Tits alternative for 3-manifold groups

Dessislava H. Kochloukova, Pavel Zalesskii *,
UNICAMP-IMECC, Cx. P. 6065, 13083-970 Campinas, SP, Brazil;
Department of Mathematics, University of Brasilia, 70910-900 Brasília DF, Brazil

Abstract

Let M be an irreducible, orientable, closed 3-manifold with fundamental group G. We show that if the pro-p completion \widehat{G}_{p} of G is infinite then G is either soluble-by-finite or contains a free subgroup of rank 2 .

Introduction

In this short note we discuss Tits alternative for the fundamental group of an irreducible, orientable, closed 3 -manifold M. As shown in [13, Thm. 2.9] if $\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(M, \mathbb{F}_{p}\right) \geq 4$ for some prime number p, where \mathbb{F}_{p} is the field with p elements, then the fundamental group $\pi_{1}(M)$ has a free subgroup of rank 2. This result was further generalized in [12] where it was shown that if $\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(M, \mathbb{F}_{p}\right) \geq 3$ then either $\pi_{1}(M)$ is soluble-by-finite or contains a free subgroup of rank 2. The proof in [12] uses techniques from p-adic analytic groups [10] and Tits alternative for linear groups over fields of characteristics 0 [14]. The case when $\pi_{1}(M)$ has infinite abelianization follows from [6, Corollary 4.10] where it is shown that the fundamental group of a sufficiently large, irreducible, 3 -manifold satisfies Tits alternative plus the fact that compact 3 -manifolds M with infinite $H_{1}(M, \mathbb{Z})$ are sufficiently large [7, Lemma 6.6].

[^0]Theorem. Let G be the fundamental group of an irreducible, orientable, closed 3 -manifold. Assume that for some prime number p the pro- p completion \widehat{G}_{p} of G is infinite. Then G satisfies Tits alternative, i.e. either G contains a free non-cyclic subgroup or G is soluble-by-finite.

We observe that this theorem can be viewed as a corollary of Thurston geometrization conjecture and Tits original result [14]. We give a short proof of our result following Parry's approach [12] and remark after it that there are alternative approaches one suggested by the referee and the other using some recent results on pro-p completions \widehat{G}_{p} of orientable Poincare duality groups G of dimension 3 i.e. if every normal subgroup of p-power index in G has finite abelianization then \widehat{G}_{p} is a pro- p Poincare duality group of dimension 3 (two independent, quite different proofs of this result can be found in [8] and [15]).

Proof.

We start the proof with the following
Lemma. Let G be the fundamental group of an irreducible, orientable, closed 3 -manifold whose profinite completion \widehat{G} is infinite. Then G either satisfies Tits alternative or every finitely generated non-trivial subgroup of infinite index in G is infinite cyclic.

Proof. Observe that since \widehat{G} is infinite, the group G is infinite and hence G is a Poincare duality group of dimension 3 and torsion-free.

Suppose first that G does not contain a copy of $\mathbb{Z} \times \mathbb{Z}$. Then by $[1$, Cor.A1] every finitely generated non-cyclic subgroup of infinite index in G that does not decompose as a non-trivial free product has deficiency at least 2. By [2] every group of deficiency at least 2 has a subgroup of finite index that maps surjectively to a free group of rank 2. Every finitely generated subgroup of G that is a free product of two non-trivial groups contains the free non-cyclic group $\mathbb{Z} * \mathbb{Z}$. So the lemma holds in this case.

Suppose now that G contains a copy of $\mathbb{Z} \times \mathbb{Z}$. By [13, Prop. 2.6] if $\pi_{1}(M)$ has infinitely many distinct subgroups of finite index (which is the case since \widehat{G} is infinite) and if $\pi_{1}(M)$ contains a copy of \mathbb{Z}^{2} then either M contains an incompressible torus or M is a Seifert fibered space. In both cases M
is almost sufficiently large as defined in [13, p. 904] i.e. some finite-sheeted cover of M is sufficiently large. If M is sufficiently large (i.e. containing an incompressible, closed, connected orientable surface that is not a disc or a 2 sphere) with $\pi_{2}(M)=0$ by [6 , Cor. 4.10] $\pi_{1}(M)$ is either soluble or contains a free subgroup of rank 2. If M is a Seifert fibered, irreducible, closed 3manifold the Tits alternative for $\pi_{1}(M)$ is established in the third paragraph of the proof of [12, Thm. 1.1].

Proof of the theorem.

Note that we can assume that for every subgroup U of finite index in G, $\operatorname{dim}_{\mathbb{F}_{p}} H_{1}\left(U, \mathbb{F}_{p}\right) \leq 2$ and U has finite abelianization otherwise the theorem follows immediately from the results stated in the introduction. In particular the number of generators of any subgroup of finite index in \widehat{G}_{p} is at most 2. Then \widehat{G}_{p} is a pro- p group of finite rank at most 2 and \widehat{G}_{p} has a subgroup of finite index that is uniformly powerful of rank ≤ 2 [10]. By going down to a subgroup of finite index in G we can assume that \widehat{G}_{p} is uniformly powerful, hence a linear group in characteristic 0 [5, Thm. 8.20] and a pro- p Poincare duality group, so of finite cohomological dimension at most 2 and torsionfree. By the preceding lemma we can assume that every non-trivial subgroup of infinite index in G is isomorphic to \mathbb{Z}.

