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Abstract

We give an example of a short exact sequence 1 → N → G → D →
1 of pro-p groups such that the cohomological dimension cd(G) = 2,
G is (topologically) finitely generated, N is a free pro-p group of
infinite rank, D is a Demushkin group, for every closed subgroup
S of G containing N and any natural number n the inflation map
H2(S/N,Z/(pn)) → H2(S,Z/(pn)) is an isomorphism but G is not a
free pro-p product of a free pro-p group by a Demushkin group. This
is a group theoretic version of a question raised by T. Würfel for some
special Galois groups.

1 Introduction

In [13] Würfel proved the following

Theorem 1. [13] Let F be a field with separable closure Fs and absolute
Galois group G = Gal(Fs/F ). Suppose G is a finitely generated one-relator
pro-p group where the prime p is different from char(F ) and F contains

∗Both authors are partially supported by ”bolsa de produtividade de pesquisa” from
CNPq, Brazil and CNPq grant 470272/2003-1
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all p-power roots of unity. Then there is a normal closed free pro-p sub-
group N of G such that G/N is a Demushkin group and the inflation map
H2(S/N,Z/(pn)) → H2(S,Z/(pn)) is an isomorphism for every closed sub-
group S of G containing N , and all integers n.

In the same paper he asked whether the condition in this theorem implies
that G is free pro-p product of a Demushkin group and a free pro-p group.

In this paper we answer the group theoretic version of Würfel’s question
negatively by the means of the following example.

Theorem 2. Let G be the pro-p group with three (topological) generators
x, y, z and one defining relation zps

= [x, y] where s ≥ 1 if p 6= 2 and s ≥ 2
for p = 2. Let N be the normal closed subgroup of G generated by z and
define D = G/N . Then

a) cd(G) = 2;
b) D is the Demushkin group Zp × Zp;
c) N is a free pro-p group of infinite rank;
d) For every closed subgroup S of G containing N the inflation map

H2(S/N,Fp) → H2(S,Fp) is an isomorphism;
e) For every closed subgroup S of G containing N and any natural number

n the inflation map H2(S/N,Z/(pn)) → H2(S,Z/(pn)) is an isomorphism;
f) G is not a free pro-p product of a free pro-p group with a Demushkin

group.

We observe that the class of groups considered in Theorem 2 cannot
be realised as Galois groups in the sense of Würfel’s question as such groups
would be Galois groups of maximal p-extensions of fields and by [7, Thm. 1.2]
for such Galois groups with 3 (topological) generators the second cohomology
with coeficients in Fp has dimension 3 over Fp and therefore cannot be 1
relator. In fact, later [14, Remark, p. 210] Würfel observed that the answer
to his question is affirmative if the natural epimorphism G → G/N splits. We
do not know whether field theory inforces that the homomorphism G → G/N
splits.

Finally we want to express our gratitute to Prof. Dr. Antonio Engler for
sugesting and discussing the question, providing and explaining the reference
[7] to us and the encouragement along the way.
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2 Some preliminary results

Demushkin groups D are one relator pro-p groups of cohomological dimension
2 with the property that the cup product

∪ : H1(D,Fp)× H1(D,Fp) → H2(D,Fp) ' Fp

is a non-singular bilinear form. There are two invariants associated to a
Demushkin group: the minimal number of (topological) generators d and q
that is either ∞ or a power of the prime p. We remind the reader several
important properties of Demushkin groups. The case of q 6= 2 is done in [3],
[4]. Another excellent reference for this case is [12, 12.3.1, 12.3.6]

Theorem 3. [3], [4] Let D be a Demushkin group with invariants d, q and
suppose that q 6= 2. Then d is even and D is isomorphic to F/R, where F
is a free pro-p group with basis x1, . . . , xd and R is generated as a normal
closed subgroup by

xq
1[x1, x2] · · · [xd−1, xd]

where for q = ∞ we define x∞1 = 1. Furthermore all groups having such
presentations are Demushkin.

