Free-by-Demushkin pro- p groups

Dessislava H. Kochloukova *, IMECC-UNICAMP,Cx. P. 6065, 13083-970 Campinas, SP, Brazil, Pavel Zalesskii *
Department of Mathematics, University of Brasília 70910-900 Brasília DF, Brazil, desi@ime.unicamp.br, pz@mat.unb.br

Abstract

We give an example of a short exact sequence $1 \rightarrow N \rightarrow G \rightarrow D \rightarrow$ 1 of pro-p groups such that the cohomological dimension $\operatorname{cd}(G)=2$, G is (topologically) finitely generated, N is a free pro- p group of infinite rank, D is a Demushkin group, for every closed subgroup S of G containing N and any natural number n the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{Z} /\left(p^{n}\right)\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{Z} /\left(p^{n}\right)\right)$ is an isomorphism but G is not a free pro- p product of a free pro- p group by a Demushkin group. This is a group theoretic version of a question raised by T. Würfel for some special Galois groups.

1 Introduction

In [13] Würfel proved the following
Theorem 1. [13] Let F be a field with separable closure F_{s} and absolute Galois group $G=\operatorname{Gal}\left(F_{s} / F\right)$. Suppose G is a finitely generated one-relator pro-p group where the prime p is different from $\operatorname{char}(F)$ and F contains

[^0]all p-power roots of unity. Then there is a normal closed free pro-p subgroup N of G such that G / N is a Demushkin group and the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{Z} /\left(p^{n}\right)\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{Z} /\left(p^{n}\right)\right)$ is an isomorphism for every closed subgroup S of G containing N, and all integers n.

In the same paper he asked whether the condition in this theorem implies that G is free pro- p product of a Demushkin group and a free pro- p group.

In this paper we answer the group theoretic version of Würfel's question negatively by the means of the following example.

Theorem 2. Let G be the pro-p group with three (topological) generators x, y, z and one defining relation $z^{p^{s}}=[x, y]$ where $s \geq 1$ if $p \neq 2$ and $s \geq 2$ for $p=2$. Let N be the normal closed subgroup of G generated by z and define $D=G / N$. Then
a) $\operatorname{cd}(G)=2$;
b) D is the Demushkin group $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$;
c) N is a free pro-p group of infinite rank;
d) For every closed subgroup S of G containing N the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)$ is an isomorphism;
e) For every closed subgroup S of G containing N and any natural number n the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{Z} /\left(p^{n}\right)\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{Z} /\left(p^{n}\right)\right)$ is an isomorphism;
f) G is not a free pro-p product of a free pro-p group with a Demushkin group.

We observe that the class of groups considered in Theorem 2 cannot be realised as Galois groups in the sense of Würfel's question as such groups would be Galois groups of maximal p-extensions of fields and by [7, Thm. 1.2] for such Galois groups with 3 (topological) generators the second cohomology with coeficients in \mathbb{F}_{p} has dimension 3 over \mathbb{F}_{p} and therefore cannot be 1 relator. In fact, later [14, Remark, p. 210] Würfel observed that the answer to his question is affirmative if the natural epimorphism $G \rightarrow G / N$ splits. We do not know whether field theory inforces that the homomorphism $G \rightarrow G / N$ splits.

Finally we want to express our gratitute to Prof. Dr. Antonio Engler for sugesting and discussing the question, providing and explaining the reference [7] to us and the encouragement along the way.

2 Some preliminary results

Demushkin groups D are one relator pro- p groups of cohomological dimension 2 with the property that the cup product

$$
\cup: \mathrm{H}^{1}\left(D, \mathbb{F}_{p}\right) \times \mathrm{H}^{1}\left(D, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2}\left(D, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}
$$

is a non-singular bilinear form. There are two invariants associated to a Demushkin group: the minimal number of (topological) generators d and q that is either ∞ or a power of the prime p. We remind the reader several important properties of Demushkin groups. The case of $q \neq 2$ is done in [3], [4]. Another excellent reference for this case is [12, 12.3.1, 12.3.6]
Theorem 3. [3], [4] Let D be a Demushkin group with invariants d, q and suppose that $q \neq 2$. Then d is even and D is isomorphic to F / R, where F is a free pro-p group with basis x_{1}, \ldots, x_{d} and R is generated as a normal closed subgroup by

$$
x_{1}^{q}\left[x_{1}, x_{2}\right] \cdots\left[x_{d-1}, x_{d}\right]
$$

where for $q=\infty$ we define $x_{1}^{\infty}=1$. Furthermore all groups having such presentations are Demushkin.

