Free-by-Demushkin pro-p groups

Dessislava H. Kochloukova *, IMECC-UNICAMP,Cx. P. 6065, 13083-970 Campinas, SP, Brazil, Pavel Zalesskii * Department of Mathematics, University of Brasília 70910-900 Brasília DF, Brazil, desi@ime.unicamp.br, pz@mat.unb.br

Abstract

We give an example of a short exact sequence $1 \to N \to G \to D \to 1$ of pro-*p* groups such that the cohomological dimension $\operatorname{cd}(G) = 2$, *G* is (topologically) finitely generated, *N* is a free pro-*p* group of infinite rank, *D* is a Demushkin group, for every closed subgroup *S* of *G* containing *N* and any natural number *n* the inflation map $\operatorname{H}^2(S/N, \mathbb{Z}/(p^n)) \to \operatorname{H}^2(S, \mathbb{Z}/(p^n))$ is an isomorphism but *G* is not a free pro-*p* product of a free pro-*p* group by a Demushkin group. This is a group theoretic version of a question raised by T. Würfel for some special Galois groups.

1 Introduction

In [13] Würfel proved the following

Theorem 1. [13] Let F be a field with separable closure F_s and absolute Galois group $G = \text{Gal}(F_s/F)$. Suppose G is a finitely generated one-relator pro-p group where the prime p is different from char(F) and F contains

^{*}Both authors are partially supported by "bolsa de produtividade de pesquisa" from CNPq, Brazil and CNPq grant $470272/2003{\text{-}}1$

all p-power roots of unity. Then there is a normal closed free pro-p subgroup N of G such that G/N is a Demushkin group and the inflation map $\mathrm{H}^2(S/N, \mathbb{Z}/(p^n)) \to \mathrm{H}^2(S, \mathbb{Z}/(p^n))$ is an isomorphism for every closed subgroup S of G containing N, and all integers n.

In the same paper he asked whether the condition in this theorem implies that G is free pro-p product of a Demushkin group and a free pro-p group.

In this paper we answer the group theoretic version of Würfel's question negatively by the means of the following example.

Theorem 2. Let G be the pro-p group with three (topological) generators x, y, z and one defining relation $z^{p^s} = [x, y]$ where $s \ge 1$ if $p \ne 2$ and $s \ge 2$ for p = 2. Let N be the normal closed subgroup of G generated by z and define D = G/N. Then

a) $\operatorname{cd}(G) = 2;$

b) D is the Demushkin group $\mathbb{Z}_p \times \mathbb{Z}_p$;

c) N is a free pro-p group of infinite rank;

d) For every closed subgroup S of G containing N the inflation map $\mathrm{H}^2(S/N, \mathbb{F}_p) \to \mathrm{H}^2(S, \mathbb{F}_p)$ is an isomorphism;

e) For every closed subgroup S of G containing N and any natural number n the inflation map $H^2(S/N, \mathbb{Z}/(p^n)) \to H^2(S, \mathbb{Z}/(p^n))$ is an isomorphism;

f) G is not a free pro-p product of a free pro-p group with a Demushkin group.

We observe that the class of groups considered in Theorem 2 cannot be realised as Galois groups in the sense of Würfel's question as such groups would be Galois groups of maximal *p*-extensions of fields and by [7, Thm. 1.2] for such Galois groups with 3 (topological) generators the second cohomology with coefficients in \mathbb{F}_p has dimension 3 over \mathbb{F}_p and therefore cannot be 1 relator. In fact, later [14, Remark, p. 210] Würfel observed that the answer to his question is affirmative if the natural epimorphism $G \to G/N$ splits. We do not know whether field theory inforces that the homomorphism $G \to G/N$ splits.

Finally we want to express our gratitute to Prof. Dr. Antonio Engler for suggesting and discussing the question, providing and explaining the reference [7] to us and the encouragement along the way.

