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Abstract

We construct an example of conjugacy separable group possessing a not
conjugacy separable subgroup of finite index. We give also a sufficient con-
dition for a conjugacy separable group to preserve this property when pass-
ing to subgroups of finite index. We establish also conjugacy separability of
finitely presented residually free groups using impressive results of Bridson
and Wilton [BW-07].

1 Introduction
In 1912 Max Dehn formulated three fundamental decision problems: the
word problem, the conjugacy problem and the isomorphism problem. Dehn
partially solved some of these problems for finitely presented groups, so this
marked the birth of a new subject, the combinatorial group theory.

In 1958 Mal’cev noticed that certain residual properties of groups are
connected to two of Dehn’s problem. Namely in [M-58] he showed that
the word problem, the conjugacy problem and the generalized word prob-
lem (the latter asks for an algorithm to decide whether a given element is in
the given finitely generated subgroup) have positive solution in finitely pre-
sented residually finite, conjugacy separable and subgroup separable groups
respectively.

Recall that a group G is conjugacy separable if whenever x and y are
non-conjugate elements of G, there exists some finite quotient of G in which
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the images of x and y are non-conjugate and a group G is called subgroup
separable if for any finitely generated subgroup H of G and an element
g 6∈ H there exists a finite quotient of G where the image of g is not in the
image of H .

Note that a subgroup of finite index of a residually finite (resp. subgroup
separable) group is residually finite (resp. subgroup separable). However
the conjugacy separability of a finite index subgroup of conjugacy separable
group was not clear. The objective of the paper is to construct an example of
conjugacy separable group possessing a non conjugacy separable finite in-
dex subgroup. Our example however is countably generated, so the question
is still open for finitely generated case. We also remark that as was shown in
[G-86] conjugacy separability is not preserved by finite extensions.

We say that a group G is hereditarily conjugacy separable if every finite
index subgroup of G is conjugacy separable. In the second part of the article
we give a sufficient condition for a conjugacy separable group to be heredi-
tarily conjugacy separable. We use this condition to prove that a finite index
subgroups of direct product of limit groups are conjugacy separable.

We combine also the impressive results of Bridson and Wilton [BW-07]
with conjugacy separability of limit groups established in [CZ-07] to prove
conjugacy separability for finitely presented residually free groups. Finite
presentability condition is essential: it is well-known that there is a finitely
generated subgroup of a direct product of two free groups for which the con-
jugacy problem is unsolvable (see [Mi-92] for example) and so by Malcev’s
observation [M-58] is not conjugacy separable.

Acknowledgement: We thank M. Bridson and H. Wilton for drawing our
attention to their work [BW-07].

2 Example
Let S be a subgroup in GL3(Z) such that

(i) S contains the center Z = {±1} and S/Z is torsion-free;
(ii) S is not closed in the congruence topology.

Following [GS-78] make S act on M = M3(Z) by multiplication from
the right. Then the S-orbit of the identity matrix I is exactly S, thus the
orbit of I is not closed in M . Let G = M o S be the respective semidirect
product. Then the conjugacy class of I is exactly its S-orbit and therefore
is not closed. Since I is primitive in M (i.e. is not a proper power), the
element I is primitive in G as well. Indeed, (x, y)n = (I, 1) for n > 1,
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x ∈ M , y ∈ S implies n = 2 and y = ±1. Then (x, y)2 = (x + xy, 1) =
(x± x, 1) = (I, 1), a contradiction.

Thus there are primitive elements x = I, y ∈ G such that x e y are
conjugate in Ĝ but are not conjugate in G. Moreover, y is not conjugate
to x−1 = −I , because I and −I are conjugated in G. Put G = G0 and
define G1 = HNN(G0, < x >,< y >, t1). Inductively we define Gi =
HNN(Gi−1, < xi−1 >,< yi−1 >, ti), where xi−1 and yi−1 represents
arbitrary primitive elements in Gi−1 that are conjugates in Ĝi−1 and are not
conjugates in Gi−1.

Lemma 2.1. Let x be a primitive element in G. Then x is primitive in Gn

for every n.

Proof. We use induction on n. If n = 0 there is nothing to prove. Suppose
for n− 1 the lemma is true, so that x is primitive in Gn−1. Let z be an ele-
ment of Gn such that zk = x for some k ∈ N. But Gn = HNN(Gn−1, <
xn−1 >,< yn−1 >, ti) so by Theorem 2.4 in [L-S-77] z ∈ Gn−1. Thus by
induction hypotheses k = 1 as required.