In the case when D is a Demushkin group with $q=2$ the classification was completed by J.-P. Serre [11] and J. Labute [8].
Theorem 4. [11] Let D be a Demushkin pro-2 group with invariants d, q and suppose that $q=2$ and d is odd. Then D is isomorphic to F / R, where F is a free pro-2 group with basis x_{1}, \ldots, x_{d} and R is generated as a normal closed subgroup by

$$
x_{1}^{2} x_{2}^{2^{f}}\left[x_{2}, x_{3}\right] \cdots\left[x_{d-1}, x_{d}\right]
$$

for some integer $f \geq 2$ or ∞. Furthermore all groups having such presentations are Demushkin.

Theorem 5. [8] Let D be a Demushkin pro-2 group with d even and $q=2$. Then D is isomorphic to F / R, where F is a free pro-2 group with basis x_{1}, \ldots, x_{d} and R is generated as a normal closed subgroup either by

$$
x_{1}^{2^{f}+2}\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right] \cdots\left[x_{d-1}, x_{d}\right] \text { for some integer } f \geq 2 \text { or } \infty,
$$

or by

$$
x_{1}^{2}\left[x_{1}, x_{2}\right] x_{3}^{2^{f}}\left[x_{3}, x_{4}\right] \cdots\left[x_{d-1}, x_{d}\right] \text { for some integer } f \geq 2 \text { or } \infty, d \geq 4 .
$$

Furthermore all groups having such presentations are Demushkin.

3 Some properties of the group G from Theorem 2

In this section G is the pro- p group from Theorem 2. We denote by $\mathbb{Z}_{p}[[G]]$ the completed group algebra of G with coefficients in \mathbb{Z}_{p}. Though discrete groups with one defining relation that is not a proper power are always of cohomological dimension ≤ 2 [1] one related pro- p groups with one defining relation that is not a p-th power are not automatically of cohomological dimension $\leq 2[6]$. Thus part a) from Theorem 2 cannot be deduced directly from the fact that the group G is a 1-relator, pro-p torsion-free group.

Lemma 1. The pro-p group G has cohomological dimension 2.
Proof. Note that G is a not a free pro- p group as the relator $z^{p^{s}}[x, y]^{-1}$ is in the Frattini subgroup of the free pro- p group with a basis x, y, z, hence by [10, Cor. 7.5.2] $\operatorname{cd}(G) \neq 1$. Obviously, G is the free amalgamated pro- p product $C *_{H} F$, where $C=\langle z\rangle \simeq \mathbb{Z}_{p}, F$ the free pro- p group with basis $x, y, H=\langle t\rangle \simeq \mathbb{Z}_{p}$, and the embeddings $H \rightarrow C$ and $H \rightarrow F$ are given by $t \rightarrow z^{p^{s}}$ and $t \rightarrow[x, y]$, respectively. By [10, Exer. 9.2.6(b)] this free pro-p amalgamated product is proper. Hence by [10, Prop. 9.2.13(a)] $\operatorname{cd}(G) \leq$ $\max \{\operatorname{cd}(C), \operatorname{cd}(F), \operatorname{cd}(H)+1\}=2$.

Lemma 2. Let $F=F(x, y)$ be a free pro-p group with basis x, y and V be an open subgroup of $F(x, y)$ of index p. Then there exists a basis w_{1}, w_{2} of F such that $[x, y]=\left[w_{1}, w_{2}\right]$ and V is (topologically) generated by $w_{1}^{p}, w_{2}, w_{2}^{w_{1}}, \ldots$, $w_{2}^{w_{1}^{p-1}}$.

Proof. Let $\theta: F \rightarrow \mathbb{F}_{p}$ be a homomorphism of pro- p groups with kernel V, $\theta(x)=\beta$ and $\theta(y)=\alpha$ where \mathbb{F}_{p} is the field with p elements. First assume that $\alpha \neq 0$. We use the commutator calculations

$$
[a b, c]=[a, c]^{b} \cdot[b, c], \quad[a, b c]=[a, c] \cdot[a, b]^{c}, \text { where }[a, b]=a^{-1} b^{-1} a b .
$$

Define

$$
y_{1}=y^{n_{1}} x, y_{2}=y \text { and } w_{1}=y_{1}, w_{2}=y_{1}^{n_{2}} y_{2},
$$

for some $n_{1}, n_{2} \in \mathbb{Z}$. Then both pairs $\left\{y_{1}, y_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$ are bases of F. We first prove that $w_{1}^{p}, w_{2} \in V$ for some choice of n_{1}, n_{2}. Using the above commutator calculations we get

$$
\left[y_{1}, y_{2}\right]=\left[y^{n_{1}} x, y\right]=\left[y^{n_{1}}, y\right]^{x} \cdot[x, y]=[x, y],
$$

$$
\left[w_{1}, w_{2}\right]=\left[y_{1}, y_{1}^{n_{2}} y_{2}\right]=\left[y_{1}, y_{2}\right] \cdot\left[y_{1}, y_{1}^{n_{2}}\right]^{y_{2}}=\left[y_{1}, y_{2}\right] .
$$

