Limit Groups are Conjugacy Separable

S. C. Chagas, P. A. Zalesskii *
November 21, 2008

Abstract

A limit group is a finitely generated subgroup of a residually free group. We prove the result announced in the tittle.

2000 Mathematics Subject Classification: 20E06, 20E08, 20E18, 20E26, 20E45

1 Introduction

A group G is conjugacy separable if whenever x an y are non-conjugate elements of G, there exists some finite quotient of G in which the images of x and y are non-conjugate. The notion of the conjugacy separability owes its importance to the fact, first pointed out by Mal'cev [M-58], that the conjugacy problem has a positive solution in finitely presented conjugacy separable groups.

The objective of this paper is to prove the conjugacy separability for limit groups, i.e., finitely generated residually free groups.

Theorem 1.1. A limit group is conjugacy separable.

Limit groups play a key role in the solution of the Tarski problems ([K-M-06], [K-M-05], [K-M1-05], [S1]-[S6]) that asked whether the theories of free groups of different ranks > 2 are the same and whether this theory is decidable.

Kharlampovich and Myasnikov have studied limit groups extensively under the name fully residually free groups (see [K-M-98] and [K-M2-98]). Remeslennikov [R-89] had previously referred to them as ∃-free groups, reflecting the fact

^{*} Both authors were supported by CNPq.

that these groups have the same existential theory as a free group, or ω -residually free groups.

The Lyndon group plays a very important role in algebraic geometry over groups (see [K-M-98] and [K-M2-98]). It was proved in [K-M2-98]) that a finitely generated group is fully residually free (i.e. a limit group) if and only if it is isomorphic to a subgroup of the Lyndon group. It was proved by Lioutikova [L] that the Lyndon group is conjugacy separable. We give a different proof of this in the paper.

Combined with observation of Mal'cev [M-58] our theorem gives a new proof for the fact that a conjugacy problem admits positive solution for limit groups (cf. [K-M-R-S-2004]).

Our proof is based on the results of the paper [R-S-Z-98], where it was proved that certain residual properties and, in particular, the conjugacy separability, are preserved by free products with cyclic amalgamations. Bass-Serre theory of groups acting on trees and its profinite version are also explored.

2 Preliminaries

The profinite topology on a group G is the topology where the collection of all finite index normal subgroups of G serves as a fundamental system of neighborhoods of the identity element $1 \in G$, turning G into a topological group. Note that for a subgroup H of G, the profinite topology of H can be stronger than the topology induced by the profinite topology of G.

The completion \widehat{G} of G with respect to this topology is called the profinite completion of G and can be expressed as an inverse limit

$$\widehat{G} = \varprojlim_{N} G/N$$

of all finite quotients of G. Thus \widehat{G} is a profinite group. Moreover, there exists a natural homomorphism $\iota: G \longrightarrow \widehat{G}$ that sends $g \mapsto (gN)$; ι is a monomorphism when G is residually finite. If S is a subset of \widehat{G} , we denote by \overline{S} its closure in \widehat{G} . The profinite topology on G is induced by the topology of \widehat{G} .

The next proposition expresses the conjugacy separability property of G in terms of its profinite topology and we shall use it freely in the paper.

Proposition 2.1. Let G be a group, then the following conditions are equivalent:

(i) G is conjugacy separable;

- (ii) for each $x \in G$, the conjugacy class of x^G of x is closed in the profinite topology. In particular G is residually finite;
- (iii) G is residually finite and for each pair of elements $x, y \in G$ such that $y = x^{\gamma}$, for some $\gamma \in \widehat{G}$, there exists $g \in G$ such that $y = x^{g}$.

Our main tool are the results in [R-S-Z-98]. To explain these results define the class \mathcal{X}' to be the class of groups obtained by forming successfully free products with cyclic amalgamation starting from free by finite or polycyclic by finite groups. One of the main result in [R-S-Z-98] is the following

Theorem 2.2 (R-S-Z-98). Any group $G \in \mathcal{X}'$ has the following properties:

- (i) G is conjugacy separable;
- (ii) G is quasi-potent, i.e. each cyclic subgroup H of G contains a finite index subgroup K whose every subgroup of finite index is of the form $H \cap N$ for some normal subgroup N of finite index in G;
- (iii) the product AB of cyclic subgroups A and B of G is closed in the profinite topology of G;
- (iv) every cyclic subgroup of G is conjugacy distinguished, i.e. $\bigcup_{g \in G} H^g$ is closed in the profinite topology of G.
- (v) for any pair of cyclic subgroups C_1 and C_2 of G, one has $C_1 \cap C_2 = 1$ if and only if $\overline{C_1} \cap \overline{C_2} = 1$, where \overline{X} denotes the closure of a subset X in \widehat{G} .
- (vi) for any element g of infinite order in G and every $\gamma \in \widehat{G}$ such that $\gamma \overline{\langle g \rangle} \gamma^{-1} = \overline{\langle g \rangle}$, one has $\gamma g \gamma^{-1} = g$ or $\gamma g \gamma^{-1} = g^{-1}$.