In the case when D is a Demushkin group with q = 2 the classification
was completed by J.-P. Serre [11] and J. Labute [8].

Theorem 4. [11] Let D be a Demushkin pro-2 group with invariants d, q
and suppose that q = 2 and d is odd. Then D is isomorphic to F/R, where
F is a free pro-2 group with basis x1, . . . , xd and R is generated as a normal
closed subgroup by

x2
1x

2f

2 [x2, x3] · · · [xd−1, xd]

for some integer f ≥ 2 or ∞. Furthermore all groups having such presenta-
tions are Demushkin.

Theorem 5. [8] Let D be a Demushkin pro-2 group with d even and q = 2.
Then D is isomorphic to F/R, where F is a free pro-2 group with basis
x1, . . . , xd and R is generated as a normal closed subgroup either by

x2f+2
1 [x1, x2][x3, x4] · · · [xd−1, xd] for some integer f ≥ 2 or ∞,

or by

x2
1[x1, x2]x

2f

3 [x3, x4] · · · [xd−1, xd] for some integer f ≥ 2 or ∞, d ≥ 4.

Furthermore all groups having such presentations are Demushkin.
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3 Some properties of the group G from The-

orem 2

In this section G is the pro-p group from Theorem 2. We denote by Zp[[G]]
the completed group algebra of G with coefficients in Zp. Though discrete
groups with one defining relation that is not a proper power are always of
cohomological dimension ≤ 2 [1] one related pro-p groups with one defining
relation that is not a p-th power are not automatically of cohomological
dimension ≤ 2 [6]. Thus part a) from Theorem 2 cannot be deduced directly
from the fact that the group G is a 1-relator, pro-p torsion-free group.

Lemma 1. The pro-p group G has cohomological dimension 2.

Proof. Note that G is a not a free pro-p group as the relator zps
[x, y]−1 is

in the Frattini subgroup of the free pro-p group with a basis x, y, z, hence
by [10, Cor. 7.5.2] cd(G) 6= 1. Obviously, G is the free amalgamated pro-p
product C ∗H F , where C = 〈z〉 ' Zp, F the free pro-p group with basis
x, y, H = 〈t〉 ' Zp, and the embeddings H → C and H → F are given by
t → zps

and t → [x, y], respectively. By [10, Exer. 9.2.6(b)] this free pro-p
amalgamated product is proper. Hence by [10, Prop. 9.2.13(a)] cd(G) ≤
max{cd(C), cd(F ), cd(H) + 1} = 2.

Lemma 2. Let F = F (x, y) be a free pro-p group with basis x, y and V be an
open subgroup of F (x, y) of index p. Then there exists a basis w1, w2 of F such
that [x, y] = [w1, w2] and V is (topologically) generated by wp

1, w2, w
w1
2 , . . . ,

w
wp−1

1
2 .

Proof. Let θ : F → Fp be a homomorphism of pro-p groups with kernel V ,
θ(x) = β and θ(y) = α where Fp is the field with p elements. First assume
that α 6= 0. We use the commutator calculations

[ab, c] = [a, c]b · [b, c], [a, bc] = [a, c] · [a, b]c, where [a, b] = a−1b−1ab.

Define
y1 = yn1x, y2 = y and w1 = y1, w2 = yn2

1 y2,

for some n1, n2 ∈ Z. Then both pairs {y1, y2} and {w1, w2} are bases of F .
We first prove that wp

1, w2 ∈ V for some choice of n1, n2. Using the above
commutator calculations we get

[y1, y2] = [yn1x, y] = [yn1 , y]x · [x, y] = [x, y],
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[w1, w2] = [y1, y
n2
1 y2] = [y1, y2] · [y1, y

n2
1 ]y2 = [y1, y2].

Finally θ(w1) = n̄1α + β and θ(w2) = (n̄1α + β)n̄2 + α in Fp, where n̄i is the
image of ni in Fp. Thus it is sufficient to solve in Fp the system for n̄1, n̄2 :
n̄1α + β = 1, n̄2 + α = 0. Then θ(w1) = 1 and θ(w2) = 0.