The groups Gi constitute an inductive system with respect to inclusions.
Define the group P := lim−→

i

Gi.

We shall describe now Ĝi. Clearly, Ĝi = HNN(Ĝi−1, < xi−1 >,< yi−1 >, ti).
Let γ ∈ Ĝi−1 such that xγ

i−1 = yi−1. Putting t1i = tγ−1 we can rewrite the

presentation of Ĝi = HNN(Ĝi−1, < xi−1 >, t1i) = 〈Ĝi−1, t1i | xt1i
i−1 = xi−1〉.

Then factorization modulo the normal closure of t1i gives an epimorphism
fi : Ĝi −→ Ĝi−1 such that f|Ĝi−1

= id.

Lemma 2.2. There exists an epimorphism f : P̂ −→ Ĝi such that f|cGi
=

id.

Proof. From above one has the following commutative diagram

P̂

ϕ̂
²²

Poo

ϕ
ÄÄ~~

~~
~~

~~

Ĝi
Gj

OO

oo

²²

Ĝj

__???????

,
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where ϕ is given by the universal property of the inductive limit and ϕ̂ by
the universal property of the profinite completion. Clearly ϕ̂ is the needed
epimorphism.

Proposition 2.3. (i) The natural homomorphism that sends Ĝi −→ Ĝi+1 =
〈Gi, t | xt = y〉 is injective for every i.

(ii) Gi is residually finite.

Proof. By Proposition 9.4.3 (2) in [RZ-00] we have to check that for every
open normal subgroup U of Gi there exists an open normal subgroup V ≤ U
in Gi such that (V ∩ 〈x〉)t = V ∩ 〈y〉. However, this equality valid already
for U because x and y are conjugate in Ĝi. This proves (i).

To prove (ii) we use induction on i. Assume that Gi is residually fi-
nite. By Proposition 9.4.3 (3) in [RZ-00] HNNabs(Ĝi, 〈x〉, 〈y〉, t) is resid-
ually finite. On the other hand, Gi+1 = HNN(Gi, 〈x〉, 〈y〉, t) embeds in
HNNabs(Ĝi, 〈x〉, 〈y〉, t) and therefore is residually finite as well.

Lemma 2.4. For each i, G is closed in the profinite topology of Gi.

Proof. Let g ∈ Ĝ∩Gi. We have to prove that g ∈ G. We use induction on i.
Suppose Ĝ ∩Gi−1 = G. If g ∈ Gi−1 then g ∈ G by the induction hypothe-
sis. Suppose g ∈ Gi\Gi−1. Write g in the reduced form g = g as an element
of HNNabs(Ĝi−1, 〈x〉, 〈y〉, t) and in the reduced form g = h1t

±1h2t
±1 . . .

as an element of Gi = HNN(Gi−1, 〈x〉, 〈y〉, t), where hi ∈ Gi−1. Since
Gi−1 ∩ 〈x〉 = 〈x〉 and hi not in 〈x〉, one sees that h1t

±1h2t
±1 . . . is the

reduced form of g as an element of HNNabs(Ĝi−1, 〈x〉, 〈y〉, t). Therefore,
since the length of the reduced form does not depend on the choice of the
form (see [L-S-77]), the length of the latter is 1, so g ∈ Gi−1, a contradic-
tion. This finishes the proof.

Corollary 2.5. G is closed in the profinite topology of P , i.e. Ĝ ∩ P = G.

Proof. Let g ∈ Ĝ ∩ P . We have to prove that g ∈ G. Since g ∈ P
there exists i such that g ∈ Gi. Then by the preceding lemma g ∈ G as
needed.

Theorem 2.6. P is conjugacy separable.

Proof. Let g1 and g2 are elements of P which are conjugate in P̂ . Then there
exists i such that g1, g2 ∈ Gi. By Lemma 2.2 there exists fi : P̂ −→ Ĝi

such that (fi)| bGi
= id. Hence g1 and g2 are conjugate in Ĝi and so by the

construction of P they are conjugate in Gj for some j > i. Thus they are
conjugate in P , as needed.
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The next proposition is the correct statement of proposition 2.5 (1) in
[RZ-00].

Proposition 2.7. Let G be a group that acts on a tree S, such that the sta-
bilizer Ge is a cyclic group for each edge e. Let H be a subgroup of Gv

for some v ∈ S. Assume that either (i) each Ge is finite, or (ii) the profi-
nite topology of G induces on each Ge its full profinite topology. Then G
can be represented as a fundamental group of a graph of groups (G, X)
such that X = S/G, G(x) = Gs, where Gs = x, and the normalizer
NG(H) = π1(G′, Y ), with the set of edges E(Y ) a subset of E(X), and
G′(Y ) = NG(y)(H), for all y ∈ Y . In particular, if X is a tree, then Y is a
subgraph of X .