Finally $\theta\left(w_{1}\right)=\bar{n}_{1} \alpha+\beta$ and $\theta\left(w_{2}\right)=\left(\bar{n}_{1} \alpha+\beta\right) \bar{n}_{2}+\alpha$ in \mathbb{F}_{p}, where \bar{n}_{i} is the image of n_{i} in \mathbb{F}_{p}. Thus it is sufficient to solve in \mathbb{F}_{p} the system for \bar{n}_{1}, \bar{n}_{2} : $\bar{n}_{1} \alpha+\beta=1, \bar{n}_{2}+\alpha=0$. Then $\theta\left(w_{1}\right)=1$ and $\theta\left(w_{2}\right)=0$.

If $\alpha=0$ we have $\beta \neq 0$ and can define $w_{1}=x, w_{2}=y$. Then $[x, y]=$ $\left[w_{1}, w_{2}\right], \theta\left(w_{1}\right) \neq 0$ and $\theta\left(w_{2}\right)=0$.

In both cases the closed normal subgroup W of F generated by w_{1}^{p} and w_{2} is of index p in F and is contained in V, hence $V=W$. Therefore V is (topologically) generated by $w_{1}^{p}, w_{2}, w_{2}^{w_{1}}, \ldots, w_{2}^{w_{1}^{p-1}}$.

From now on for a set A we denote by $F(A)$ the free pro- p group with basis A.

Lemma 3. Let $\left\{z_{1}, \ldots, z_{n}\right\}$ and $\{x, y\}$ be disjoint sets. Let

$$
H=F\left(z_{1}, \ldots, z_{n}\right) *_{z_{1}^{p^{s}} \ldots z_{n}^{p^{s}=[x, y]}} F(x, y)
$$

be the free amalgamated pro-p product and H_{0} be the normal closed subgroup of H generated by z_{1}, \ldots, z_{n}. Then every open subgroup U of H of index p such that $z_{1}, \ldots, z_{n} \in U$ has a similar presentation i.e. $U \simeq F\left(\tilde{z}_{1}, \ldots, \tilde{z}_{k}\right)$ $*_{\tilde{z}_{1}^{p s} \ldots \tilde{z}_{k}^{p s}=[\tilde{x}, \tilde{y}]} F(\tilde{x}, \tilde{y})$ and H_{0} is the normal closed subgroup of U generated by $\tilde{z}_{1}, \ldots, \tilde{z}_{k}$. Furthermore as sets

$$
\left\{\tilde{z}_{1}, \ldots, \tilde{z}_{k}\right\}=\left\{z_{1}, z_{1}^{w_{1}}, \ldots, z_{1}^{w_{1}^{p-1}}, z_{2}, z_{2}^{w_{1}}, \ldots, z_{2}^{w_{1}^{p-1}}, \ldots, z_{n}, z_{n}^{w_{1}}, \ldots, z_{n}^{w_{1}^{p-1}}\right\}
$$

and $\tilde{x}=w_{1}^{p}, \tilde{y}=w_{2}$ for some basis w_{1}, w_{2} of $F(x, y)$.
Proof. By Lemma 2 there exists a basis w_{1}, w_{2} of $F(x, y)$ such that $[x, y]=$ [w_{1}, w_{2}] and $U \cap F(x, y)$ is the normal closed subgroup of $F(x, y)$ generated by w_{1}^{p} and w_{2}. Note that the open subgroups of H containing z_{1}, \ldots, z_{n} correspond to the open subgroups of $F(x, y)$ containing $[x, y]$. Then changing $\{x, y\}$ to $\left\{w_{1}, w_{2}\right\}$ we can assume that U is the normal closed subgroup of H generated by $z_{1}, \ldots, z_{n}, x^{p}, y$. By the Reidemeister-Schreier method [2, Ch. 7,Thm. 7] we get a generating set and a set of relations for U. As a generating set \mathcal{X} we have

$$
\left\{z_{1}, z_{1}^{x}, \ldots, z_{1}^{x^{p-1}}, z_{2}, z_{2}^{x}, \ldots, z_{2}^{x^{p-1}}, \ldots, z_{n}, z_{n}^{x}, \ldots, z_{n}^{x^{p-1}}, y, y^{x}, \ldots, y^{x^{p-1}}, x^{p}\right\}
$$

