using the normal form theorem for
HNN-extensions, one can write

x = g0t
ε1
1 · · · tεkk gk

with ti ∈ T , εi = ±1, k ∈ N and all gi belonging to G/U . Now one can find
an open normal subgroup V of G with V ≤ U , such that tiV 6= tjV holds,
whenever ti 6= tj . Then, again by the normal form theorem, χV (x) = 1 if and
only if x = 1. Fix V for the rest of the proof.

By the universal property the natural epimorphism from G → K extends
to a unique homomorphism ωU,V : GabsU,V −→ K. Since the kernel ker(ωU,V )
intersects G/U trivially, it is free, and so residually C. Since C is extension
closed, GabsU,V is residually C so that Theorem 11 is applicable. In particular,
there is a normal subgroup L of GabsU,V with GabsU,V /L ∈ C and χV (x) 6∈ L. Set
N := χ−1

V (L), then GabsU /N ∈ C, the element x does not belong to N and,
by construction, (υabsU )−1(gN) is clopen in T for every g ∈ GabsU . Therefore
the sheaf (G,G, T ) indeed satisfies the assumptions of Theorem 11 and hence
HNN(G,A, f, T ) is proper, as claimed.

(ii) By the universal property, there exists a unique homomorphism ω :
G̃ −→ K that extends the natural epimorphism G −→ K. By Lemma 10
L := ker (ω) is free pro-C and therefore it serves as a candidate for F̃ .
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(iii) follows from the construction of G̃ and Theorem 5.6 in [15].

Proof of Theorem 1:

Claim: One can assume G to be a semidirect product of a free pro-C group F
with a finite group K ∈ C.

Proof of the Claim: Put K := G/F , let π : G → K be the canonical
projection, and let L := GqK denote the free pro-C product of the two groups.
With iG : G → L and iK : K → G denoting the canonical embeddings, define
the normal subgroup Φ := (iG(g)iK(π(g))−1 | g ∈ G)L. Observing that Φ
intersects im(iK) trivially and im(iG) is in the free pro-C group iG(F ), by the
pro-C version of the Kurosh subgroup Theorem (see Theorem 9.1.9 in [9]) one
concludes Φ to be free pro-C, and certainly L = Φ×K. Whence the Claim holds.

Thus, taking the Claim into account, we assume G = F×K and keep in mind
the meaning of iG and iK from its proof. We provide data for constructing a
certain HNN-group along Definition 8. Take the boolean space T := Fin(G)
and define a sheaf (G, T ) by setting G(S) := S for every S ∈ T , i.e., every
finite subgroup S of G. Define fiber monomorphisms ∂0, ∂1 to be induced by
the canonical embedding of any finite subgroup S of G in there and iK ◦ π
respectively. Now use Theorem 12 for providing the desired embedding.

In the proof to follow we are going to apply Theorem 2.2 in [5] to a pro-p
group G̃ using the existence of a continuous section TG̃/G̃ −→ TG̃, where TG̃ is
the space of subgroups of order p in G̃. In contrast to statement (ii) of the cited
theorem a continuous section TG/G −→ TG does not always exists (see [12]).

Proof of Theorem 4:

Let C be the class of all p-groups. Use Theorem 1 to construct a pro-p group
G̃ such that statement (i) of the theorem holds. Then TG̃/G̃ has cardinality 1
and therefore a continuous section TG̃/G̃ −→ TG̃ obviously exists. So one can
apply Theorem 2.2 (iii) of [5] to deduce that G̃ = CG̃(Cp) qH of a free pro-p
group F and the centralizer CG̃(Cp) of a group Cp of order p. Induction applies
in the following sense: when L := CG̃(Cp)/Cp is not free pro-p it has torsion,
and hence has a unique conjugacy class of elements of order p. Then one can
apply Theorem 2.2 (iii) of [5] to G̃ to see that it is again a free product of a
centralizer of a subgroup of order p and some free pro-p factor. Also every finite
subgroup of L can be seen to be conjugate of a subgroup of a suitable fixed
maximal cyclic subgroup.

Proof of Corollary 2:

Use Theorem 1 when C is the class of all finite groups. For a pair of elements
g, h of G/F of the same finite order construct the profinite HNN extension
H = HNN(G̃, 〈g〉, t) with stable letter t conjugating g into h. Since associated
subgroups 〈g〉 and 〈h〉 are finite, the condition of Theorem 11 is satisfied, so the
HNN-extension is proper. Note that all torsion elements of H are still conjugate
to elements of G/F (since they are conjugate to elements of the base group G̃
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(see Theorem 5.6 in [15]). So we can repeat the construction until all pairs of
non-conjugate elements of G/F of the same finite order are exhausted.

Example: Let S be an infinite set and G =
∏
s∈S Cs the cartesian product of

groups Cs of order 2. Then, when I denotes the set of all non-trivial involutions,
observe that the unity element is a cluster point of I. Suppose G could be
embedded into a profinite group where all involutions form a single conjugacy
class C. Since C is compact and contains I one comes to the contradiction
1 ∈ C.

The authors would like to thank the referee for helpful suggestions and re-
marks.
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