To each free amalgamated product $G=G_1*_CG_2$ one can associate a standard tree S(G), constructed as follows: the vertex set is $V(S(G))=G/G_1\cup G/G_2$, the edge set is E(S(G))=G/H, and the initial and terminal vertex of an edge gH are respectively gG_1 and gG_2 . The group G acts naturally on S(G). Similarly for a profinite amalgamated free product $\widehat{G}=\widehat{G_1}\coprod_{\widehat{H}}\widehat{G_2}$ one can associate a profinite standard tree $S(\widehat{G})$ whose vertex set $V(S(\widehat{G}))=\widehat{G}/\widehat{G_1}\cup\widehat{G}/\widehat{G_2}$, the edge set is $E(S(\widehat{G}))=\widehat{G}/\widehat{H}$, and the initial and terminal vertex of an edge $g\widehat{H}$ are $g\widehat{G_1}$ and $g\widehat{G_2}$ respectively (see [Z-M-89]). The sets $V(S(\widehat{G}))$, $E(S(\widehat{G}))$ are profinite spaces (i.e, they are compact Hausdorff totally disconnected topological spaces), and the natural action of \widehat{G} on $S(\widehat{G})$ is continuous.

The profinite topology on $G = G_1 *_C G_2$ is called *efficient* if G is residually finite, the profinite topology on G induces the full profinite topology on G_1 , G_2 and G, and these subgroups are closed in the profinite topology of G. Note that if the profinite topology on G is efficient, then by the universal property for the profinite amalgamated free product, the profinite completion \widehat{G} of G is the profinite amalgamated free product $\widehat{G} = \widehat{G_1} \coprod_{\widehat{G}} \widehat{G_2}$ of the profinite completions of the factors.

The following remark allows to use the profinite version of the Bass-Serre theory of groups acting on trees.

Remark 2.3. If G belongs to the class \mathcal{X}' , then the properties (ii) and (iv) in Theorem 2.2 imply that the profinite topology on G is efficient (see Lemma 2.1 in [R-Z-96]). The efficience of the profinite topology on G implies in turn that S(G) embeds naturally in $S(\widehat{G})$. This follows from the fact that G/G_i embeds in $\widehat{G}/\widehat{G}_i$ because G_i are closed in G for i=1,2. Moreover, S(G) is dense in $S(\widehat{G})$.

3 Proofs

We apply Theorem 2.2 to give another proof of conjugacy separability of the Lyndon group. The construction of the Lyndon group can be given as follows (see [M-R-96], Theorem 8): Let F be a free group and put $\mathcal{Y}_1 = F$. For i > 1, define the class \mathcal{Y}_i to consist of all groups that are free products $G_i = G_{i-1} *_C A$ of a group $G_{i-1} \in \mathcal{Y}_{i-1}$ and a free abelian group A of finite rank amalgamating maximal cyclic subgroup of G_{i-1} with a subgroup of A generated by a generater of A (this construction is known as an extension of the centralizer). Let $\mathcal{Y} = \bigcup_{n \in \mathbb{N}} \mathcal{Y}_n$. Clearly, the groups of \mathcal{Y} constitute an inductive system with respect to inclusions. The Lyndon group L is defined to be the inductive limit $L = \lim_{G \in \mathcal{Y}} G$.

The class \mathcal{Y} is a subclass of \mathcal{X}' and so as an immediate consequence of Theorem 2.2 we have the following

Proposition 3.1. Each group from \mathcal{Y} enjoys the properties (i)-(iv) of Theorem 2.2. In particular, every group of \mathcal{Y} is conjugacy separable.

Theorem 3.2. *The Lyndon group is conjugacy separable.*

Proof. Let a,b be elements of the Lyndon group L which are conjugate in \widehat{L} . Then there exists $G_i \in \mathcal{Y}_i$ such that $a,b \in G_i$. We claim that there exists an epimorphism f of L onto G_i such that $f_{|G_i|}$ is id.

First note that for any group $G_j = G_{j-1} *_C A$ from \mathcal{Y}_j there is an epimorphism $f_j : G_j \longrightarrow G_{j-1}$ constructed as follows: choose a direct complement to C in A and send it to 1; send the elements of G_{j-1} identically to G_{j-1} and extend this map to a homomorphism f_j by the universal property for amalgamated free products. Put $f_{ji} = f_{i+1}f_{i+2}\cdots f_{j-1}f_j$ for j > i. By the universal property of a direct limit there exists $f: L \longrightarrow G_i$ that extends f_{ji} for all j > i. Note that $\varphi_i f = \mathrm{id}$, where $\varphi_i : G_i \longrightarrow L$ is the natural embedding.