2 Some preliminary results

Demushkin groups D are one relator pro-p groups of cohomological dimension 2 with the property that the cup product

$$\cup: \mathrm{H}^{1}(D, \mathbb{F}_{p}) \times \mathrm{H}^{1}(D, \mathbb{F}_{p}) \to \mathrm{H}^{2}(D, \mathbb{F}_{p}) \simeq \mathbb{F}_{p}$$

is a non-singular bilinear form. There are two invariants associated to a Demushkin group: the minimal number of (topological) generators d and q that is either ∞ or a power of the prime p. We remind the reader several important properties of Demushkin groups. The case of $q \neq 2$ is done in [3], [4]. Another excellent reference for this case is [12, 12.3.1, 12.3.6]

Theorem 3. [3], [4] Let D be a Demushkin group with invariants d, q and suppose that $q \neq 2$. Then d is even and D is isomorphic to F/R, where F is a free pro-p group with basis x_1, \ldots, x_d and R is generated as a normal closed subgroup by

$$x_1^q[x_1, x_2] \cdots [x_{d-1}, x_d]$$

where for $q = \infty$ we define $x_1^{\infty} = 1$. Furthermore all groups having such presentations are Demushkin.

In the case when D is a Demushkin group with q = 2 the classification was completed by J.-P. Serre [11] and J. Labute [8].

Theorem 4. [11] Let D be a Demushkin pro-2 group with invariants d, qand suppose that q = 2 and d is odd. Then D is isomorphic to F/R, where F is a free pro-2 group with basis x_1, \ldots, x_d and R is generated as a normal closed subgroup by

$$x_1^2 x_2^{2^f} [x_2, x_3] \cdots [x_{d-1}, x_d]$$

for some integer $f \geq 2$ or ∞ . Furthermore all groups having such presentations are Demushkin.

Theorem 5. [8] Let D be a Demushkin pro-2 group with d even and q = 2. Then D is isomorphic to F/R, where F is a free pro-2 group with basis x_1, \ldots, x_d and R is generated as a normal closed subgroup either by

$$x_1^{2^{j+2}}[x_1, x_2][x_3, x_4] \cdots [x_{d-1}, x_d]$$
 for some integer $f \ge 2$ or ∞ ,

or by

$$x_1^2[x_1, x_2]x_3^{2^f}[x_3, x_4] \cdots [x_{d-1}, x_d]$$
 for some integer $f \ge 2$ or $\infty, d \ge 4$

Furthermore all groups having such presentations are Demushkin.

3 Some properties of the group G from Theorem 2

In this section G is the pro-p group from Theorem 2. We denote by $\mathbb{Z}_p[[G]]$ the completed group algebra of G with coefficients in \mathbb{Z}_p . Though discrete groups with one defining relation that is not a proper power are always of cohomological dimension ≤ 2 [1] one related pro-p groups with one defining relation that is not a p-th power are not automatically of cohomological dimension ≤ 2 [6]. Thus part a) from Theorem 2 cannot be deduced directly from the fact that the group G is a 1-relator, pro-p torsion-free group.

Lemma 1. The pro-p group G has cohomological dimension 2.

Proof. Note that G is a not a free pro-p group as the relator $z^{p^s}[x,y]^{-1}$ is in the Frattini subgroup of the free pro-p group with a basis x, y, z, hence by [10, Cor. 7.5.2] $\operatorname{cd}(G) \neq 1$. Obviously, G is the free amalgamated pro-p product $C *_H F$, where $C = \langle z \rangle \simeq \mathbb{Z}_p$, F the free pro-p group with basis $x, y, H = \langle t \rangle \simeq \mathbb{Z}_p$, and the embeddings $H \to C$ and $H \to F$ are given by $t \to z^{p^s}$ and $t \to [x, y]$, respectively. By [10, Exer. 9.2.6(b)] this free pro-p amalgamated product is proper. Hence by [10, Prop. 9.2.13(a)] $\operatorname{cd}(G) \leq \max{\operatorname{cd}(C), \operatorname{cd}(F), \operatorname{cd}(H) + 1} = 2$.

Lemma 2. Let F = F(x, y) be a free pro-p group with basis x, y and V be an open subgroup of F(x, y) of index p. Then there exists a basis w_1, w_2 of F such that $[x, y] = [w_1, w_2]$ and V is (topologically) generated by $w_1^p, w_2, w_2^{w_1}, \ldots, w_2^{w_1^{p-1}}$.

