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Abstract

We construct an example of conjugacy separable group possessing a not
conjugacy separable subgroup of finite index. We give also a sufficient con-
dition for a conjugacy separable group to preserve this property when pass-
ing to subgroups of finite index. We establish also conjugacy separability of
finitely presented residually free groups using impressive results of Bridson
and Wilton [BW-07].

1 Introduction

In 1912 Max Dehn formulated three fundamental decision problems: the
word problem, the conjugacy problem and the isomorphism problem. Dehn
partially solved some of these problems for finitely presented groups, so this
marked the birth of a new subject, the combinatorial group theory.

In 1958 Mal’cev noticed that certain residual properties of groups are
connected to two of Dehn’s problem. Namely in [M-58] he showed that
the word problem, the conjugacy problem and the generalized word prob-
lem (the latter asks for an algorithm to decide whether a given element is in
the given finitely generated subgroup) have positive solution in finitely pre-
sented residually finite, conjugacy separable and subgroup separable groups
respectively.

Recall that a group G is conjugacy separable if whenever x and y are
non-conjugate elements of G, there exists some finite quotient of G in which
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the images of x and y are non-conjugate and a group G is called subgroup
separable if for any finitely generated subgroup H of GG and an element
g € H there exists a finite quotient of G where the image of g is not in the
image of H.

Note that a subgroup of finite index of a residually finite (resp. subgroup
separable) group is residually finite (resp. subgroup separable). However
the conjugacy separability of a finite index subgroup of conjugacy separable
group was not clear. The objective of the paper is to construct an example of
conjugacy separable group possessing a non conjugacy separable finite in-
dex subgroup. Our example however is countably generated, so the question
is still open for finitely generated case. We also remark that as was shown in
[G-86] conjugacy separability is not preserved by finite extensions.

We say that a group G is hereditarily conjugacy separable if every finite
index subgroup of G is conjugacy separable. In the second part of the article
we give a sufficient condition for a conjugacy separable group to be heredi-
tarily conjugacy separable. We use this condition to prove that a finite index
subgroups of direct product of limit groups are conjugacy separable.

We combine also the impressive results of Bridson and Wilton [BW-07]
with conjugacy separability of limit groups established in [CZ-07] to prove
conjugacy separability for finitely presented residually free groups. Finite
presentability condition is essential: it is well-known that there is a finitely
generated subgroup of a direct product of two free groups for which the con-
jugacy problem is unsolvable (see [Mi-92] for example) and so by Malcev’s
observation [M-58] is not conjugacy separable.

Acknowledgement: We thank M. Bridson and H. Wilton for drawing our
attention to their work [BW-07].

2 Example

Let S be a subgroup in G L3(Z) such that
(i) S contains the center Z = {£1} and S/Z is torsion-free;
(ii) S is not closed in the congruence topology.

Following [GS-78] make S act on M = M3(Z) by multiplication from
the right. Then the S-orbit of the identity matrix I is exactly .S, thus the
orbit of I is not closed in M. Let G = M x S be the respective semidirect
product. Then the conjugacy class of [ is exactly its S-orbit and therefore
is not closed. Since [ is primitive in M (i.e. is not a proper power), the
element [ is primitive in G as well. Indeed, (z,y)" = (I,1) forn > 1,



r € M,y c Simpliesn = 2andy = £1. Then (z,%)? = (z +2%,1) =
(r +x,1) = (I,1), a contradiction.

Thus there are primitive elements x = I,y € G such that x e y are
conjugate in G but are not conjugate in (G. Moreover, y is not conjugate
to z~! = —1I, because I and —I are conjugated in G. Put G = G and
define G; = HNN(Gp,< = >,< y >,t1). Inductively we define G; =
HNN(Gi-1,< xi—1 >,< yi—1 >,t;), where x;_; and y;_1 represents
arbitrary primitive elements in ;1 that are conjugates in a_\l and are not
conjugates in G;_1.

Lemma 2.1. Let x be a primitive element in G. Then x is primitive in G,
for every n.