and relations that are conjugates of the relation of H by the representatives $\left\{1, x, x^{2}, \ldots, x^{p-1}\right\}$ of the left cosets of U in H

$$
\begin{gathered}
z_{1}^{p^{s}} z_{2}^{p^{s}} \cdots z_{n}^{p^{s}}=[x, y]=\left(y^{x}\right)^{-1} y, \\
\left(z_{1}^{x}\right)^{p^{s}}\left(z_{2}^{x}\right)^{p^{s}} \cdots\left(z_{n}^{x}\right)^{p^{s}}=\left(y^{x^{2}}\right)^{-1} y^{x}, \\
\left(z_{1}^{x^{2}}\right)^{p^{s}}\left(z_{2}^{x^{2}}\right)^{p^{s}} \cdots\left(z_{n}^{x^{2}}\right)^{p^{s}}=\left(y^{x^{3}}\right)^{-1} y^{x^{2}}, \\
\cdots \\
\left(z_{1}^{x^{p-1}}\right)^{p^{s}}\left(z_{2}^{x^{p-1}}\right)^{p^{s}} \cdots\left(z_{n}^{x^{p-1}}\right)^{p^{s}}=\left(y^{x^{p}}\right)^{-1} y^{x^{p-1}} .
\end{gathered}
$$

We use the first $p-1$ relations to eliminate the elements

$$
\mathcal{T}=\left\{y^{x}, y^{x^{2}}, \ldots, y^{x^{p-1}}\right\}
$$

from the generating set \mathcal{X}. We multiply the relations left to right starting with the last one and going backwards and most of the terms in the right hand side cancel to get a new relation r_{1} of U. We get

$$
\begin{gathered}
\left(z_{1}^{x^{p-1}}\right)^{p^{s}}\left(z_{2}^{x^{p-1}}\right)^{p^{s}} \cdots\left(z_{n}^{x^{p-1}}\right)^{p^{s}} \cdots\left(z_{1}^{x}\right)^{p^{s}}\left(z_{2}^{x}\right)^{p^{s}} \cdots\left(z_{n}^{x}\right)^{p^{s}} z_{1}^{p^{s}} z_{2}^{p^{s}} \cdots z_{n}^{p^{s}}= \\
\left(y^{x^{p}}\right)^{-1} y=\left[x^{p}, y\right] .
\end{gathered}
$$

Thus $U \simeq F(\mathcal{A}) *_{r_{1}} F\left(y, x^{p}\right)$, where $\mathcal{A}=\mathcal{X} \backslash\left(\mathcal{T} \cup\left\{y, x^{p}\right\}\right)$ and the relation r_{1} is of the form a product of p^{s}-th powers of the elements of \mathcal{A} in some order $=\left[x^{p}, y\right]$. Finally the Schreier method [2, Ch. 7,Thm. 4] implies that H_{0} is the normal closed subgroup of U generated by $\tilde{z}_{1}, \ldots, \tilde{z}_{k}$.

Proposition 1. Let S be an open subgroup of G such that $N \subseteq S$. Then the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right) \simeq \mathbb{F}_{p}$ is an isomorphism.

Proof. By definition $G=F(z) *_{z^{s}=[x, y]} F(x, y)$ and S is a subgroup of finite index in G containing the normal closed subgroup N of G generated by z. By repeatedly applying Lemma 3 one deduces that S is the amalgamated free pro-p product $F\left(z_{1}, \ldots, z_{k}\right) *_{r} F(x, y)$, where $r=[x, y]\left(z_{1}^{p^{s}} \cdots z_{k}^{p^{s}}\right)^{-1}$ and N is the normal closure of $F\left(z_{1}, \ldots, z_{k}\right)$ in S. As S is 1-relator group $\operatorname{dim}_{\mathbb{F}_{p}} \mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)=1$. Note that S / N is one relator pro-p group with generators x, y and one defining relation $\tilde{r}=[x, y]$. Then there is a commutative diagram with rows short exact sequences of pro-p groups

$$
\left.\begin{array}{rl}
1 & \rightarrow \\
& K \\
\downarrow & \\
& \\
& \downarrow \\
& \rightarrow \\
K_{1} & \rightarrow \\
F_{1} & \rightarrow \\
& S / N
\end{array}\right) \rightarrow 1
$$

where $F=F\left(z_{1}, \ldots, z_{k}, x, y\right), F_{1}=F(x, y)$ are free pro-p groups with K the normal closed subgroup of F generated by r and K_{1} the normal closed subgroup of F_{1} generated by \tilde{r}. The vertical maps are induced by the epimorphism $F \rightarrow F_{1}$ sending z_{1}, \ldots, z_{k} to 1 and fixing x and y. This induces a commutative diagram

