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Abstract

We give an example of a short exact sequencel - N - G — D —
1 of pro-p groups such that the cohomological dimension cd(G) = 2,
G is (topologically) finitely generated, N is a free pro-p group of
infinite rank, D is a Demushkin group, for every closed subgroup
S of G containing N and any natural number n the inflation map
H2(S/N,Z/(p")) — H2(S,Z/(p")) is an isomorphism but G is not a
free pro-p product of a free pro-p group by a Demushkin group. This
is a group theoretic version of a question raised by T. Wiirfel for some
special Galois groups.

1 Introduction

In [13] Wiirfel proved the following

Theorem 1. [13] Let F' be a field with separable closure Fy and absolute
Galois group G = Gal(F,/F). Suppose G is a finitely generated one-relator
pro-p group where the prime p is different from char(F') and F contains
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all p-power roots of unity. Then there is a normal closed free pro-p sub-
group N of G such that G/N is a Demushkin group and the inflation map
H%(S/N,Z/(p")) — H*(S,Z/(p")) is an isomorphism for every closed sub-
group S of G containing N, and all integers n.

In the same paper he asked whether the condition in this theorem implies
that G is free pro-p product of a Demushkin group and a free pro-p group.

In this paper we answer the group theoretic version of Wiirfel’s question
negatively by the means of the following example.

Theorem 2. Let G be the pro-p group with three (topological) generators
x,y,2 and one defining relation 2P = [x,y] where s > 1 if p # 2 and s > 2
for p = 2. Let N be the normal closed subgroup of G generated by z and
define D = G/N. Then

a) cd(G) =2;

b) D is the Demushkin group Z, x Z,;

c) N is a free pro-p group of infinite rank;

d) For every closed subgroup S of G containing N the inflation map
H?*(S/N,F,) — H?(S,F,) is an isomorphism;

e) For every closed subgroup S of G containing N and any natural number
n the inflation map H2(S/N,Z/(p")) — H2(S,Z/(p")) is an isomorphism;

f) G is not a free pro-p product of a free pro-p group with a Demushkin
group.

We observe that the class of groups considered in Theorem 2 cannot
be realised as Galois groups in the sense of Wiirfel’s question as such groups
would be Galois groups of maximal p-extensions of fields and by [7, Thm. 1.2]
for such Galois groups with 3 (topological) generators the second cohomology
with coeficients in [F,, has dimension 3 over [F, and therefore cannot be 1
relator. In fact, later [14, Remark, p. 210] Wiirfel observed that the answer
to his question is affirmative if the natural epimorphism G — G/N splits. We
do not know whether field theory inforces that the homomorphism G — G/N
splits.

Finally we want to express our gratitute to Prof. Dr. Antonio Engler for
sugesting and discussing the question, providing and explaining the reference
[7] to us and the encouragement along the way.



2 Some preliminary results

Demushkin groups D are one relator pro-p groups of cohomological dimension
2 with the property that the cup product

u:H'(D,F,) x H(D,F,) — H*(D,F,) ~F,

is a non-singular bilinear form. There are two invariants associated to a
Demushkin group: the minimal number of (topological) generators d and ¢
that is either co or a power of the prime p. We remind the reader several
important properties of Demushkin groups. The case of ¢ # 2 is done in [3],
[4]. Another excellent reference for this case is [12, 12.3.1, 12.3.6]

Theorem 3. [3], [4] Let D be a Demushkin group with invariants d,q and
suppose that ¢ # 2. Then d is even and D is isomorphic to F'/R, where F
1s a free pro-p group with basis x1,...,xq and R is generated as a normal
closed subgroup by

wilwy, ] -+ [14-1, 4]
where for ¢ = oo we define 3¢ = 1. Furthermore all groups having such
presentations are Demushkin.

In the case when D is a Demushkin group with ¢ = 2 the classification
was completed by J.-P. Serre [11] and J. Labute [§].

Theorem 4. [11] Let D be a Demushkin pro-2 group with invariants d,q
and suppose that ¢ = 2 and d is odd. Then D is isomorphic to F/R, where
F is a free pro-2 group with basis x1,...,xq and R is generated as a normal
closed subgroup by
2, 2f
Ty [T, w3] - [Ta1, 4]

for some integer f > 2 or oo. Furthermore all groups having such presenta-
tions are Demushkin.