Proof. Let $\theta : F \to \mathbb{F}_p$ be a homomorphism of pro-*p* groups with kernel *V*, $\theta(x) = \beta$ and $\theta(y) = \alpha$ where \mathbb{F}_p is the field with *p* elements. First assume that $\alpha \neq 0$. We use the commutator calculations

$$[ab, c] = [a, c]^b \cdot [b, c], \quad [a, bc] = [a, c] \cdot [a, b]^c, \text{ where } [a, b] = a^{-1}b^{-1}ab.$$

Define

$$y_1 = y^{n_1}x, y_2 = y$$
 and $w_1 = y_1, w_2 = y_1^{n_2}y_2$

for some $n_1, n_2 \in \mathbb{Z}$. Then both pairs $\{y_1, y_2\}$ and $\{w_1, w_2\}$ are bases of F. We first prove that $w_1^p, w_2 \in V$ for some choice of n_1, n_2 . Using the above commutator calculations we get

$$[y_1, y_2] = [y^{n_1}x, y] = [y^{n_1}, y]^x \cdot [x, y] = [x, y],$$

$$[w_1, w_2] = [y_1, y_1^{n_2} y_2] = [y_1, y_2] \cdot [y_1, y_1^{n_2}]^{y_2} = [y_1, y_2].$$

Finally $\theta(w_1) = \bar{n}_1 \alpha + \beta$ and $\theta(w_2) = (\bar{n}_1 \alpha + \beta)\bar{n}_2 + \alpha$ in \mathbb{F}_p , where \bar{n}_i is the image of n_i in \mathbb{F}_p . Thus it is sufficient to solve in \mathbb{F}_p the system for $\bar{n}_1, \bar{n}_2 : \bar{n}_1 \alpha + \beta = 1, \bar{n}_2 + \alpha = 0$. Then $\theta(w_1) = 1$ and $\theta(w_2) = 0$.

If $\alpha = 0$ we have $\beta \neq 0$ and can define $w_1 = x, w_2 = y$. Then $[x, y] = [w_1, w_2], \theta(w_1) \neq 0$ and $\theta(w_2) = 0$.

In both cases the closed normal subgroup W of F generated by w_1^p and w_2 is of index p in F and is contained in V, hence V = W. Therefore V is (topologically) generated by $w_1^p, w_2, w_2^{w_1}, \ldots, w_2^{w_1^{p-1}}$.

From now on for a set A we denote by F(A) the free pro-p group with basis A.

Lemma 3. Let $\{z_1, \ldots, z_n\}$ and $\{x, y\}$ be disjoint sets. Let

$$H = F(z_1, \dots, z_n) *_{z_1^{p^s} \cdots z_n^{p^s} = [x,y]} F(x,y)$$

be the free amalgamated pro-p product and H_0 be the normal closed subgroup of H generated by z_1, \ldots, z_n . Then every open subgroup U of H of index psuch that $z_1, \ldots, z_n \in U$ has a similar presentation i.e. $U \simeq F(\tilde{z}_1, \ldots, \tilde{z}_k)$ $*_{\tilde{z}_1^{p^s} \ldots \tilde{z}_k^{p^s} = [\tilde{x}, \tilde{y}]} F(\tilde{x}, \tilde{y})$ and H_0 is the normal closed subgroup of U generated by $\tilde{z}_1, \ldots, \tilde{z}_k$. Furthermore as sets

$$\{\tilde{z}_1,\ldots,\tilde{z}_k\} = \{z_1, z_1^{w_1},\ldots, z_1^{w_1^{p-1}}, z_2, z_2^{w_1},\ldots, z_2^{w_1^{p-1}},\ldots, z_n, z_n^{w_1},\ldots, z_n^{w_1^{p-1}}\}$$

and $\tilde{x} = w_1^p$, $\tilde{y} = w_2$ for some basis w_1, w_2 of F(x, y).