If α = 0 we have β 6= 0 and can define w1 = x,w2 = y. Then [x, y] =
[w1, w2], θ(w1) 6= 0 and θ(w2) = 0.

In both cases the closed normal subgroup W of F generated by wp
1 and

w2 is of index p in F and is contained in V , hence V = W . Therefore V is

(topologically) generated by wp
1, w2, w

w1
2 , . . . , w

wp−1
1

2 .

From now on for a set A we denote by F (A) the free pro-p group with
basis A.

Lemma 3. Let {z1, . . . , zn} and {x, y} be disjoint sets. Let

H = F (z1, . . . , zn) ∗
zps

1 ···zps
n =[x,y]

F (x, y)

be the free amalgamated pro-p product and H0 be the normal closed subgroup
of H generated by z1, . . . , zn. Then every open subgroup U of H of index p
such that z1, . . . , zn ∈ U has a similar presentation i.e. U ' F (z̃1, . . . , z̃k)
∗

z̃ps

1 ···z̃ps

k =[x̃,ỹ]
F (x̃, ỹ) and H0 is the normal closed subgroup of U generated by

z̃1, . . . , z̃k. Furthermore as sets

{z̃1, . . . , z̃k} = {z1, z
w1
1 , . . . , z

wp−1
1

1 , z2, z
w1
2 , . . . , z

wp−1
1

2 , . . . , zn, z
w1
n , . . . , zwp−1

1
n }

and x̃ = wp
1, ỹ = w2 for some basis w1, w2 of F (x, y).

Proof. By Lemma 2 there exists a basis w1, w2 of F (x, y) such that [x, y] =
[w1, w2] and U ∩ F (x, y) is the normal closed subgroup of F (x, y) generated
by wp

1 and w2. Note that the open subgroups of H containing z1, . . . , zn

correspond to the open subgroups of F (x, y) containing [x, y]. Then changing
{x, y} to {w1, w2} we can assume that U is the normal closed subgroup of
H generated by z1, . . . , zn, x

p, y. By the Reidemeister-Schreier method [2,
Ch. 7,Thm. 7] we get a generating set and a set of relations for U . As a
generating set X we have

{z1, z
x
1 , . . . , zxp−1

1 , z2, z
x
2 , . . . , zxp−1

2 , . . . , zn, z
x
n, . . . , zxp−1

n , y, yx, . . . , yxp−1

, xp}
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and relations that are conjugates of the relation of H by the representatives
{1, x, x2, . . . , xp−1 } of the left cosets of U in H

zps

1 zps

2 · · · zps

n = [x, y] = (yx)−1y,

(zx
1 )ps

(zx
2 )ps · · · (zx

n)ps

= (yx2

)−1yx,

(zx2

1 )ps

(zx2

2 )ps · · · (zx2

n )ps

= (yx3

)−1yx2

,

· · ·
(zxp−1

1 )ps

(zxp−1

2 )ps · · · (zxp−1

n )ps

= (yxp

)−1yxp−1

.

We use the first p− 1 relations to eliminate the elements

T = {yx, yx2

, . . . , yxp−1}
from the generating set X . We multiply the relations left to right starting
with the last one and going backwards and most of the terms in the right
hand side cancel to get a new relation r1 of U . We get

(zxp−1

1 )ps

(zxp−1

2 )ps · · · (zxp−1

n )ps · · · (zx
1 )ps

(zx
2 )ps · · · (zx

n)ps

zps

1 zps

2 · · · zps

n =

(yxp

)−1y = [xp, y].

Thus U ' F (A)∗r1 F (y, xp), where A = X \ (T ∪{y, xp}) and the relation r1

is of the form a product of ps-th powers of the elements of A in some order
= [xp, y]. Finally the Schreier method [2, Ch. 7,Thm. 4] implies that H0 is
the normal closed subgroup of U generated by z̃1, . . . , z̃k.

Proposition 1. Let S be an open subgroup of G such that N ⊆ S. Then the
inflation map H2(S/N,Fp) → H2(S,Fp) ' Fp is an isomorphism.