Finally following the last but one paragraph of [12, p.269] it is easy to see that G embeds in \widehat{G}_{p}. Indeed if there are $x, y \in G$ such that $x \neq 1$ is in the kernel of the canonical map $\pi: G \rightarrow \widehat{G}_{p}$, but $y \notin \operatorname{Ker}(\pi)$, define D as the subgroup of G generated by x and y. If D has finite index in G then the closure \bar{D} of $\pi(D)$ in \widehat{G}_{p} has finite index and as \bar{D} is procyclic, non-trivial and torsion-free \widehat{G}_{p} is virtually \mathbb{Z}_{p}. Since \widehat{G}_{p} is a torsion-free, virtually free pro- p group by Serre's result [11, Thm. 7.3.7(b)] $\widehat{G}_{p} \simeq \mathbb{Z}_{p}$. Hence G has a quotient \mathbb{Z}, a contradiction. If D has infinite index in G by the preceding lemma $D \simeq \mathbb{Z}$. Then for some $n>0, y^{n} \in\langle x\rangle \subseteq \operatorname{Ker}(\pi)$ and the image of y in \widehat{G}_{p} is a non-trivial element of finite order, a contradiction as \widehat{G}_{p} is torsion-free. Thus G embeds in the linear group \widehat{G}_{p} and Tits result on linear groups [14] completes the proof.

Remarks. The following remarks give alternative proofs of the theorem, in particular simplifying the last paragraph of the above proof:

1. As mentioned in the introduction some recent results show that \widehat{G}_{p} is a pro- p Poincare duality group of dimension 3 , hence a pro- p group of finite
rank 3. But the first paragraph of the above proof shows that \widehat{G}_{p} is pro-p group of finite rank ≤ 2, a contradiction.
2. Another approach was pointed out by the referee, who suggested to use the fact that p-adic analytic groups \widehat{G}_{p} of rank at most 2 are soluble. The case of rank 1 is obvious so we can assume the rank is 2 . Furthermore by Lemma the $\operatorname{Ker}(\pi)$ is either trivial or infinite cyclic.

We provide the details of this argument and show that \widehat{G}_{p} is metabelian-by-nilpotent. By going down to a subgroup of a p-power index we can assume that \widehat{G}_{p} is uniformly powerful, hence a pro- p Poincare duality group of dimension 2. Such a group is a Demushkin group with two generators and by the classification of Demushkin groups [3], [4], [9], \widehat{G}_{p} has a pro- p presentation with generators x_{1}, x_{2} and one relator $\left[x_{1}, x_{2}\right] x_{1}^{z}$, where $z \in p^{\mathbb{N}=\{1,2, \ldots\}} \cup \infty$ and by definition $x_{1}^{\infty}=1$. A simple computation shows that the commutator subgroup of \widehat{G}_{p} is a subset of the abelian pro- p subgroup of \widehat{G}_{p} generated by x_{1} and $\left[x_{1}, x_{2}\right]$, so \widehat{G}_{p} is metabelian.
3. Alternatively the classification of Demushkin groups shows that they always have infinite abelianization, hence G has infinite abelianization, a contradiction.

References

[1] G. Baumslag, P. Shalen, Groups whose three-generator subgroups are free, Bull. Austral. Math. Soc. 40 (1989), no. 2, 163-174.
[2] B. Baumslag, S. J. Pride, Groups with two more generators than relators, J. London Math. Soc. (2) 17 (1978), no. 3, 425-426.
[3] S. Demushkin, On the maximal p-extension of a local field, Izv. Akad. Nauk, USSR Math. Ser., 25 (1961), 329-346
[4] S. Demushkin, On 2-extensions of a local field, Sibirsk. Mat. Z., 4 (1963), 951-955
[5] J. D. Dixon, M. P. F. du Sautoy, A. Mann, D. Segal, Analytic pro-p groups, Cambridge University Press, Cambridge, 1999
[6] B. Evans, L. Moser, Solvable fundamental groups of compact 3manifolds, Trans. Amer. Math. Soc. 168 (1972), 189-210.
[7] J. Hempel, 3-Manifolds, Ann. of Math. Studies, No. 86. Princeton University Press, Princeton, N. J.1976.
[8] D. Kochloukova, P. Zalesskii, Profinite and pro-p completions of Poincare duality groups of dimension 3, submitted, 25 p.
[9] J. P. Labute, Classification of Demushkin groups. Canad. J. Math. 19 (1967) 106-132.
[10] M. Lazard, Groupes analytiques p-adiques. (French) Inst. Hautes tudes Sci. Publ. Math. No. 261965 389-603.
[11] L. Ribes, P. A. Zalesskii, Profinite Groups, Springer 2000.
[12] W. Parry, A sharper Tits alternative for 3-manifold groups, Israel J. Math. 77 (1992), no. 3, 265-271.
[13] P. B. Shalen, P. Wagreich, Growth rates, Z_{p}-homology, and volumes of hyperbolic 3-manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 895-917.
[14] J. Tits, Free subgroups in linear groups, J. Algebra 20 1972, 250-270.
[15] Th. Weigel, On Profinite groups with finite abelianizations, preprint, Milano 2005, 6 p.

[^0]: *Both authors are partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil;
 2000 Math. Subject Classification : 57M05, 20J05