$$
\begin{array}{ccccc}
0 \leftarrow \mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right) \leftarrow & \mathrm{H}^{1}\left(K, \mathbb{F}_{p}\right)^{S} \leftarrow & \mathrm{H}^{1}\left(F, \mathbb{F}_{p}\right) \leftarrow & \mathrm{H}^{1}\left(S, \mathbb{F}_{p}\right) \leftarrow 0 \\
0 & \leftarrow \mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right) & \leftarrow & \mathrm{H}^{1}\left(K_{1}, \mathbb{F}_{p}\right)^{S / N} \leftarrow & \mathrm{H}^{1}\left(F_{1}, \mathbb{F}_{p}\right) \leftarrow
\end{array} \mathrm{H}^{1}\left(S / N, \mathbb{F}_{p}\right) \leftarrow 0
$$

where the rows are the 5 -term exact sequence in cohomology and the vertical maps are the inflation maps. As the maps $\mathrm{H}^{1}\left(S, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{1}\left(F, \mathbb{F}_{p}\right)$ and $\mathrm{H}^{1}\left(S / N, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{1}\left(F_{1}, \mathbb{F}_{p}\right)$ are isomorphisms, we have a commutative square with row maps isomorphisms

By the proof of [10, Prop. 7.8.2] there is an isomorphism $\operatorname{Hom}\left(K, \mathbb{F}_{p}\right)^{S}=$ $\mathrm{H}^{1}\left(K, \mathbb{F}_{p}\right)^{S} \longrightarrow \mathbb{F}_{p}$ sending f to $f(r)$ and similarly there is an isomorphism $\operatorname{Hom}\left(K_{1}, \mathbb{F}_{p}\right)^{S / N}=\mathrm{H}^{1}\left(K_{1}, \mathbb{F}_{p}\right)^{S / N} \longrightarrow \mathbb{F}_{p}$ sending g to $g(\tilde{r})$. Thus the right vertical inflation map in the above diagram is an isomorphism, hence the left vertical inflation map in the above diagram is an isomorphism.

Proposition 2. Let S be a closed subgroup of G of infinite index containing N. Then $\mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)=0$ and $\mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right)=0$. In particular S and N are free pro-p groups.

Proof. We think of S as the intersection of the open subgroups $\left\{U_{\alpha}\right\}_{\alpha}$ of G containing S. Thus S is the inverse limit of the inverse system $\left\{U_{\alpha}\right\}_{\alpha}$ with homomorphisms inclusions. Therefore $\mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)$ is the direct limit of $\left\{\mathrm{H}^{2}\left(U_{\alpha}, \mathbb{F}_{p}\right)\right\}_{\alpha}$ with homomorphisms that are the restriction maps $\mathrm{H}^{2}\left(U_{\alpha}, \mathbb{F}_{p}\right)$ $\rightarrow \mathrm{H}^{2}\left(U_{\beta}, \mathbb{F}_{p}\right)$ for $U_{\beta} \subset U_{\alpha}$. We aim to show that this restriction map is always zero by showing this for the case when U_{β} is a subgroup of index p in U_{α}. Note that this will imply that $\mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)=0$ and hence by $[10$, Cor. 7.1.6] $\operatorname{cd}(S)<2$ i.e. S is a pro- p group of cohomological dimension 1 . Then by [10, Thm. 7.5.1] S is a free pro- p group. In particular for $S=N$ we get that N is a free pro-p group.

Consider the commutative square for a subgroup U_{β} of index p in U_{α}, $S \subset U_{\beta}$,

$$
\begin{aligned}
\mathrm{H}^{2}\left(U_{\alpha}, \mathbb{F}_{p}\right) & \leftarrow \mathrm{H}^{2}\left(U_{\alpha} / N, \mathbb{F}_{p}\right) \\
\downarrow & \downarrow \\
\mathrm{H}^{2}\left(U_{\beta}, \mathbb{F}_{p}\right) & \leftarrow \mathrm{H}^{2}\left(U_{\beta} / N, \mathbb{F}_{p}\right)
\end{aligned}
$$

where the row maps are the inflation maps, hence by Proposition 1 are isomorphisms and the vertical maps are the restriction maps. Note that U_{α} / N is a subgroup of finite index of $G / N \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, so $U_{\alpha} / N \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and U_{β} / N is the subgroup $\mathbb{Z}_{p} \times\left(p \mathbb{Z}_{p}\right)$. We claim that the right vertical map is the zero one. Indeed by [10, Lemma 7.4.1] the rows of the following commutative diagram (of finite abelian groups of exponent p) are isomorphisms