Proof. By definition G = F (z) ∗zps=[x,y] F (x, y) and S is a subgroup of finite
index in G containing the normal closed subgroup N of G generated by z.
By repeatedly applying Lemma 3 one deduces that S is the amalgamated
free pro-p product F (z1, . . . , zk) ∗r F (x, y), where r = [x, y](zps

1 · · · zps

k )−1

and N is the normal closure of F (z1, . . . , zk) in S. As S is 1-relator group
dimFpH

2(S,Fp) = 1. Note that S/N is one relator pro-p group with gener-
ators x, y and one defining relation r̃ = [x, y]. Then there is a commutative
diagram with rows short exact sequences of pro-p groups

1 → K → F → S → 1
↓ ↓ ↓

1 → K1 → F1 → S/N → 1
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where F = F (z1, . . . , zk, x, y), F1 = F (x, y) are free pro-p groups with K
the normal closed subgroup of F generated by r and K1 the normal closed
subgroup of F1 generated by r̃. The vertical maps are induced by the epi-
morphism F → F1 sending z1, . . . , zk to 1 and fixing x and y. This induces
a commutative diagram

0 ← H2(S,Fp) ← H1(K,Fp)
S ← H1(F,Fp) ← H1(S,Fp) ← 0

↑ ↑ ↑ ↑
0 ← H2(S/N,Fp) ← H1(K1,Fp)

S/N ← H1(F1,Fp) ← H1(S/N,Fp) ← 0

where the rows are the 5-term exact sequence in cohomology and the ver-
tical maps are the inflation maps. As the maps H1(S,Fp) → H1(F,Fp) and
H1(S/N,Fp) → H1(F1,Fp) are isomorphisms, we have a commutative square
with row maps isomorphisms

H2(S,Fp) ← H1(K,Fp)
S

↑ ↑
H2(S/N,Fp) ← H1(K1,Fp)

S/N

By the proof of [10, Prop. 7.8.2] there is an isomorphism Hom(K,Fp)
S =

H1(K,Fp)
S−→Fp sending f to f(r) and similarly there is an isomorphism

Hom(K1,Fp)
S/N = H1(K1,Fp)

S/N−→Fp sending g to g(r̃). Thus the right
vertical inflation map in the above diagram is an isomorphism, hence the left
vertical inflation map in the above diagram is an isomorphism.

Proposition 2. Let S be a closed subgroup of G of infinite index containing
N . Then H2(S,Fp) = 0 and H2(S/N,Fp) = 0. In particular S and N are
free pro-p groups.

Proof. We think of S as the intersection of the open subgroups {Uα}α of
G containing S. Thus S is the inverse limit of the inverse system {Uα}α

with homomorphisms inclusions. Therefore H2(S,Fp) is the direct limit of
{H2(Uα,Fp)}α with homomorphisms that are the restriction maps H2(Uα,Fp)
→ H2(Uβ,Fp) for Uβ ⊂ Uα. We aim to show that this restriction map is
always zero by showing this for the case when Uβ is a subgroup of index p in
Uα. Note that this will imply that H2(S,Fp) = 0 and hence by [10, Cor. 7.1.6]
cd(S) < 2 i.e. S is a pro-p group of cohomological dimension 1. Then by [10,
Thm. 7.5.1] S is a free pro-p group. In particular for S = N we get that N
is a free pro-p group.
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Consider the commutative square for a subgroup Uβ of index p in Uα,
S ⊂ Uβ,

H2(Uα,Fp) ← H2(Uα/N,Fp)
↓ ↓

H2(Uβ,Fp) ← H2(Uβ/N,Fp)

where the row maps are the inflation maps, hence by Proposition 1 are iso-
morphisms and the vertical maps are the restriction maps. Note that Uα/N
is a subgroup of finite index of G/N ' Zp × Zp, so Uα/N ' Zp × Zp and
Uβ/N is the subgroup Zp×(pZp). We claim that the right vertical map is the
zero one. Indeed by [10, Lemma 7.4.1] the rows of the following commutative
diagram (of finite abelian groups of exponent p) are isomorphisms