Extend f to $\hat{f}: \widehat{L} \longrightarrow \widehat{G}_i$. Since a and b are conjugate in the completion of the Lyndon group, their images in G_i conjugate in \widehat{G}_i . Then, by Proposition 3.1, they are conjugate in G_i as needed.

Lemma 3.3. Let G be a limit group and H a cyclic subgroup of G. Then $N_G(H) = C_G(H)$.

Proof. Pick $n \in N_G(H) \setminus H$. By Lemma 1 in [B-62] a 2-generated residually free group is either free or abelian, hence so is the subgroup $\langle n, H \rangle$. Since the normalizer of every cyclic subgroup of a free group coincides with the centralizer, the result follow.

Since a limit group G is a finitely generated subgroup of the Lyndon group L (see Theorem 4 in [K-M2-98]), there exists n such that G embeds in some $G_n \in \mathcal{Y}_n$.

Proposition 3.4. Let G be a limit group and H a cyclic subgroup of G. Then $N_{\widehat{G}}(\bar{H}) = C_{\widehat{G}}(\bar{H})$.

Proof. Since G is a subgroup of the group G_n it suffices to prove the proposition assuming that $G = G_n$. Let h be a generator of H and $\gamma \in N_{\widehat{G}}(\overline{H})$. Then by Proposition 3.1 and Theorem 2.2 either γ centralizers h or $h^{\gamma} = h^{-1}$. Since $G = G_n$ is conjugacy separable (see Proposition 3.1 again) there exists $g \in G$ with $h^g = h^{-1}$ contradicting the preceding lemma. \square

Lemma 3.5. Let $G \in \mathcal{Y}_n$ and g be an element of G. Then

(a)
$$\overline{\langle g \rangle} \cap \overline{\langle g \rangle}^x \neq 1$$
 implies $\overline{\langle g \rangle} = \overline{\langle g \rangle}^x$ for any $x \in \widehat{G}$.

(b)
$$\overline{C_G(\langle g \rangle)} = C_{\bar{G}}(\overline{\langle g \rangle})$$

Proof. We use induction on n. Without loss of generality we may assume that $\langle g \rangle$ is maximal cyclic.

Let n=1. Then G is free. Consider its action on its Cayley graph $\Gamma(G)$ and the action of \widehat{G} on its Cayley graph $\Gamma(\widehat{G})$. We think of $\Gamma(G)$ as a dense subgraph of $\Gamma(\widehat{G})$.

Put $Z=\langle g \rangle$. By Proposition 3.4 in [S-77] there exists the infinite straight line T_g on which g acts. The intersection $\widehat{Z} \cap \widehat{Z}^x$ is non-trivial and acts on $\overline{T_g} \cap x^{-1}\overline{T_g}$ and since $\overline{T_g}$ have no nontrivial infinite closed subgraphs (see Lemma 4.4 in [R-S-Z-98]) $\overline{T_g} = x^{-1}\overline{T_g}$. It follows that x acts on $\overline{T_g}$. Let H be a closed subgroup of \widehat{G} leaving $\overline{T_g}$ invariant. Then H/\overline{Z} acts freely on a circuit $\overline{T_z}/\overline{Z}$. Thus H is the profinite fundamental group of a circuit $\overline{T_z}/H = (\overline{T_z}/\overline{Z})/(H/\overline{Z})$ and so is procyclic. Since $\overline{\langle g \rangle}$, $\overline{\langle g \rangle}^x$ are subgroup of H by Lemma 2.2 in [R-Z-96] $\overline{\langle g \rangle} = \overline{\langle g \rangle}^x$. This proves (a).

Since $\overline{T_g}$ is the unique minimal g-invariant subtree of $S(\widehat{G})$ (cf. [R-Z-96], Lemma 2.2), $C_{\widehat{G}}(g)$ acts naturally on $\overline{T_g}$ and so is contained in H. But $\overline{T_g}/H = T_g/(G\cap H)$ because for $h\in H$ and $m,hm\in \Gamma(G)$ one has obligatory that $h\in G\cap H$. Hence $H=\overline{H\cap G}$. Since Z is maximal abelian $Z=H\cap G$ and so $H=C_{\widehat{G}}(g)=\bar{Z}=\widehat{Z}$ and $x\in\widehat{Z}$ follows.

