APENDIX

Lemma 0.1. Let $\Gamma = \Gamma_g = \langle x_i, y_i | \prod [x_i, y_i] = 1, i = 1, \dots, g \rangle$ be an orientable profinite surface group of genus g and

$$\begin{array}{c}
\Gamma \\
\downarrow f \\
A \xrightarrow{\alpha} & B
\end{array} \tag{1},$$

an embedding problem admitting a weak solution $\varphi : U \longrightarrow A$ such that $\varphi(x_1) = \varphi(x_2) = \cdots = \varphi(x_{sn+s-1})$ and $\varphi(y_1) = \varphi(y_2) = \cdots = \varphi(y_{sn+s-1})$, where $n = |K||\varphi(\Gamma)|$, $j_l > j_k$ whenever l > k and s is the minimal number of generators of K. Then (1) admits a proper solution.

Proof. We shall use the notation x^y for $y^{-1}xy$ in the argument to follow. Choose a minimal set of generators k_1, \ldots, k_s of K. Let η be a map that sends x_1, x_2, \ldots, x_n to $\varphi(x_1)k_1; x_{n+2}, x_{n+3}, \ldots, x_{2n+1}$ to $\varphi(x_1)k_2; \ldots, x_{n(s-1)+s-1}, x_{n(s-1)+s}, \ldots, x_{ns+s-1}$ to $\varphi(x_1)k_s$ and coincides with φ on the other generators. Then η extends to a homomorphism if

$$[\eta(x_1), \eta(y_1)] \dots [\eta(x_{g_i}), \eta(y_{g_i})] = 1$$

(since this would mean that the homomorphism from a free profinite group $F(x_1, y_1, \ldots, x_{g_i}, y_{g_i}) \longrightarrow A$ extending η factors through U_i). Now putting

$$k_{10} := k_1^{-\varphi([x_1y_1])} k_1^{\varphi(y_1)}, \dots k_{s0} := k_s^{-\varphi([x_{n(s-1)+s-1}, y_{n(s-1)+s-1}])} k_s^{\varphi(y_{n(s-1)+s-1})}$$

one has

$$\begin{split} & [\eta(x_1), \eta(y_1)] \cdots [\eta(x_{g_i}), \eta(y_{g_i})] = \\ & ([\varphi(x_1)k_1, \varphi(y_1)])^n [\varphi(x_{n+1}), \varphi(y_{n+1})] ([\varphi(x_{n+2})k_2, \varphi(y_{n+2})])^n [\varphi(x_{2n+2}), \varphi(y_{2n+2})] \cdots \\ & ([\varphi(x_{n(s-1)+s-1}k_s, \varphi(y_{n(s-1)+s-1}])^n [\varphi(x_{ns+s}), \varphi(y_{ns+s})] \cdots [\varphi(x_{g_i}), \varphi(y_{g_i})] = \\ & ([\varphi(x_1), \varphi(y_1)]k_{10})^n, [\varphi(x_{n+1}), \varphi(y_{n+1})] [\varphi(x_{n+2}), \varphi(y_{n+2})]k_{20})^n \cdots \\ & [\varphi(x_{n(s-1)+s-1}), \varphi(y_{n(s-1)+s-1})]k_{s0})^n [\varphi(x_{sn+s}), \varphi(y_{sn+s})] \cdots [\varphi(x_{g_i}), \varphi(y_{g_i})] \end{split}$$

Then putting $b_1 = [\varphi(x_1), \varphi(y_1)], \ldots, b_s = [\varphi(x_{n(s-1)+s-1}), \varphi(y_{n(s-1)+s-1})]$ and taking into account that $b_1 = [\varphi(x_i), \varphi(y_i)], \ldots, b_s = [\varphi(x_{n(s-1)+s-1+i}), \varphi(y_{n(s-1)+s-1+i}))]$ for all $i = 1, \ldots, n$ one has

$$\begin{split} & [\eta(x_1), \eta(y_1)] \cdots [\eta(x_{g_i}), \eta(y_{g_i})] = \\ & b_1 k_{10} k_{10}^{b_1^{-1}} k_{10}^{b_1^{-2}} \cdots k_{10}^{b_1^{-n}} b_1^{n-1} [\varphi(x_{n+1}), \varphi(y_{n+1})] \\ & b_2 k_{20} k_{20}^{b_2^{-1}} k_{20}^{b_2^{-2}} \cdots k_{20}^{b_2^{-n}} b_2^{n-1} [\varphi(x_{2n+2}), \varphi(y_{2n+2})] \cdots \\ & b_s k_{s0} k_{s0}^{b_s^{-1}} k_{s0}^{b_s^{-2}} \cdots k_{s0}^{b_s^{-n}} b_s^{n-1} [\varphi(x_{sn+s}), \varphi(y_{sn+s})] \\ & \cdots [\varphi(x_{g_i}), \varphi(y_{g_i})]. \end{split}$$

Let m = |B'| and t = |K|, so that n = mt. Then

$$k_{i0}k_{i0}^{b_i^{-1}}k_{i0}^{b_i^{-2}}\cdots k_{i0}^{b_i^{-n}} = (k_{i0}k_{i0}^{b_i^{-1}}k_{i0}^{b_i^{-2}}\cdots (k_{i0}^{b_i^{-m+1}}))^t = 1$$

APENDIX

so that

$$\begin{aligned} & [\eta(x_1), \eta(y_1)] \cdots [\eta(x_{g_i}), \eta(y_{g_i})] = [\varphi(x_1), \varphi(y_1)] \cdots [\varphi(x_{g_i}), \varphi(y_{g_i})] = \\ & b_1^n \varphi([x_{n+1}, y_{n+1}] b_2^n [\varphi(x_{2n+2}), \varphi(y_{2n+2})] \cdots b_s^n [\varphi(x_{sn+s}), \varphi(y_{sn+s})] \cdots [x_{g_i}, y_{g_i}]) = \\ & \varphi([x_1, y_1] \cdots [x_{g_i}, y_{g_i}]) = 1 \end{aligned}$$

as needed.