$$
\begin{array}{rlr}
\mathrm{H}^{2}\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{F}_{p}\right) & \simeq \mathrm{H}^{1}\left(\mathbb{Z}_{p}, \mathrm{H}^{1}\left(\mathbb{Z}_{p}, \mathbb{F}_{p}\right)\right) \\
\downarrow & \\
\mathrm{H}^{2}\left(\mathbb{Z}_{p} \times\left(p \mathbb{Z}_{p}\right), \mathbb{F}_{p}\right) & \simeq \mathrm{H}^{1}\left(\mathbb{Z}_{p}, \mathrm{H}^{1}\left(p \mathbb{Z}_{p}, \mathbb{F}_{p}\right)\right)
\end{array}
$$

where the horizontal isomorphisms are induced by the Lyndon-HochschildSerre spectral sequence for group extensions, the left vertical map is the restriction map. The right vertical map is induced by the restriction map $\mathrm{H}^{1}\left(\mathbb{Z}_{p}, \mathbb{F}_{p}\right) \longrightarrow \mathrm{H}^{1}\left(p \mathbb{Z}_{p}, \mathbb{F}_{p}\right)$ and this restriction map is zero by the natural isomorphism $\mathrm{H}^{1}\left(\mathbb{Z}_{p}, \mathbb{F}_{p}\right) \simeq \operatorname{Hom}\left(\mathbb{Z}_{p}, \mathbb{F}_{p}\right)$. In particular the left vertical map is zero, as claimed.

Finally we note that S / N is either the trivial group or a closed subgroup of infinite index in $G / N \simeq \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, hence $S / N \simeq \mathbb{Z}_{p}$. In both cases $\mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right)=0$.

Lemma 4. Let $\pi: H \rightarrow M$ be an epimorphism of pro-p groups such that the inflation map $\mathrm{H}^{2}\left(M, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2}\left(H, \mathbb{F}_{p}\right)$ is an isomorphism. Then for every natural number $n \geq 1$ the inflation map $\mathrm{H}^{2}\left(M, \mathbb{Z} /\left(p^{n}\right)\right) \rightarrow \mathrm{H}^{2}\left(H, \mathbb{Z} /\left(p^{n}\right)\right)$ is an isomorphism.

Proof. We use induction on n. We assume the lemma holds for some fixed $n \geq 1$. The short exact sequence $0 \rightarrow \mathbb{Z} /(p) \rightarrow \mathbb{Z} /\left(p^{n+1}\right) \rightarrow \mathbb{Z} /\left(p^{n}\right) \rightarrow 0$ yields a diagram with two long exact sequences in cohomology in which the vertical maps are the inflation maps

$$
\begin{array}{cccc}
\mathrm{H}^{2}(H, \mathbb{Z} /(p)) & \rightarrow \mathrm{H}^{2}\left(H, \mathbb{Z} /\left(p^{n+1}\right)\right) & \rightarrow & \mathrm{H}^{2}\left(H, \mathbb{Z} /\left(p^{n}\right)\right) \\
\uparrow & & \uparrow & \uparrow \\
\mathrm{H}^{2}(M, \mathbb{Z} /(p)) & \rightarrow & \mathrm{H}^{2}\left(M, \mathbb{Z} /\left(p^{n+1}\right)\right) & \\
\hline & \mathrm{H}^{2}\left(M, \mathbb{Z} /\left(p^{n}\right)\right)
\end{array}
$$

As the leftmost and the rightmost vertical maps are isomorphisms, the middle one is an isomorphism.

4 Proof of Theorem 2

We complete the proof of Theorem 2 using the results from the previous sections.
a) $\operatorname{cd}(G)=2$ is done in Lemma 1 .
b) $D=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ is a Demushkin group by Theorem 3.
c) N is a free pro- p group by Proposition 2. If the rank of N is finite then by the main result of [5] the quotient group $G / N \simeq D$ has virtually finite cohomological dimension $\operatorname{cd}(G)-\operatorname{cd}(N)=1$. But D is a group of cohomological dimension 2 , a contradiction.
d) For every closed subgroup S of G containing N the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{F}_{p}\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{F}_{p}\right)$ is an isomorphism by Proposition 1 and Proposition 2.
e) By d) and Lemma 4 for every closed subgroup S of G containing N and any natural number n the inflation map $\mathrm{H}^{2}\left(S / N, \mathbb{Z} /\left(p^{n}\right)\right) \rightarrow \mathrm{H}^{2}\left(S, \mathbb{Z} /\left(p^{n}\right)\right)$ is an isomorphism.
f) Suppose G is a free pro- p product of a free pro-p group M_{1} with a Demushkin group D_{1}. Then the minimal number of generators of G is the sum of the minimal number of generators of M_{1} and D_{1}. We remind the reader that the minimal number of generators of G is 3 .