Proof. By Lemma 2 there exists a basis w_1, w_2 of F(x, y) such that $[x, y] = [w_1, w_2]$ and $U \cap F(x, y)$ is the normal closed subgroup of F(x, y) generated by w_1^p and w_2 . Note that the open subgroups of H containing z_1, \ldots, z_n correspond to the open subgroups of F(x, y) containing [x, y]. Then changing $\{x, y\}$ to $\{w_1, w_2\}$ we can assume that U is the normal closed subgroup of H generated by z_1, \ldots, z_n, x^p, y . By the Reidemeister-Schreier method [2, Ch. 7,Thm. 7] we get a generating set and a set of relations for U. As a generating set \mathcal{X} we have

$$\{z_1, z_1^x, \dots, z_1^{x^{p-1}}, z_2, z_2^x, \dots, z_2^{x^{p-1}}, \dots, z_n, z_n^x, \dots, z_n^{x^{p-1}}, y, y^x, \dots, y^{x^{p-1}}, x^p\}$$

and relations that are conjugates of the relation of H by the representatives $\{1, x, x^2, \ldots, x^{p-1}\}$ of the left cosets of U in H

$$z_1^{p^s} z_2^{p^s} \cdots z_n^{p^s} = [x, y] = (y^x)^{-1} y,$$

$$(z_1^x)^{p^s} (z_2^x)^{p^s} \cdots (z_n^x)^{p^s} = (y^{x^2})^{-1} y^x,$$

$$(z_1^{x^2})^{p^s} (z_2^{x^2})^{p^s} \cdots (z_n^{x^2})^{p^s} = (y^{x^3})^{-1} y^{x^2},$$

$$\dots$$

$$(z_1^{x^{p-1}})^{p^s} (z_2^{x^{p-1}})^{p^s} \cdots (z_n^{x^{p-1}})^{p^s} = (y^{x^p})^{-1} y^{x^{p-1}}$$

We use the first p-1 relations to eliminate the elements

$$\mathcal{T} = \{y^x, y^{x^2}, \dots, y^{x^{p-1}}\}$$

from the generating set \mathcal{X} . We multiply the relations left to right starting with the last one and going backwards and most of the terms in the right hand side cancel to get a new relation r_1 of U. We get

$$(z_1^{x^{p-1}})^{p^s}(z_2^{x^{p-1}})^{p^s}\cdots(z_n^{x^{p-1}})^{p^s}\cdots(z_1^x)^{p^s}(z_2^x)^{p^s}\cdots(z_n^x)^{p^s}z_1^{p^s}z_2^{p^s}\cdots z_n^{p^s} = (y^{x^p})^{-1}y = [x^p, y].$$

Thus $U \simeq F(\mathcal{A}) *_{r_1} F(y, x^p)$, where $\mathcal{A} = \mathcal{X} \setminus (\mathcal{T} \cup \{y, x^p\})$ and the relation r_1 is of the form a product of p^s -th powers of the elements of \mathcal{A} in some order $= [x^p, y]$. Finally the Schreier method [2, Ch. 7, Thm. 4] implies that H_0 is the normal closed subgroup of U generated by $\tilde{z}_1, \ldots, \tilde{z}_k$.

Proposition 1. Let S be an open subgroup of G such that $N \subseteq S$. Then the inflation map $H^2(S/N, \mathbb{F}_p) \to H^2(S, \mathbb{F}_p) \simeq \mathbb{F}_p$ is an isomorphism.

Proof. By definition $G = F(z) *_{z^{p^s} = [x,y]} F(x,y)$ and S is a subgroup of finite index in G containing the normal closed subgroup N of G generated by z. By repeatedly applying Lemma 3 one deduces that S is the amalgamated free pro-p product $F(z_1, \ldots, z_k) *_r F(x, y)$, where $r = [x, y](z_1^{p^s} \cdots z_k^{p^s})^{-1}$ and N is the normal closure of $F(z_1, \ldots, z_k)$ in S. As S is 1-relator group $\dim_{\mathbb{F}_p} H^2(S, \mathbb{F}_p) = 1$. Note that S/N is one relator pro-p group with generators x, y and one defining relation $\tilde{r} = [x, y]$. Then there is a commutative diagram with rows short exact sequences of pro-p groups

where $F = F(z_1, \ldots, z_k, x, y)$, $F_1 = F(x, y)$ are free pro-*p* groups with *K* the normal closed subgroup of *F* generated by *r* and K_1 the normal closed subgroup of F_1 generated by \tilde{r} . The vertical maps are induced by the epimorphism $F \to F_1$ sending z_1, \ldots, z_k to 1 and fixing *x* and *y*. This induces a commutative diagram