Proof. We use induction on n. If n = 0 there is nothing to prove. Suppose
for n — 1 the lemma is true, so that z is primitive in G,,_1. Let z be an ele-
ment of G,, such that z¥ = z for some k € N. But G,, = HNN(Gp-1,<
Tp—1 >, < Yn—1 >,t;) so by Theorem 2.4 in [L-S-77] z € G,,—1. Thus by
induction hypotheses £ = 1 as required. 0

The groups G; constitute an inductive system with respect to inclusions.
Define the group P := lim G;.

We shall describe now CAJZ Clearly, CA}Z = HNN((AJZ-_l, < Timg >, < Yio1 >, ti).
Let v € G;_1 such that :Ull = y;—1. Putting t1; = tv_l we can rewrite the

presentation Oféi = HNN(éi_l, < Ti—q >,t1i) = (éi—latli ‘ xfl_ll = LUZ‘_1>.
Then factorization modulo the normal closure of ¢1; gives an epimorphism
fi: G; — G;_1 such that f|Gf\1 = 1d.

Lemma 2.2. There exists an epimorphism f : P— éz such that f|§ =
id.

Proof. From above one has the following commutative diagram
P~
G-
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o
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where  is given by the universal property of the inductive limit and ¢ by
the universal property of the profinite completion. Clearly ¢ is the needed
epimorphism. O

Proposition 2.3. (i) The natural homomorphism that sends @l — éi+1 =
(Gi,t | xt = y) is injective for every i.

(ii) G; is residually finite.

Proof. By Proposition 9.4.3 (2) in [RZ-00] we have to check that for every
open normal subgroup U of G; there exists an open normal subgroup V' < U
in G; such that (V N (z))* = V N (y). However, this equality valid already
for U because x and y are conjugate in @Z This proves (i).

To prove (ii) we use induction on ¢. Assume thAat G is residually fi-
nite. By Proposition 9.4.3 (3) in [RZ-00] H NN®*(G}, (x), (y), t) is resid-
ually finite. On the other hand, Gi+1 = HNN(Gj, (z), (y),t) embeds in
HNN®s(G;, (x), (y),t) and therefore is residually finite as well.

O]

Lemma 2.4. For each i, G is closed in the profinite topology of G;.

Proof. Letg € G NG;. We have to prove that g € G. We use induction on i.
Suppose Gn Gi—1 = G. If g € G;_1 then g € G by the induction hypothe-
sis. Suppose g € G;\G;_1. Write g in the reduced form g = g as an element
of HNN®5(G;_y, (x), (y),t) and in the reduced form g = hyt='hot*! . ..
as an element of G; = HNN(G;_1, (x), (y),t), where h; € G;_1. Since

Gi_1 N {z) = (z) and h; not in (z), one sees that hytF hot*1 ... is the
reduced form of g as an element of H NN “bs(@_l, (z), (y),t). Therefore,
since the length of the reduced form does not depend on the choice of the
form (see [L-S-77]), the length of the latter is 1, so g € G;_1, a contradic-

tion. This finishes the proof. 0

Corollary 2.5. G is closed in the profinite topology of P, i.e. GNnP=aG.

Proof. Let g € G N P. We have to prove that ¢ € G. Since g € P

there exists ¢ such that ¢ € G;. Then by the preceding lemma g € G as
needed. O

Theorem 2.6. P is conjugacy separable.

Proof. Let g; and g5 are elements of P which are conjugate in P. Then there
exists ¢ such that g1, g2 € G;. By Lemma 2.2 there exists f; : P — CA}Z
such that ( fi)‘ G, = id. Hence g and go are conjugate in @Z and so by the
construction of P they are conjugate in G'; for some j > ¢. Thus they are
conjugate in P, as needed. 0



The next proposition is the correct statement of proposition 2.5 (1) in
[RZ-00].

Proposition 2.7. Let G be a group that acts on a tree S, such that the sta-
bilizer G is a cyclic group for each edge e. Let H be a subgroup of G,
for some v € S. Assume that either (i) each G, is finite, or (ii) the profi-
nite topology of G induces on each G, its full profinite topology. Then G
can be represented as a fundamental group of a graph of groups (G, X)
such that X = S/G, G(x) = Gs, where Gs = x, and the normalizer
Na(H) = m(G',Y), with the set of edges E(Y') a subset of E(X), and
G'(Y) = Ng((H), for ally € Y. In particular, if X is a tree, then Y is a
subgraph of X.