H2(Zp × Zp,Fp) ' H1(Zp, H
1(Zp,Fp))

↓ ↓
H2(Zp × (pZp),Fp) ' H1(Zp, H

1(pZp,Fp))

where the horizontal isomorphisms are induced by the Lyndon-Hochschild-
Serre spectral sequence for group extensions, the left vertical map is the
restriction map. The right vertical map is induced by the restriction map
H1(Zp,Fp)−→H1(pZp,Fp) and this restriction map is zero by the natural
isomorphism H1(Zp,Fp) ' Hom(Zp,Fp). In particular the left vertical map
is zero, as claimed.

Finally we note that S/N is either the trivial group or a closed sub-
group of infinite index in G/N ' Zp × Zp, hence S/N ' Zp. In both cases
H2(S/N,Fp) = 0.

Lemma 4. Let π : H → M be an epimorphism of pro-p groups such that the
inflation map H2(M,Fp) → H2(H,Fp) is an isomorphism. Then for every
natural number n ≥ 1 the inflation map H2(M,Z/(pn)) → H2(H,Z/(pn)) is
an isomorphism.

Proof. We use induction on n. We assume the lemma holds for some fixed
n ≥ 1. The short exact sequence 0 → Z/(p) → Z/(pn+1) → Z/(pn) → 0
yields a diagram with two long exact sequences in cohomology in which the
vertical maps are the inflation maps

H2(H,Z/(p)) → H2(H,Z/(pn+1)) → H2(H,Z/(pn))
↑ ↑ ↑

H2(M,Z/(p)) → H2(M,Z/(pn+1)) → H2(M,Z/(pn))

8



As the leftmost and the rightmost vertical maps are isomorphisms, the middle
one is an isomorphism.

4 Proof of Theorem 2

We complete the proof of Theorem 2 using the results from the previous
sections.

a) cd(G) = 2 is done in Lemma 1.
b) D = Zp × Zp is a Demushkin group by Theorem 3.
c) N is a free pro-p group by Proposition 2. If the rank of N is finite

then by the main result of [5] the quotient group G/N ' D has virtually
finite cohomological dimension cd(G) − cd(N) = 1. But D is a group of
cohomological dimension 2, a contradiction.

d) For every closed subgroup S of G containing N the inflation map
H2(S/N,Fp)→ H2(S,Fp) is an isomorphism by Proposition 1 and Proposition
2.

e) By d) and Lemma 4 for every closed subgroup S of G containing N and
any natural number n the inflation map H2(S/N,Z/(pn)) → H2(S,Z/(pn))
is an isomorphism.

f) Suppose G is a free pro-p product of a free pro-p group M1 with a
Demushkin group D1. Then the minimal number of generators of G is the
sum of the minimal number of generators of M1 and D1. We remind the
reader that the minimal number of generators of G is 3.

1) Assume now that the invariant q of D1 is not 2. By Theorem 3 a
Demushkin group with invariant q 6= 2 has even number of generators, hence
M1 is Zp and D1 is two-generated. There are two options for D1. If D1

is Zp × Zp then G has a pro-p presentation 〈y1, y2, y3 | [y1, y2] = 1〉, hence
the abelianization of G is a direct product of three copies of Zp. But the
original pro-p presentation of G given by the generators x, y, z shows that
the abelianization of G is Z/(ps)×Zp×Zp, a contradiction. Another option for
D1 is to have a pro-p presentation 〈y1, y2 | ypr

1 [y1, y2] = 1〉 then G has a pro-p
presentation 〈y1, y2, y3 | ypr

1 [y1, y2] = 1〉. By looking at the abelianization of
G we get that s = r. But then looking at the maximal nilpotent quotient of
class 2 of G we will show that the pro-p presentations given by generators
x, y, z and y1, y2, y3 cannot give isomorphic pro-p groups.