where the rows are the 5-term exact sequence in cohomology and the vertical maps are the inflation maps. As the maps $\mathrm{H}^1(S, \mathbb{F}_p) \to \mathrm{H}^1(F, \mathbb{F}_p)$ and $\mathrm{H}^1(S/N, \mathbb{F}_p) \to \mathrm{H}^1(F_1, \mathbb{F}_p)$ are isomorphisms, we have a commutative square with row maps isomorphisms

$$\begin{array}{rccc} \mathrm{H}^{2}(S, \mathbb{F}_{p}) & \leftarrow & \mathrm{H}^{1}(K, \mathbb{F}_{p})^{S} \\ \uparrow & & \uparrow \\ \mathrm{H}^{2}(S/N, \mathbb{F}_{p}) & \leftarrow & \mathrm{H}^{1}(K_{1}, \mathbb{F}_{p})^{S/N} \end{array}$$

By the proof of [10, Prop. 7.8.2] there is an isomorphism $\operatorname{Hom}(K, \mathbb{F}_p)^S = \operatorname{H}^1(K, \mathbb{F}_p)^S \longrightarrow \mathbb{F}_p$ sending f to f(r) and similarly there is an isomorphism $\operatorname{Hom}(K_1, \mathbb{F}_p)^{S/N} = \operatorname{H}^1(K_1, \mathbb{F}_p)^{S/N} \longrightarrow \mathbb{F}_p$ sending g to $g(\tilde{r})$. Thus the right vertical inflation map in the above diagram is an isomorphism, hence the left vertical inflation map in the above diagram is an isomorphism. \Box

Proposition 2. Let S be a closed subgroup of G of infinite index containing N. Then $H^2(S, \mathbb{F}_p) = 0$ and $H^2(S/N, \mathbb{F}_p) = 0$. In particular S and N are free pro-p groups.

Proof. We think of S as the intersection of the open subgroups $\{U_{\alpha}\}_{\alpha}$ of G containing S. Thus S is the inverse limit of the inverse system $\{U_{\alpha}\}_{\alpha}$ with homomorphisms inclusions. Therefore $\mathrm{H}^{2}(S, \mathbb{F}_{p})$ is the direct limit of $\{\mathrm{H}^{2}(U_{\alpha}, \mathbb{F}_{p})\}_{\alpha}$ with homomorphisms that are the restriction maps $\mathrm{H}^{2}(U_{\alpha}, \mathbb{F}_{p}) \rightarrow \mathrm{H}^{2}(U_{\beta}, \mathbb{F}_{p})$ for $U_{\beta} \subset U_{\alpha}$. We aim to show that this restriction map is always zero by showing this for the case when U_{β} is a subgroup of index p in U_{α} . Note that this will imply that $\mathrm{H}^{2}(S, \mathbb{F}_{p}) = 0$ and hence by [10, Cor. 7.1.6] $\mathrm{cd}(S) < 2$ i.e. S is a pro-p group of cohomological dimension 1. Then by [10, Thm. 7.5.1] S is a free pro-p group. In particular for S = N we get that N is a free pro-p group.

Consider the commutative square for a subgroup U_{β} of index p in U_{α} , $S \subset U_{\beta}$,

$$\begin{array}{rcl} \mathrm{H}^{2}(U_{\alpha}, \mathbb{F}_{p}) & \leftarrow & \mathrm{H}^{2}(U_{\alpha}/N, \mathbb{F}_{p}) \\ \downarrow & & \downarrow \\ \mathrm{H}^{2}(U_{\beta}, \mathbb{F}_{p}) & \leftarrow & \mathrm{H}^{2}(U_{\beta}/N, \mathbb{F}_{p}) \end{array}$$

where the row maps are the inflation maps, hence by Proposition 1 are isomorphisms and the vertical maps are the restriction maps. Note that U_{α}/N is a subgroup of finite index of $G/N \simeq \mathbb{Z}_p \times \mathbb{Z}_p$, so $U_{\alpha}/N \simeq \mathbb{Z}_p \times \mathbb{Z}_p$ and U_{β}/N is the subgroup $\mathbb{Z}_p \times (p\mathbb{Z}_p)$. We claim that the right vertical map is the zero one. Indeed by [10, Lemma 7.4.1] the rows of the following commutative diagram (of finite abelian groups of exponent p) are isomorphisms