Proof. The proof of Proposition 2.5 in [RZ-00] is precisely the proof of this
proposition. O

Corollary 2.8. Let H = HNN(Hy,C,t) be a HN N-extension of resid-
ually finite group Hy with cyclic associated subgroup C. Assume that the
profinite topology of H induces the full profinite topology on C. Then the
normalizer Ny (C) is either Npo (C)e Nyt (C) or HNN (N, (C), C, th),
for some h € Hy.

Proof. In the context of the preceding proposition X is just one loop and
therefore Y is either an edge with two vertices or a loop. In the first case
one has the desired free amalgamated product and in the second case the
H N N-extension. 0

Define U = (G,G",t3,;]1 # i € I). It is not difficult to see that
[P:U]=2. PutU, = UN Gh.

Lemma 2.9. The elements x and y are non-conjugated in U.

Proof. Since 2t = y'1, the elements = and y are conjugate in Uy iff y is

conjugated to y'* in U;. So we prove that y and ' are non-conjugated in

Uy. Suppose on the contrary y9 = y't for some g € Uﬂen g €

Cea, (y) < Ng, (y). The epimorphism f : Gy — G = S L3(Z shows that

(1 induces the full profinite topology on (z) and (y). Then by Corollary 2.8

the normalizer N¢, ((y)) is either Ng ((y) ), Nt ((y)) or HNN (Na((y)), (), ht1),
for some h € G.

We show that the second possibility does not occur here. Indeed, if it
occurs then (y) = ()M~ = (2)""" 5o that y=! = 2" contradicting
the choice of x and y.

Thus Ng, ((y)) = Na({y)) Uy Negi(C) < U, a contradiction with
g 't1 € Ng, (y) \ U;. This finishes the proof. O
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Lemma 2.10. The elements x and y are non-conjugated in U, for every n.

Proof. We use induction on n. The case n = 1 is the subject of Lemma 2.9.
Suppose for n — 1 the lemma is true. Note that applying the subgroup the-
orem for HNN-extension (see [S-77]) (or Reidermeister- Schreier method)
for the subgroup U, of G,, = HNN(G,—1, (zy), (yn), tn) one gets U,, =
(Up—1,tn, 1| rel(Un_1), zlr = yp, (xh2)" = y11), if 2, yp € Up_1, and
Un = (Up_1, tn, tht|rel(Un_1), (z2)n = y2), if 7, yn ¢ Upn_1. Therefore
U, —1 can be interpreted as H N N-extension with U,,_; as a base group and
either with two stable letters z1 = t,,, 29 = tﬁ; or with one stable letter ¢,,.

Now suppose on the contrary x9 = y for some g € U,,. Since the lemma
is true forn — 1, g ¢ U,—1. Theny € U,_1 NUY_, and so x and y are
conjugated to an element of either (x,) or (y,) (we explain this in the last
paragraph of the proof for the sake of not breaking the thought). Since x and
y are primitive by Lemma 2.1, = and y are conjugate to either z:! or to y;-1.
But z*! and yil are conjugate in G, (in fact, in 1), it follows that x,,
is conjugate to y,, in G,—1, a contraction. Thus z and y are not conjugate in
Up.

To explain why x and y are conjugated to an element of either (x,,) or
(yn) we consider the canonical action of G, = HNN (Gy—1, (zn), (Yn), tn)
on the tree S associated with GG,,. Then G,,_1 is the stabilizer of a vertex v
and conjugates of associated subgroups are the stabilizers of edges. It fol-
lows that x fixes the vertices v and gv and therefore the path [v, gv]. Simi-
larly, y fixes the vertices v and g~ 'v and therefore the path [v, g~'v] Thus x
and y fixe some edges incident to v and therefore are conjugate in GG,,—1 to
the one of associated subgroups (x,,), (yn). O

Theorem 2.11. U is not conjugacy separable.
Proof. Observe that U = h_m) U, is inductive limit of U,. So if = and y

are conjugated in U, then thgy are conjugated in U,,, for some n. But this
contradicts Lemma 2.10. The result follows. O

3 Density of centralizers and finitely presented
residually free groups

The next proposition gives a sufficient condition for a conjugacy separable
group to be hereditarily conjugacy separable.