Thus η extends to a homomorphism $\psi: U \longrightarrow A$ such that $\varphi = \alpha \psi$. But

$$\psi(x_1^{-1}x_{n+1}) = k_1, \dots, \psi(x_{n(s-1)+s-1}^{-1}x_{ns+s}) = k_s$$

so ψ is an epimorphism and the lemma is proved.

Lemma 0.2. Let $\Gamma = \Gamma_g$ be a profinite surface group of genus g and N a projective subgroup of Γ . Let

$$\begin{array}{c}
N \\
\downarrow f \\
\downarrow f \\
B
\end{array}$$
(2)

be an embedding problem, where A, B are finite. Then there exists an open subgroup U of Γ containing N and an embedding problem such that

A

A

$$\begin{array}{c}
U \\
\downarrow^{\eta} \\
\downarrow^{\eta} \\
\overset{\alpha}{\twoheadrightarrow} B
\end{array}$$
(1),

satisfying hypothesis of Lemma 0.1 such that the restriction $\eta_{|N} = f$. Moreover, if N is accessible U can be chosen normal.

Proof. Since N is projective there exists a homomorphism $f': N \longrightarrow A$ such that $\alpha \varphi(N) = B$. Put B' = f'(N).

By Lemma 8.3.8 in [RZ-2000] there exists an open subgroup U of Γ_g containing N and an epimorphism $\varphi: U \longrightarrow B'$ such that $\varphi_{|N} = f'$. Since an open subgroup of Γ_g is again a profinite surface group, replacing Γ_g by U we may assume the existence of the following commutative diagram:

where the top horizontal map is the natural inclusion. Moreover, as N is projective, 2 divides $[\Gamma_g: N]$ and so passing to an open subgroup of index 2 containing N if necessary, we may assume to be in oriented case. Let U_i be the family of all open subgroups of Γ_g containing N. Then $\varphi_i := \varphi_{|U_i|}$ is an epimorphism for every i. Note that every U_i is again a profinite surface group and so has a presentation $U_i = \langle x_1, y_1, \ldots, x_{g_i}, y_{g_i} | \prod_{j=1}^{g_i} [x_i, y_i] \rangle$, where the genus g_i of U_i can be computed by the formula $g_i - 1 = [\Gamma_g: U_i](g-1)$. This means that we can choose i with the

 $\mathbf{2}$

APENDIX

number of generators of U_i sufficiently large, so that there exists i such that reordering generators x_j, y_j of U_i if necessary, we have $\varphi(x_1) = \varphi(x_{j_1}) = \cdots = \varphi(x_{j_{sn+s-1}})$ and $\varphi(y_1) = \varphi(y_{j_1}) = \cdots = \varphi(y_{j_{sn+s}})$, where n = |K||B'| and $j_l > j_k$ whenever l > k and s is the minimal number of generators of K. We shall use the notation x^y for $y^{-1}xy$ in the argument to follow. Suppose $j_1 \neq 2$. Then $\prod_{j=1}^{g_i} [x_j, y_j] = [x_1, y_1][x_{j_1}, y_{j_1}]([x_2, y_2] \cdots [x_{j-1}, y_{j-1}])^{[x_{j_1}, y_{j_1}]}[x_{j+1}, y_{j+1}] \cdots [x_{g_i}, y_{g_i}]$ so replacing the generators $x_2, y_2, \ldots, x_{j-1}, y_{j-1}$ by $x_2^{[x_{j_1}, y_{j_1}]}, y_2^{[x_{j_1}, y_{j_1}]}, \ldots x_{j-1}^{[x_{j_1}, y_{j_1}]}, y_{j-1}^{[x_{j_1}, y_{j_1}]}$ we may assume that $j_1 = 2$. Continuing similarly, we in fact may assume that $\varphi(x_1) = \varphi(x_2) = \cdots = \varphi(x_{sn+s})$ and $\varphi(y_1) = \varphi(y_2) = \cdots = \varphi(y_{sn+s})$.

Theorem 0.3. 2.2 Let $\Gamma = \Gamma_g$ be a profinite surface group of genus g and N a projective accessible subgroup of Γ .

Then N is isomorphic to an accessible subgroup of infinite index of a free profinite group.

Proof. By Theorem 2.1 we need to solve the following embedding problem for N:

$$A \xrightarrow{\alpha}{\longrightarrow} B$$

$$(1),$$

$$(1),$$

where A, B are finite, $K := \text{Ker}(\alpha)$ is minimal normal and $K \leq M(A)$.

By two preceding lemmas we have an open subgroup $N \leq U \leq \Gamma$ and an epimorphism $\psi: U \longrightarrow A$ such that $\alpha(\psi(N) = B$ and so $\psi(N)M(A) = A$. Since $\psi(N)$ is a subnormal subgroup of A by Proposition 8.3.6 in [RZ] $\psi(N) = A$ as needed. \Box