Proof. The proof of Proposition 2.5 in [RZ-00] is precisely the proof of this
proposition.

Corollary 2.8. Let H = HNN(H0, C, t) be a HNN -extension of resid-
ually finite group H0 with cyclic associated subgroup C. Assume that the
profinite topology of H induces the full profinite topology on C. Then the
normalizer NH(C) is either NH0(C)qCNHt

0
(C) or HNN(NH0(C), C, th),

for some h ∈ H0.

Proof. In the context of the preceding proposition X is just one loop and
therefore Y is either an edge with two vertices or a loop. In the first case
one has the desired free amalgamated product and in the second case the
HNN -extension.

Define U = 〈G,Gt1 , t21, ti|1 6= i ∈ I〉. It is not difficult to see that
[P : U ] = 2. Put Un = U ∩Gn.

Lemma 2.9. The elements x and y are non-conjugated in U1.

Proof. Since xt21 = yt1 , the elements x and y are conjugate in U1 iff y is
conjugated to yt1 in U1. So we prove that y and yt1 are non-conjugated in
U1. Suppose on the contrary yg = yt1 for some g ∈ U1. Then g−1t1 ∈
CG1(y) ≤ NG1(y). The epimorphism f1 : Ĝ1 −→ Ĝ = ŜL3(Z shows that
G1 induces the full profinite topology on 〈x〉 and 〈y〉. Then by Corollary 2.8
the normalizer NG1(〈y〉) is either NG(〈y〉)q〈y〉NGt(〈y〉) or HNN(NG(〈y〉), 〈y〉, ht1),
for some h ∈ G.

We show that the second possibility does not occur here. Indeed, if it
occurs then 〈y〉 = 〈y〉(ht1)−1

= 〈x〉h−1
, so that y±1 = xh−1

contradicting
the choice of x and y.

Thus NG1(〈y〉) = NG(〈y〉) q〈y〉 NGt(C) ≤ U , a contradiction with
g−1t1 ∈ NG1(y) \ U1. This finishes the proof.
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Lemma 2.10. The elements x and y are non-conjugated in Un, for every n.

Proof. We use induction on n. The case n = 1 is the subject of Lemma 2.9.
Suppose for n − 1 the lemma is true. Note that applying the subgroup the-
orem for HNN-extension (see [S-77]) (or Reidermeister- Schreier method)
for the subgroup Un of Gn = HNN(Gn−1, 〈xn〉, 〈yn〉, tn) one gets Un =
〈Un−1, tn, tt1n |rel(Un−1), xtn

n = yn, (xt1
n )tnt1 = yt1

n 〉, if xn, yn ∈ Un−1, and
Un = 〈Un−1, tn, tt1n |rel(Un−1), (x2

n)tn = y2
n〉, if xn, yn /∈ Un−1. Therefore

Un−1 can be interpreted as HNN -extension with Un−1 as a base group and
either with two stable letters z1 = tn, z2 = tt1n or with one stable letter tn.

Now suppose on the contrary xg = y for some g ∈ Un. Since the lemma
is true for n − 1, g /∈ Un−1. Then y ∈ Un−1 ∩ Ug

n−1 and so x and y are
conjugated to an element of either 〈xn〉 or 〈yn〉 (we explain this in the last
paragraph of the proof for the sake of not breaking the thought). Since x and
y are primitive by Lemma 2.1, x and y are conjugate to either x±1

n or to y±1
n .

But x±1 and y±1 are conjugate in Gn−1 (in fact, in G1), it follows that xn

is conjugate to yn in Gn−1, a contraction. Thus x and y are not conjugate in
Un.

To explain why x and y are conjugated to an element of either 〈xn〉 or
〈yn〉we consider the canonical action of Gn = HNN(Gn−1, 〈xn〉, 〈yn〉, tn)
on the tree S associated with Gn. Then Gn−1 is the stabilizer of a vertex v
and conjugates of associated subgroups are the stabilizers of edges. It fol-
lows that x fixes the vertices v and gv and therefore the path [v, gv]. Simi-
larly, y fixes the vertices v and g−1v and therefore the path [v, g−1v] Thus x
and y fixe some edges incident to v and therefore are conjugate in Gn−1 to
the one of associated subgroups 〈xn〉, 〈yn〉.
Theorem 2.11. U is not conjugacy separable.