Theorem 5. [§] Let D be a Demushkin pro-2 group with d even and q = 2.
Then D is isomorphic to F/R, where F is a free pro-2 group with basis
x1,...,xq and R is generated as a normal closed subgroup either by
x%f” (1, xao][T3, 4] - -+ [T4_1, T4] for some integer f > 2 or oo,
or by
] [xl,xg]zgf (5, 4] - -+ [Xg_1, 4] for some integer f > 2 or co,d > 4.

Furthermore all groups having such presentations are Demushkin.



3 Some properties of the group G from The-
orem 2

In this section G is the pro-p group from Theorem 2. We denote by Z,[[G]]
the completed group algebra of G' with coefficients in Z,. Though discrete
groups with one defining relation that is not a proper power are always of
cohomological dimension < 2 [1] one related pro-p groups with one defining
relation that is not a p-th power are not automatically of cohomological
dimension < 2 [6]. Thus part a) from Theorem 2 cannot be deduced directly
from the fact that the group G is a 1-relator, pro-p torsion-free group.

Lemma 1. The pro-p group G has cohomological dimension 2.

Proof. Note that G is a not a free pro-p group as the relator 27" [z,y]™! is
in the Frattini subgroup of the free pro-p group with a basis x,y, z, hence
by [10, Cor. 7.5.2] cd(G) # 1. Obviously, GG is the free amalgamated pro-p
product C' xg F, where C' = (z) ~ Z,, F the free pro-p group with basis
x,y, H = (t) ~ Z,, and the embeddings H — C and H — F are given by
t — 2P and t — [z,y], respectively. By [10, Exer. 9.2.6(b)] this free pro-p
amalgamated product is proper. Hence by [10, Prop. 9.2.13(a)] cd(G) <
max{cd(C),cd(F),cd(H) + 1} = 2. O

Lemma 2. Let F' = F(x,y) be a free pro-p group with basis x,y and V be an

open subgroup of F(x,y) of index p. Then there exists a basis wy,ws of F' such

that [x,y] = [wy,ws] and V is (topologically) generated by wh, wq, wsy™,. ..,
p—1

Proof. Let 0 : F — F, be a homomorphism of pro-p groups with kernel V',
6(z) = ( and 6(y) = o where F, is the field with p elements. First assume
that a # 0. We use the commutator calculations

[ab,c] = [a,c]’ - [b,c], [a,bc] = [a,c]-[a,b]°, where [a,b] = a~ b ab.

Define
Y1 =y"z,y2 =y and wi = y1, w2 = Yy,
for some ny,ny € Z. Then both pairs {y;,y2} and {wq,wy} are bases of F.

We first prove that w},wy € V for some choice of ny,ny. Using the above
commutator calculations we get

[y, ye] = ™o,y = [y 9" - [, y] = [2, 9],
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[wy, wa] = [y, ¥ y2) = (Y1, ya] - [y1, ¥12]%2 = (1, va)-

Finally 0(w;) = nya + (8 and 6(ws) = (i + B)ne + « in F,,, where n; is the
image of n; in IF,. Thus it is sufficient to solve in I, the system for 7y, 7y :
nia+ 3 =175+ a=0. Then §(w;) =1 and 0(w,) = 0.

If « = 0 we have 3 # 0 and can define w; = x,wy = y. Then [z,y] =
[wy, ws], O(wy) # 0 and G(wq) = 0.

In both cases the closed normal subgroup W of F generated by w} and

wy is of index p in F' and is contained in V', hence V' = W. Therefore V is

—1
w?

(topologically) generated by w!, ws, wy™, ... wy
]

From now on for a set A we denote by F(A) the free pro-p group with
basis A.

Lemma 3. Let {z1,...,2,} and {x,y} be disjoint sets. Let

H=F(z1,...,2,) o ] F(z,y)
be the free amalgamated pro-p product and Hy be the normal closed subgroup
of H generated by zy,...,2z,. Then every open subgroup U of H of index p
such that z1,...,z, € U has a similar presentation i.e. U ~ F(Z1,..., %)

*2{'5~~~EZS:[5:,Q}F(£’ y) and Hy is the normal closed subgroup of U generated by
Z1,y ..., 2,. Furthermore as sets
z z w1 “’11771 w1 w§)71 w1 wP™t
{Z1, .. Zk = {2, 2 2 20,28 Ze e 2, ez )

and T = wh,§ = wy for some basis wy, wy of F(x,y).