1) Assume now that the invariant q of D_{1} is not 2. By Theorem 3 a Demushkin group with invariant $q \neq 2$ has even number of generators, hence M_{1} is \mathbb{Z}_{p} and D_{1} is two-generated. There are two options for D_{1}. If D_{1} is $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ then G has a pro- p presentation $\left\langle y_{1}, y_{2}, y_{3} \mid\left[y_{1}, y_{2}\right]=1\right\rangle$, hence the abelianization of G is a direct product of three copies of \mathbb{Z}_{p}. But the original pro- p presentation of G given by the generators x, y, z shows that the abelianization of G is $\mathbb{Z} /\left(p^{s}\right) \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, a contradiction. Another option for D_{1} is to have a pro- p presentation $\left\langle y_{1}, y_{2} \mid y_{1}^{p^{n}}\left[y_{1}, y_{2}\right]=1\right\rangle$ then G has a pro- p presentation $\left\langle y_{1}, y_{2}, y_{3} \mid y_{1}^{p^{r}}\left[y_{1}, y_{2}\right]=1\right\rangle$. By looking at the abelianization of G we get that $s=r$. But then looking at the maximal nilpotent quotient of class 2 of G we will show that the pro- p presentations given by generators x, y, z and y_{1}, y_{2}, y_{3} cannot give isomorphic pro- p groups.

Indeed let N_{1} be the maximal nilpotent quotient of class 2 of the prop group with presentation $\left\langle x, y, z \mid z^{p^{s}}=[x, y]\right\rangle$ and N_{2} be the maximal
nilpotent quotient of class 2 of the pro- p group with presentation $\left\langle y_{1}, y_{2}, y_{3}\right|$ $\left.y_{1}^{p^{r}}\left[y_{1}, y_{2}\right]=1\right\rangle$. Note that for a profinite group M which is nilpotent of class 2 and for $a, b, c \in M$ the commutator calculations used in Lemma 2 reduce to

$$
[a b, c]=[a, c] \cdot[b, c],[a, b c]=[a, c] \cdot[a, b]
$$

In particular, $[a, b]^{p^{s}}=\left[a^{p^{s}}, b\right]$. Furthermore, if M is (topologically) generated by a set S then $[M, M]$ is (topologically) generated by the set $[S, S]=$ $\{[x, y] \mid x, y \in S\}$. In our case N_{1} is (topologically) generated by $\{x, y, z\}$, hence $\left[N_{1}, N_{1}\right]$ is (topologically) generated by $[x, y],[x, z],[y, z]$. By the above calculations $[x, z]^{p^{s}}=\left[x, z^{p^{s}}\right]=[x,[x, y]]=1$ and similarly $[y, z]^{p^{s}}=1$. Hence if $a \in\left[N_{1}, N_{1}\right]$, then $a^{p^{s}}$ is in the subgroup of $\left[N_{1}, N_{1}\right]$ (topologically) generated by $[x, y]^{p^{s}}$.

We claim that $[x, y]$ is of infinite order in N_{1}. Indeed let B be the pro- p group with finite presentation $\langle a, b \mid[[a, b], b]=1,[[a, b], a]=1\rangle$ and B_{1} be the discrete group with presentation $\left\langle a_{1}, b_{1} \mid\left[\left[a_{1}, b_{1}\right], b_{1}\right]=1,\left[\left[a_{1}, b_{1}\right], a_{1}\right]=1\right\rangle$. Then B_{1} is a residually p-group, B is the pro- p completion of B_{1} and the canonical map $\theta: B_{1} \rightarrow B$ given by $\theta\left(a_{1}\right)=a, \theta\left(b_{1}\right)=b$ is injective. In particular as the order of $\left[a_{1}, b_{1}\right]$ is infinite, the order of $[a, b]=\theta\left(\left[a_{1}, b_{1}\right]\right)$ is infinite. Therefore B is a central extension of \mathbb{Z}_{p} by $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$. Then using the commutator calculations the specialization $x \rightarrow a^{p^{s}}, y \rightarrow b, z \rightarrow[a, b]$ extends to a homomorphism $\mu: N_{1} \rightarrow B$. As $\mu([x, y])=\left[a^{p^{s}}, b\right]=[a, b]^{p^{s}}$ is of infinite order, $[x, y]$ is of infinite order.