Proposition 3.1. Let G be a conjugacy separable group and suppose for
every element g € G,

Calg) = Czl9)- (D
Then G is hereditarily conjugacy separable.

Proof. Let H be a finite index subgroup of GG. Let hy, ho be elements of H
such that h] = hy for some 7 in H. Since G is conjugacy separable, there
exists g € Gy, such that h = hy. Then§ :=yg~! € Cga(h). Tt follows that
g=01y¢ Ca(hl)ﬁﬂ(}. Since H is of finite index in G the set Cz(h1) H
is closed in the profinite topology, i.e. Cg(h1)H NG = Cg(h1)H. By
hypothesis Cg(h1)H = Cg(h1)H, so Cz(h1)H NG = Cg(h1)H and
therefore g = ch for some ¢ € Cg(h1),h € H. Hence h{ = h} = hy as
needed. O

Proposition 3.2. Direct product preserves Condition (1).

Proof. Let H be a finite index subgroup of G = [[; G,;. Write g =

<917 o 7971)’ where 9i S GZ Then CG(g) = H?:l CGi (91)7 and Cé(g) =
[Ti2, C& (gi). The result follows. O

Corollary 3.3. Let G = [, A; is a direct product of limit groups. Then
G is hereditarily conjugacy separable.

Proof. By Lemma 3.5 in [CZ-07] every limit group satisfies Condition (1).
Thus the result follows from Proposition 3.2. O

A subgroup H of G is called a virtual retract if there exists a subgroup
U of finite index in GG together with an epimorphism f : U — H such that

fu = id.

Theorem 3.4. Let H be a hereditarily conjugacy separable group and G is
a virtual retract of H. Then G is conjugacy separable.

Proof. Let hy, ho € G be elements such that hy = hg for some vy € G. We
show that h; and hs are conjugate in G.

Since G is a virtual retract of H, there exists a finite index subgroup U
of H containing G and an epimorphism f : U — G such that fig = id.
Therefore, G = G < U. By hypothesis U is conjugacy separable, so h; and

hg are conjugate in U. It follows that h{ W = hg as needed. O

Theorem 3.5. A finitely presented residually free group is conjugacy sepa-
rable.



Proof. Let GG be a finitely presented residually free group. By Claim 7.5
in [S-01] or Corollary 19 in [BMR-99] G embeds in a direct product of fi-
nitely many limit groups H = [[_; L;. Without loss of generality we may
assume that GG is a subdirect product of L;s. By Theorem 8§ [BW-07] the
finitely presented group G contains a term of the lower central series v, (L)
for some natural m. By Theorem B in [BW-07] every finitely presented sub-
group of L is closed in the profinite topology of L, so the profinite topology
of L induces the full profinite topology on G. It follows that G=G<L.
Let g1, g2 be elements of G such that g = go for some § € G. Since
L is conjugacy separable, there exists [ € L such that g% = g¢go. Thus
g™t € C3(g1) andso ég = | € Cz(gl)é N L for some ¢ € C7(g1)-
Since the product of any two subgroups of the finitely generated nilpotent
group L /v, (L) is closed (it is true even for polycyclic groups, see Exercise
13 in Chapter 4 of [Seg-83]) , the product Cz(g1)G is closed. Taking into
account that C'(g1) = C5(g1) by Proposition 3.2, we obtain the equality

cg=1¢€ Cf(gl)é N L = GCL(g1). It follows that there exist g € G and
¢ € Cp(g1) such that cg = [. It follows that g] = g5 as required. O

Remark 3.6. By Theorem 4.2 in [BHMS-07] a residually free group of type
F'Ps is finitely presented.
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