Proof. By Lemma 2 there exists a basis wy, ws of F(x,y) such that [z, y] =
[wy, wy] and U N F(x,y) is the normal closed subgroup of F(z,y) generated
by w! and ws. Note that the open subgroups of H containing 2, ..., 2,
correspond to the open subgroups of F'(z,y) containing [z, y|. Then changing
{z,y} to {wy,wy} we can assume that U is the normal closed subgroup of
H generated by zi,...,2,,2P,y. By the Reidemeister-Schreier method [2,
Ch. 7,Thm. 7] we get a generating set and a set of relations for U. As a

generating set X we have

p—1 op—1 p—1 op—1

X X xr x X X Y2
{z1,27, ..., 20 22,25, 28 o Zn ey Yt Yyt al})



and relations that are conjugates of the relation of H by the representatives

{1,z,2% ..., 2P~ } of the left cosets of U in H
Zfszgs e Zﬁs = [I,y] = (yﬂf)—ly’

()P () () = (") 7",

P @ = )T

We use the first p — 1 relations to eliminate the elements

T={ v, .., '}

from the generating set X'. We multiply the relations left to right starting
with the last one and going backwards and most of the terms in the right
hand side cancel to get a new relation r; of U. We get

S S

G L L G R € L LR CA L = SRR A
(™) ly = [y,
Thus U ~ F(A)*,, F(y,2?), where A = X'\ (7 U{y, 2P}) and the relation r;
is of the form a product of p*-th powers of the elements of A in some order
= [2P,y]. Finally the Schreier method [2, Ch. 7, Thm. 4] implies that Hy is
the normal closed subgroup of U generated by Z,..., Z. O]

Proposition 1. Let S be an open subgroup of G such that N C S. Then the
inflation map H*(S/N,F,) — H?(S,F,) ~ F, is an isomorphism.

Proof. By definition G = F'(2) *,0°_j, . F'(z,y) and S is a subgroup of finite
index in GG containing the normal closed subgroup N of G generated by z.
By repeatedly applying Lemma 3 one deduces that S is the amalgamated
free pro-p product F(z,...,2) *. F(x,y), where r = [z,y](2} ---20)7!
and N is the normal closure of F(zy,...,2;) in S. As S is l-relator group
dimg,H?*(S,F,) = 1. Note that S/N is one relator pro-p group with gener-
ators x,y and one defining relation 7 = [z, y|. Then there is a commutative
diagram with rows short exact sequences of pro-p groups

1l - K - F — § —= 1

! ! l
1—>K1—>F1—>S/N—>]_
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where F' = F(z1,...,2,2,y), F1 = F(z,y) are free pro-p groups with K
the normal closed subgroup of F' generated by r and K; the normal closed
subgroup of I} generated by 7. The vertical maps are induced by the epi-
morphism F' — Fj sending zq, ...,z to 1 and fixing x and y. This induces
a commutative diagram

0« H?(S,F,) « HY(K,F,)® «— HYF,F,) < HYS,F,) <0
T T T 7
0 «— H2(S/N,F,) «— HYK,,F,)N «— HYF,F,) «— HY(S/N,F,) <0

where the rows are the 5-term exact sequence in cohomology and the ver-
tical maps are the inflation maps. As the maps H'(S,F,) — H*(F,F,) and
H!(S/N,F,) — H'(F},F,) are isomorphisms, we have a commutative square
with row maps isomorphisms

HY(S,F,) «— HY(K,F,)
T T
H*(S/N,F,) — H'(Ky,F,)%

By the proof of [10, Prop. 7.8.2] there is an isomorphism Hom(K,F,)® =
HY(K,F,)®—TF, sending f to f(r) and similarly there is an isomorphism
Hom(K,,F,)N = HY(K,,F,)*N—TF, sending g to g(¥). Thus the right
vertical inflation map in the above diagram is an isomorphism, hence the left
vertical inflation map in the above diagram is an isomorphism. O]

Proposition 2. Let S be a closed subgroup of G of infinite index containing
N. Then H?(S,F,) = 0 and H*(S/N,F,) = 0. In particular S and N are

free pro-p groups.