$$\begin{array}{ccc} \mathrm{H}^{2}(\mathbb{Z}_{p} \times \mathbb{Z}_{p}, \mathbb{F}_{p}) & \simeq & \mathrm{H}^{1}(\mathbb{Z}_{p}, \mathrm{H}^{1}(\mathbb{Z}_{p}, \mathbb{F}_{p})) \\ \downarrow & \qquad \downarrow \\ \mathrm{H}^{2}(\mathbb{Z}_{p} \times (p\mathbb{Z}_{p}), \mathbb{F}_{p}) & \simeq & \mathrm{H}^{1}(\mathbb{Z}_{p}, \mathrm{H}^{1}(p\mathbb{Z}_{p}, \mathbb{F}_{p})) \end{array}$$

where the horizontal isomorphisms are induced by the Lyndon-Hochschild-Serre spectral sequence for group extensions, the left vertical map is the restriction map. The right vertical map is induced by the restriction map $\mathrm{H}^{1}(\mathbb{Z}_{p},\mathbb{F}_{p})\longrightarrow\mathrm{H}^{1}(p\mathbb{Z}_{p},\mathbb{F}_{p})$ and this restriction map is zero by the natural isomorphism $\mathrm{H}^{1}(\mathbb{Z}_{p},\mathbb{F}_{p})\simeq\mathrm{Hom}(\mathbb{Z}_{p},\mathbb{F}_{p})$. In particular the left vertical map is zero, as claimed.

Finally we note that S/N is either the trivial group or a closed subgroup of infinite index in $G/N \simeq \mathbb{Z}_p \times \mathbb{Z}_p$, hence $S/N \simeq \mathbb{Z}_p$. In both cases $\mathrm{H}^2(S/N, \mathbb{F}_p) = 0$.

Lemma 4. Let $\pi : H \to M$ be an epimorphism of pro-p groups such that the inflation map $\mathrm{H}^2(M, \mathbb{F}_p) \to \mathrm{H}^2(H, \mathbb{F}_p)$ is an isomorphism. Then for every natural number $n \geq 1$ the inflation map $\mathrm{H}^2(M, \mathbb{Z}/(p^n)) \to \mathrm{H}^2(H, \mathbb{Z}/(p^n))$ is an isomorphism.

Proof. We use induction on n. We assume the lemma holds for some fixed $n \geq 1$. The short exact sequence $0 \to \mathbb{Z}/(p) \to \mathbb{Z}/(p^{n+1}) \to \mathbb{Z}/(p^n) \to 0$ yields a diagram with two long exact sequences in cohomology in which the vertical maps are the inflation maps

$$\begin{array}{cccc} \mathrm{H}^{2}(H,\mathbb{Z}/(p)) & \to & \mathrm{H}^{2}(H,\mathbb{Z}/(p^{n+1})) & \to & \mathrm{H}^{2}(H,\mathbb{Z}/(p^{n})) \\ \uparrow & & \uparrow & & \uparrow \\ \mathrm{H}^{2}(M,\mathbb{Z}/(p)) & \to & \mathrm{H}^{2}(M,\mathbb{Z}/(p^{n+1})) & \to & \mathrm{H}^{2}(M,\mathbb{Z}/(p^{n})) \end{array}$$

As the leftmost and the rightmost vertical maps are isomorphisms, the middle one is an isomorphism. $\hfill\square$

4 Proof of Theorem 2

We complete the proof of Theorem 2 using the results from the previous sections.

a) cd(G) = 2 is done in Lemma 1.

b) $D = \mathbb{Z}_p \times \mathbb{Z}_p$ is a Demushkin group by Theorem 3.

c) N is a free pro-p group by Proposition 2. If the rank of N is finite then by the main result of [5] the quotient group $G/N \simeq D$ has virtually finite cohomological dimension cd(G) - cd(N) = 1. But D is a group of cohomological dimension 2, a contradiction.

d) For every closed subgroup S of G containing N the inflation map $\mathrm{H}^2(S/N, \mathbb{F}_p) \to \mathrm{H}^2(S, \mathbb{F}_p)$ is an isomorphism by Proposition 1 and Proposition 2.

e) By d) and Lemma 4 for every closed subgroup S of G containing N and any natural number n the inflation map $\mathrm{H}^2(S/N, \mathbb{Z}/(p^n)) \to \mathrm{H}^2(S, \mathbb{Z}/(p^n))$ is an isomorphism.

f) Suppose G is a free pro-p product of a free pro-p group M_1 with a Demushkin group D_1 . Then the minimal number of generators of G is the sum of the minimal number of generators of M_1 and D_1 . We remind the reader that the minimal number of generators of G is 3.