Indeed let N1 be the maximal nilpotent quotient of class 2 of the pro-
p group with presentation 〈x, y, z | zps

= [x, y]〉 and N2 be the maximal
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nilpotent quotient of class 2 of the pro-p group with presentation 〈y1, y2, y3 |
ypr

1 [y1, y2] = 1〉. Note that for a profinite group M which is nilpotent of class
2 and for a, b, c ∈ M the commutator calculations used in Lemma 2 reduce
to

[ab, c] = [a, c] · [b, c], [a, bc] = [a, c] · [a, b]

In particular, [a, b]p
s

= [aps
, b]. Furthermore, if M is (topologically) gener-

ated by a set S then [M,M ] is (topologically) generated by the set [S, S] =
{[x, y] | x, y ∈ S}. In our case N1 is (topologically) generated by {x, y, z},
hence [N1, N1] is (topologically) generated by [x, y], [x, z], [y, z]. By the above
calculations [x, z]p

s
= [x, zps

] = [x, [x, y]] = 1 and similarly [y, z]p
s

= 1.
Hence if a ∈ [N1, N1], then aps

is in the subgroup of [N1, N1] (topologically)
generated by [x, y]p

s
.

We claim that [x, y] is of infinite order in N1. Indeed let B be the pro-p
group with finite presentation 〈a, b | [[a, b], b] = 1, [[a, b], a] = 1〉 and B1 be the
discrete group with presentation 〈a1, b1 | [[a1, b1], b1] = 1, [[a1, b1], a1] = 1〉.
Then B1 is a residually p-group, B is the pro-p completion of B1 and the
canonical map θ : B1 → B given by θ(a1) = a, θ(b1) = b is injective. In
particular as the order of [a1, b1] is infinite, the order of [a, b] = θ([a1, b1]) is
infinite. Therefore B is a central extension of Zp by Zp × Zp. Then using
the commutator calculations the specialization x → aps

, y → b, z → [a, b]
extends to a homomorphism µ : N1 → B. As µ([x, y]) = [aps

, b] = [a, b]p
s

is
of infinite order, [x, y] is of infinite order.

Note that in N2 the image of y1 has finite order : 1 = (ypr

1 [y1, y2])
pr

=

yp2r

1 [ypr

1 , y2] = yp2r

1 [[y1, y2]
−1, y2] = yp2r

1 in N2. Thus there is an element of
N2 \ [N2, N2] that is of finite order. We show that N1 does not have this
property. Assume that b is an element of N1 \ [N1, N1] of finite order. As
N1/[N1, N1] ' Z/(ps) × Zp × Zp we have b = zka for some a ∈ [N1, N1] ⊆
Z(N1) and some 0 < k < ps. Hence bps

= zkps
aps

= [x, y]kaps
is of finite

order and as indicated above aps
is in the subgroup (topologically) generated

by [x, y]p
s
. Then bps

is in the subgroup (topologically) generated by [x, y],
and as [x, y] has infinite order this subgroup is isomorphic to Zp. Thus
1 = bps

= [x, y]kaps
and [x, y]k is in the subgroup (topologically) generated

by [x, y]p
s
, a contradiction.

2) If q = 2 then the minimal number of generators of D1 is 2 or 3. In the
latter case G = D1 but by Theorem 4 G is not Demushkin. If the minimal
number of generators of D1 is 2, N1 = Zp and by Theorem 5 D1 has a

pro-p presentation 〈y1, y2 | y2+2f

1 [y1, y2]〉 for some integer f ≥ 2 or f = ∞.
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Hence G has a pro-p presentation 〈y1, y2, y3 | y2+2f

1 [y1, y2] = 1〉. Looking at
the abelianization of G we deduce that 2 + 2f = 2s. As f ≥ 2 or f = ∞
(where 2∞ is defined as 0) we deduce that s = 1, f = ∞. Then we get two
presentations of G as in the case 1 but for the specific values p = 2, r = 1.
The same proof as in case 1 shows that the pro-p presentations given by
generators x, y, z and y1, y2, y3 cannot give isomorphic pro-p groups.
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