Proof. We think of S as the intersection of the open subgroups {U,}, of
G containing S. Thus S is the inverse limit of the inverse system {U,},
with homomorphisms inclusions. Therefore H?(S,F,) is the direct limit of
{H*(U,,F,)}s with homomorphisms that are the restriction maps H*(U,, F,)
— H?(Ug,F,) for Us C U,. We aim to show that this restriction map is
always zero by showing this for the case when Up is a subgroup of index p in
U,. Note that this will imply that H?(S,F,) = 0 and hence by [10, Cor. 7.1.6]
cd(S) < 2i.e. Sis a pro-p group of cohomological dimension 1. Then by [10,
Thm. 7.5.1] S is a free pro-p group. In particular for S = N we get that N
is a free pro-p group.



Consider the commutative square for a subgroup Uz of index p in U,,
S C Ug,
H*(U,,F,) < H*U,/N,F,)
1 !
H2(U, Fp) — H*(Us/N,Fp)

where the row maps are the inflation maps, hence by Proposition 1 are iso-
morphisms and the vertical maps are the restriction maps. Note that U, /N
is a subgroup of finite index of G/N ~ Z, x Z,, so Uy/N ~ Z, x Z, and
Ug/N is the subgroup Z, x (pZ,). We claim that the right vertical map is the
zero one. Indeed by [10, Lemma 7.4.1] the rows of the following commutative
diagram (of finite abelian groups of exponent p) are isomorphisms

HZ(ZP X Zpale) = Hl(Zzh H1<Zpa]Fp))
il l
HZ(ZP X (pZy),F,) =~ Hl(Zp>H1(pran))

where the horizontal isomorphisms are induced by the Lyndon-Hochschild-
Serre spectral sequence for group extensions, the left vertical map is the
restriction map. The right vertical map is induced by the restriction map
HY(Z,,F,)—H'(pZ,,F,) and this restriction map is zero by the natural
isomorphism H'(Z,,F,) ~ Hom(Z,,F,). In particular the left vertical map
is zero, as claimed.

Finally we note that S/N is either the trivial group or a closed sub-
group of infinite index in G/N ~ Z, x Z,, hence S/N ~ Z,. In both cases
H?(S/N,F,) = 0. O

Lemma 4. Let 7 : H — M be an epimorphism of pro-p groups such that the
inflation map H*(M,F,) — H?*(H,F,) is an isomorphism. Then for every
natural number n > 1 the inflation map H?(M,Z/(p")) — H2(H,Z/(p")) is
an isomorphism.

Proof. We use induction on n. We assume the lemma holds for some fixed
n > 1. The short exact sequence 0 — Z/(p) — Z/(p™™') — Z/(p") — 0
yields a diagram with two long exact sequences in cohomology in which the
vertical maps are the inflation maps

H*(H,Z/(p) — W(H.Z/(p"")) — H(H.Z/(p"))

T T 1
H(M,Z/(p)) — HA(M,Z/(p""") — H*(M,Z/(p"))
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As the leftmost and the rightmost vertical maps are isomorphisms, the middle
one is an isomorphism. [

4 Proof of Theorem 2

We complete the proof of Theorem 2 using the results from the previous
sections.

a) ¢cd(G) = 2 is done in Lemma 1.

b) D = Z, x Z, is a Demushkin group by Theorem 3.

c) N is a free pro-p group by Proposition 2. If the rank of N is finite
then by the main result of [5] the quotient group G/N ~ D has virtually
finite cohomological dimension cd(G) — cd(N) = 1. But D is a group of
cohomological dimension 2, a contradiction.

d) For every closed subgroup S of G containing N the inflation map
H?(S/N,F,) — H?(S,F,) is an isomorphism by Proposition 1 and Proposition
2.

e) By d) and Lemma 4 for every closed subgroup S of G containing N and
any natural number n the inflation map H?(S/N,Z/(p")) — H2(S,Z/(p"))
is an isomorphism.

f) Suppose G is a free pro-p product of a free pro-p group M; with a
Demushkin group D;. Then the minimal number of generators of G is the
sum of the minimal number of generators of M; and D;. We remind the
reader that the minimal number of generators of G is 3.