1) Assume now that the invariant q of D_1 is not 2. By Theorem 3 a Demushkin group with invariant $q \neq 2$ has even number of generators, hence M_1 is \mathbb{Z}_p and D_1 is two-generated. There are two options for D_1 . If D_1 is $\mathbb{Z}_p \times \mathbb{Z}_p$ then G has a pro-p presentation $\langle y_1, y_2, y_3 | [y_1, y_2] = 1 \rangle$, hence the abelianization of G is a direct product of three copies of \mathbb{Z}_p . But the original pro-p presentation of G given by the generators x, y, z shows that the abelianization of G is $\mathbb{Z}/(p^s) \times \mathbb{Z}_p \times \mathbb{Z}_p$, a contradiction. Another option for D_1 is to have a pro-p presentation $\langle y_1, y_2 | y_1^{p^r}[y_1, y_2] = 1 \rangle$ then G has a pro-p presentation $\langle y_1, y_2, y_3 | y_1^{p^r}[y_1, y_2] = 1 \rangle$. By looking at the abelianization of G we get that s = r. But then looking at the maximal nilpotent quotient of class 2 of G we will show that the pro-p presentations given by generators x, y, z and y_1, y_2, y_3 cannot give isomorphic pro-p groups.

Indeed let N_1 be the maximal nilpotent quotient of class 2 of the prop group with presentation $\langle x, y, z | z^{p^s} = [x, y] \rangle$ and N_2 be the maximal nilpotent quotient of class 2 of the pro-p group with presentation $\langle y_1, y_2, y_3 | y_1^{p^r}[y_1, y_2] = 1 \rangle$. Note that for a profinite group M which is nilpotent of class 2 and for $a, b, c \in M$ the commutator calculations used in Lemma 2 reduce to

$$[ab, c] = [a, c] \cdot [b, c], \ [a, bc] = [a, c] \cdot [a, b]$$

In particular, $[a, b]^{p^s} = [a^{p^s}, b]$. Furthermore, if M is (topologically) generated by a set S then [M, M] is (topologically) generated by the set $[S, S] = \{[x, y] \mid x, y \in S\}$. In our case N_1 is (topologically) generated by $\{x, y, z\}$, hence $[N_1, N_1]$ is (topologically) generated by [x, y], [x, z], [y, z]. By the above calculations $[x, z]^{p^s} = [x, z^{p^s}] = [x, [x, y]] = 1$ and similarly $[y, z]^{p^s} = 1$. Hence if $a \in [N_1, N_1]$, then a^{p^s} is in the subgroup of $[N_1, N_1]$ (topologically) generated by $[x, y]^{p^s}$.

We claim that [x, y] is of infinite order in N_1 . Indeed let B be the pro-pgroup with finite presentation $\langle a, b | [[a, b], b] = 1, [[a, b], a] = 1 \rangle$ and B_1 be the discrete group with presentation $\langle a_1, b_1 | [[a_1, b_1], b_1] = 1, [[a_1, b_1], a_1] = 1 \rangle$. Then B_1 is a residually p-group, B is the pro-p completion of B_1 and the canonical map $\theta : B_1 \to B$ given by $\theta(a_1) = a, \theta(b_1) = b$ is injective. In particular as the order of $[a_1, b_1]$ is infinite, the order of $[a, b] = \theta([a_1, b_1])$ is infinite. Therefore B is a central extension of \mathbb{Z}_p by $\mathbb{Z}_p \times \mathbb{Z}_p$. Then using the commutator calculations the specialization $x \to a^{p^s}, y \to b, z \to [a, b]$ extends to a homomorphism $\mu : N_1 \to B$. As $\mu([x, y]) = [a^{p^s}, b] = [a, b]^{p^s}$ is of infinite order, [x, y] is of infinite order.