Note that in N_{2} the image of y_{1} has finite order : $1=\left(y_{1}^{p^{r}}\left[y_{1}, y_{2}\right]\right)^{p^{r}}=$ $y_{1}^{p^{2 r}}\left[y_{1}^{p^{r}}, y_{2}\right]=y_{1}^{p^{2 r}}\left[\left[y_{1}, y_{2}\right]^{-1}, y_{2}\right]=y_{1}^{p^{2 r}}$ in N_{2}. Thus there is an element of $N_{2} \backslash\left[N_{2}, N_{2}\right]$ that is of finite order. We show that N_{1} does not have this property. Assume that b is an element of $N_{1} \backslash\left[N_{1}, N_{1}\right]$ of finite order. As $N_{1} /\left[N_{1}, N_{1}\right] \simeq \mathbb{Z} /\left(p^{s}\right) \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ we have $b=z^{k} a$ for some $a \in\left[N_{1}, N_{1}\right] \subseteq$ $Z\left(N_{1}\right)$ and some $0<k<p^{s}$. Hence $b^{p^{s}}=z^{k p^{s}} a^{p^{s}}=[x, y]^{k} a^{p^{s}}$ is of finite order and as indicated above $a^{p^{s}}$ is in the subgroup (topologically) generated by $[x, y]^{p^{s}}$. Then $b^{p^{s}}$ is in the subgroup (topologically) generated by $[x, y]$, and as $[x, y]$ has infinite order this subgroup is isomorphic to \mathbb{Z}_{p}. Thus $1=b^{p^{s}}=[x, y]^{k} a^{p^{s}}$ and $[x, y]^{k}$ is in the subgroup (topologically) generated by $[x, y]^{p^{s}}$, a contradiction.
2) If $q=2$ then the minimal number of generators of D_{1} is 2 or 3 . In the latter case $G=D_{1}$ but by Theorem $4 G$ is not Demushkin. If the minimal number of generators of D_{1} is $2, N_{1}=\mathbb{Z}_{p}$ and by Theorem $5 D_{1}$ has a pro- p presentation $\left\langle y_{1}, y_{2} \mid y_{1}^{2+2^{f}}\left[y_{1}, y_{2}\right]\right\rangle$ for some integer $f \geq 2$ or $f=\infty$.

Hence G has a pro- p presentation $\left\langle y_{1}, y_{2}, y_{3} \mid y_{1}^{2+2^{f}}\left[y_{1}, y_{2}\right]=1\right\rangle$. Looking at the abelianization of G we deduce that $2+2^{f}=2^{s}$. As $f \geq 2$ or $f=\infty$ (where 2^{∞} is defined as 0) we deduce that $s=1, f=\infty$. Then we get two presentations of G as in the case 1 but for the specific values $p=2, r=1$. The same proof as in case 1 shows that the pro- p presentations given by generators x, y, z and y_{1}, y_{2}, y_{3} cannot give isomorphic pro- p groups.

Acknowledgements

The authors thank the referee for the many suggestions that improved the paper.

References

[1] R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. Math. 52, 650-665 (1950)
[2] D. E. Cohen, Combinatorial group theory: a topological approach. London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge, 1989.
[3] S. Demushkin, On the maximal p-extension of a local field, Izv. Akad. Nauk, USSR Math. Ser., 25 (1961), 329-346
[4] S. Demushkin, On 2-extensions of a local field, Sibirsk. Mat. Z., 4 (1963), 951-955
[5] A. Engler, D. Haran, D. Kochloukova, P. Zalesskii, Normal subgroups of profinite groups of finite cohomological dimension, J. London Math. Soc. (2), 69 (2004), 317-332
[6] D. Gildenhuys, On pro-p groups with a single defining relator, Invent. Math. 5, (1968), 357-366
[7] J. Koenigsmann, Pro-p Galois groups of rank ≤ 4, Manuscripta Mathematica, 95 (1998) no. 2, 251-271
[8] J. P. Labute, Classification of Demushkin groups. Canad. J. Math. 19 (1967) 106-132.
[9] L. Ribes, On amalgamated products of profinite groups, Math. Z., 123 (1971), 357-364.
[10] L. Ribes, P. Zalesskii, Profinite Groups, Springer 2000.
[11] J.-P. Serre, Structure de certains pro-p-groupes, Séminaire Bourbaki 1962/63, no. 252 (1971), 357-364.
[12] J. S. Wilson, Profinite groups, Claredon Press, Oxford, 1998
[13] T. Würfel, A remark on the structure of the absolute Galois groups, Proc. Amer. Math. Soc. 95 (1985) No. 3, 353-356
[14] T. Würfel, Extensions of pro-p groups of cohomological dimension two, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 209-211

[^0]: *Both authors are partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil and CNPq grant 470272/2003-1