1) Assume now that the invariant ¢ of D; is not 2. By Theorem 3 a
Demushkin group with invariant ¢ # 2 has even number of generators, hence
M, is Z, and D, is two-generated. There are two options for D;. If D,
is Z, X Z, then G has a pro-p presentation (yi,ys2,ys | [y1,y2] = 1), hence
the abelianization of G is a direct product of three copies of Z,. But the
original pro-p presentation of G given by the generators z,y, z shows that
the abelianization of G is Z/(p®) X Z, x Z,, a contradiction. Another option for
Dy is to have a pro-p presentation (y;, ys | yfr [y1,y2] = 1) then G has a pro-p
presentation (y1,v2,ys | 4% [y1,12] = 1). By looking at the abelianization of
G we get that s = r. But then looking at the maximal nilpotent quotient of
class 2 of G we will show that the pro-p presentations given by generators
x,1y, z and yi, Y2, Y3 cannot give isomorphic pro-p groups.

Indeed let N; be the maximal nilpotent quotient of class 2 of the pro-
p group with presentation (x,y,z | 2#° = [z,y]) and N, be the maximal



nilpotent quotient of class 2 of the pro-p group with presentation (yi, 42, y3 |
y! [y1,y2] = 1). Note that for a profinite group M which is nilpotent of class
2 and for a,b,c € M the commutator calculations used in Lemma 2 reduce

to
lab, c] = [a,c]-[b,c], |a,bc] = [a,c] - |a,b]

In particular, [a,b]?” = [a?",b]. Furthermore, if M is (topologically) gener-
ated by a set S then [M, M] is (topologically) generated by the set [S, S] =
{lz,y] | x,y € S}. In our case N; is (topologically) generated by {z,y, z},
hence [Ny, Nq] is (topologically) generated by [z, y], [z, 2], [y, z]. By the above
calculations [x,2]P" = [2,2P] = [z,[z,y]] = 1 and similarly [y, z]”" = 1.
Hence if a € [Ny, Ny], then a? is in the subgroup of [Ny, N;] (topologically)
generated by [z, y]?".

We claim that [z,y] is of infinite order in N;. Indeed let B be the pro-p
group with finite presentation (a, b | [[a,b], b] = 1, [[a, ], a] = 1) and B be the
discrete group with presentation (aq,b | [[a1,b1],01] = 1,[[a1,b1],a1] = 1).
Then B is a residually p-group, B is the pro-p completion of B; and the
canonical map 6 : By — B given by 6(a;) = a,0(b;) = b is injective. In
particular as the order of [aq, b1] is infinite, the order of [a, b] = 0([ay, by]) is
infinite. Therefore B is a central extension of Z, by Z, x Z,. Then using
the commutator calculations the specialization * — a?*, y — b, 2 — [a, ]
extends to a homomorphism u : Ny — B. As p([z,y]) = [a”",b] = [a, b is
of infinite order, [z, y] is of infinite order.

Note that in N, the image of y; has finite order : 1 = (v¥ [y1,y2])? =
ylf% [ ye] = yf%[[yl,yg]*l,yg] = y’f% in Np. Thus there is an element of
Ny \ [N2, N5] that is of finite order. We show that N; does not have this
property. Assume that b is an element of N; \ [Ny, Ny] of finite order. As
Ny /[Ny, Ni] =~ Z/(p®) x Z, x Z, we have b = 2*a for some a € [Ny, N;] C
Z(N;) and some 0 < k < p*. Hence b = 2*"a?" = [x,y]*a?" is of finite
order and as indicated above aP” is in the subgroup (topologically) generated
by [z,y]?". Then b*" is in the subgroup (topologically) generated by [z,y],
and as [x,y| has infinite order this subgroup is isomorphic to Z,. Thus
1 =" = [z,y]"a”" and [z, y]* is in the subgroup (topologically) generated
by [z,y]P", a contradiction.

2) If ¢ = 2 then the minimal number of generators of D is 2 or 3. In the
latter case G = D; but by Theorem 4 G is not Demushkin. If the minimal
number of generators of D; is 2, Ny = Z, and by Theorem 5 D; has a

pro-p presentation (y1,¥s | y%”f [y1, y2]) for some integer f > 2 or f = 0.

10



Hence G has a pro-p presentation (y1,y2,ys3 | yf“f [y1,y2] = 1). Looking at
the abelianization of G we deduce that 2 +2/ = 2%, As f > 2or f = o0
(where 2% is defined as 0) we deduce that s = 1, f = co. Then we get two
presentations of G as in the case 1 but for the specific values p = 2,r = 1.
The same proof as in case 1 shows that the pro-p presentations given by

generators x,y, z and ¥y, ys, y3 cannot give isomorphic pro-p groups.
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