Note that in N_2 the image of y_1 has finite order : $1 = (y_1^{p^r}[y_1, y_2])^{p^r} = y_1^{p^{2r}}[y_1^{p^r}, y_2] = y_1^{p^{2r}}[[y_1, y_2]^{-1}, y_2] = y_1^{p^{2r}}$ in N_2 . Thus there is an element of $N_2 \setminus [N_2, N_2]$ that is of finite order. We show that N_1 does not have this property. Assume that b is an element of $N_1 \setminus [N_1, N_1]$ of finite order. As $N_1/[N_1, N_1] \simeq \mathbb{Z}/(p^s) \times \mathbb{Z}_p \times \mathbb{Z}_p$ we have $b = z^k a$ for some $a \in [N_1, N_1] \subseteq Z(N_1)$ and some $0 < k < p^s$. Hence $b^{p^s} = z^{kp^s} a^{p^s} = [x, y]^k a^{p^s}$ is of finite order this subgroup (topologically) generated by $[x, y]^{p^s}$. Then b^{p^s} is in the subgroup is isomorphic to \mathbb{Z}_p . Thus $1 = b^{p^s} = [x, y]^k a^{p^s}$ and $[x, y]^k$ is in the subgroup (topologically) generated by $[x, y]^{p^s}$, a contradiction.

2) If q = 2 then the minimal number of generators of D_1 is 2 or 3. In the latter case $G = D_1$ but by Theorem 4 G is not Demushkin. If the minimal number of generators of D_1 is 2, $N_1 = \mathbb{Z}_p$ and by Theorem 5 D_1 has a pro-p presentation $\langle y_1, y_2 | y_1^{2+2^f}[y_1, y_2] \rangle$ for some integer $f \geq 2$ or $f = \infty$.

Hence G has a pro-p presentation $\langle y_1, y_2, y_3 | y_1^{2+2^f}[y_1, y_2] = 1 \rangle$. Looking at the abelianization of G we deduce that $2 + 2^f = 2^s$. As $f \ge 2$ or $f = \infty$ (where 2^{∞} is defined as 0) we deduce that $s = 1, f = \infty$. Then we get two presentations of G as in the case 1 but for the specific values p = 2, r = 1. The same proof as in case 1 shows that the pro-p presentations given by generators x, y, z and y_1, y_2, y_3 cannot give isomorphic pro-p groups.

Acknowledgements

The authors thank the referee for the many suggestions that improved the paper.

References

- R. Lyndon, Cohomology theory of groups with a single defining relation, Ann. Math. 52, 650-665 (1950)
- [2] D. E. Cohen, Combinatorial group theory: a topological approach. London Mathematical Society Student Texts, 14. Cambridge University Press, Cambridge, 1989.
- [3] S. Demushkin, On the maximal *p*-extension of a local field, Izv. Akad. Nauk, USSR Math. Ser., 25 (1961), 329-346
- [4] S. Demushkin, On 2-extensions of a local field, Sibirsk. Mat. Z., 4 (1963), 951-955
- [5] A. Engler, D. Haran, D. Kochloukova, P. Zalesskii, Normal subgroups of profinite groups of finite cohomological dimension, J. London Math. Soc. (2), 69 (2004), 317-332
- [6] D. Gildenhuys, On pro-p groups with a single defining relator, Invent. Math. 5, (1968), 357-366
- [7] J. Koenigsmann, Pro-p Galois groups of rank ≤ 4, Manuscripta Mathematica, 95 (1998) no. 2, 251-271
- [8] J. P. Labute, Classification of Demushkin groups. Canad. J. Math. 19 (1967) 106–132.

- [9] L. Ribes, On amalgamated products of profinite groups, Math. Z., 123 (1971), 357–364.
- [10] L. Ribes, P. Zalesskii, Profinite Groups, Springer 2000.
- [11] J.-P. Serre, Structure de certains pro-p-groupes, Séminaire Bourbaki 1962/63, no. 252 (1971), 357-364.
- [12] J. S. Wilson, Profinite groups, Claredon Press, Oxford, 1998
- [13] T. Würfel, A remark on the structure of the absolute Galois groups, Proc. Amer. Math. Soc. 95 (1985) No. 3, 353-356
- [14] T. Würfel, Extensions of pro-p groups of cohomological dimension two, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 209–211