Proof. Observe that U = lim−→
n

Un is inductive limit of Un. So if x and y

are conjugated in U , then they are conjugated in Un, for some n. But this
contradicts Lemma 2.10. The result follows.

3 Density of centralizers and finitely presented
residually free groups
The next proposition gives a sufficient condition for a conjugacy separable
group to be hereditarily conjugacy separable.
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Proposition 3.1. Let G be a conjugacy separable group and suppose for
every element g ∈ G,

CG(g) = C bG(g). (1)

Then G is hereditarily conjugacy separable.

Proof. Let H be a finite index subgroup of G. Let h1, h2 be elements of H
such that hγ

1 = h2 for some γ in Ĥ . Since G is conjugacy separable, there
exists g ∈ Gn such that hg

1 = h2. Then δ := γg−1 ∈ C bG(h1). It follows that
g = δ−1γ ∈ C bG(h1)Ĥ∩G. Since H is of finite index in G the set CG(h1)H
is closed in the profinite topology, i.e. CG(h1)H ∩ G = CG(h1)H . By
hypothesis CG(h1)H = C bG(h1)Ĥ , so C bG(h1)Ĥ ∩ G = CG(h1)H and
therefore g = ch for some c ∈ CG(h1), h ∈ H . Hence hg

1 = hh
1 = h2 as

needed.

Proposition 3.2. Direct product preserves Condition (1).

Proof. Let H be a finite index subgroup of G =
∏n

i=1 Gi. Write g =
(g1, . . . , gn), where gi ∈ Gi. Then CG(g) =

∏n
i=1 CGi(gi), and C bG(g) =∏n

i=1 CcGi
(gi). The result follows.

Corollary 3.3. Let G =
∏n

i=1 Λi is a direct product of limit groups. Then
G is hereditarily conjugacy separable.

Proof. By Lemma 3.5 in [CZ-07] every limit group satisfies Condition (1).
Thus the result follows from Proposition 3.2.

A subgroup H of G is called a virtual retract if there exists a subgroup
U of finite index in G together with an epimorphism f : U −→ H such that
fH = id.

Theorem 3.4. Let H be a hereditarily conjugacy separable group and G is
a virtual retract of H . Then G is conjugacy separable.

Proof. Let h1, h2 ∈ G be elements such that h1 = hγ
2 for some γ ∈ Ĝ. We

show that h1 and h2 are conjugate in G.
Since G is a virtual retract of H , there exists a finite index subgroup U

of H containing G and an epimorphism f : U −→ G such that f|G = id.
Therefore, Ĝ = Ḡ ≤ Û . By hypothesis U is conjugacy separable, so h1 and
h2 are conjugate in U . It follows that h

f(u)
1 = h2 as needed.

Theorem 3.5. A finitely presented residually free group is conjugacy sepa-
rable.
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Proof. Let G be a finitely presented residually free group. By Claim 7.5
in [S-01] or Corollary 19 in [BMR-99] G embeds in a direct product of fi-
nitely many limit groups H =

∏n
i=1 Li. Without loss of generality we may

assume that G is a subdirect product of Lis. By Theorem 8 [BW-07] the
finitely presented group G contains a term of the lower central series γm(L)
for some natural m. By Theorem B in [BW-07] every finitely presented sub-
group of L is closed in the profinite topology of L, so the profinite topology
of L induces the full profinite topology on G. It follows that Ḡ = Ĝ ≤ L̂.
Let g1, g2 be elements of G such that gĝ

1 = g2 for some ĝ ∈ Ĝ. Since
L is conjugacy separable, there exists l ∈ L such that gl

1 = g2. Thus
ĝl−1 ∈ CbL(g1) and so ĉĝ = l ∈ CbL(g1)Ĝ ∩ L for some ĉ ∈ CbL(g1).
Since the product of any two subgroups of the finitely generated nilpotent
group L/γm(L) is closed ( it is true even for polycyclic groups, see Exercise
13 in Chapter 4 of [Seg-83]) , the product CG(g1)G is closed. Taking into
account that CL(g1) = CbL(g1) by Proposition 3.2, we obtain the equality
ĉĝ = l ∈ CbL(g1)Ĝ ∩ L = GCL(g1). It follows that there exist g ∈ G and
c ∈ CL(g1) such that cg = l. It follows that gg

1 = g2 as required.

Remark 3.6. By Theorem 4.2 in [BHMS-07] a residually free group of type
FP2 is finitely presented.
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