Suppose now n > 1 and for n - 1 the proposition holds. Recall that $G = G_{n-1} *_C A$, where $G_{n-1} \in \mathcal{Y}_{n-1}$, A is free abelian of finite rank and C is infinite cyclic. Let S(G) and $S(\widehat{G})$ be the trees associated with decompositions of G and \widehat{G} . Since the profinite topology on G is efficient, S(G) is embedded in $S(\widehat{G})$ (see Remark 2.3).

Claim 1. Let $g \in \widehat{C}$. Then $C_{\widehat{G}}(g) = \widehat{A}$.

By Corollary 2.7 in [R-Z-96] combined with Proposition 3.4

$$C_{\widehat{G}}(g) = N_{\widehat{G}}(\overline{\langle g \rangle}) = N_{\widehat{G}_{n-1}}(\overline{\langle g \rangle}) \coprod_{\widehat{C}} N_{\widehat{A}}(\overline{\langle g \rangle}) = C_{\widehat{G}_{n-1}}(g) \coprod_{\widehat{C}} C_{\widehat{A}}(g).$$

By the induction hypothesis $C_{\widehat{G}_{n-1}}(g) = \overline{C_{G_{n-1}}(g)} = \widehat{C}$. So $C_{\widehat{G}}(g) = \widehat{C} \coprod_{\widehat{C}} \widehat{A} = \widehat{A}$ as required.

Claim 2.

- If $g \in G_{n-1} \setminus A^{G_{n-1}}$. Then $C_{\hat{G}}(g) \cap \widehat{G}_e = 1$, for all $e \in E(S(\widehat{G}))$.
- If $g \in A$, then $C_{\widehat{G}}(g) = \widehat{A}$.

Suppose first that $g \in G_{n-1} \setminus A^{G_{n-1}}$. Let $1 \neq z \in C_{\hat{G}}(g) \cap \widehat{G}_e$. Since $g \in G_{n-1}$, g stabilizes a vertex v.

By Proposition 2.8 in [Z-M-89] $g=g^z$ stabilizes the geodesic $[v,x^{-1}v]$. If $v=z^{-1}v$ it follows that $z\in \widehat{G}_{n-1}$ and so the result follows from the fact that C is conjugacy distinguished in G_{n-1} . Otherwise, since $\emptyset \neq E[v,z^{-1}v]=E(S(\widehat{G}))\cap [v,z^{-1}v]$ is compact, by Proposition 2.15 in [Z-M-89] there exist an edge $e\in [v,z^{-1}v]$ whose vertex is v. It follows that g stabilizes e. Since C is conjuguacy distinguished in \widehat{G}_{n-1} , g is conjugate to an element of C contradicting the hypothesis.

Suppose now that $g \in A$. Let $h \in \hat{G}$ with [h,g]=1 and w a vertex whose stabilizer is equal to A. Then gw=w and ghw=hw so by Theorem 2.8 in [Z-M-89] g stabilizes the geodesic [w,hw]. If w=hw, then $h \in \widehat{A}$ and there is nothing to prove. Otherwise, as before there exist the edge e in [w,hw] that have w as a vertex. Then conjugating g if necessary we may assume that $g \in \widehat{G}_e = \widehat{C}$, and by Claim 1 $C_{\widehat{G}}(g) = \widehat{A}$. The claim is proved.

Case 1 (non-hyperbolic). g stabilizes a vertex v.

(a) Put $Z = \langle g \rangle$. If x centralizes Z there is nothing to prove. Without loss of generality may assume that $g \in G_{n-1} \cup A$.

Let v be a vertex stabilized by G_{n-1} or A. If v=xv, then $x\in G_{n-1}$ or $x\in A$, so by induction hypothesis the result follows. Suppose $v\neq xv$. Then by Theorem 2.8 in [Z-M-89] Z stabilizes a geodesic [v,xv] in $S(\widehat{G})$. Hence Z stabilize an edge and so is conjugate in \widehat{G} to a subgroup of \widehat{C} . Since C is conjugacy distinguished (see Proposition 3.1 and Theorem 2.2) Z is conjugate in G to a subgroup of C and hence is conjugate of C since is maximal cyclic. Thus we may assume that Z=C.

Since $C \cap C^x$ and $(C \cap C^x)^x$ are subgroups of C^x , by Lemma 2.4 (ii) in [R-Z-96] they are equal, and so $C \cap C^x$ is normalized by x. Then by Claim 1 $x \in \widehat{A}$, and so $C^x = C$.

(b) Since g is conjugate to an element of $G_{n-1} \cup A$, we can assume that g is in G_{n-1} or A, say in G_{n-1} . Let g be an element of G and suppose that $\gamma \in \widehat{G} = \widehat{G_{n-1}} \coprod_{\widehat{C}} \widehat{A}$ satisfies $\gamma g \gamma^{-1} = g$. If $\gamma \in \widehat{G}_{n-1}$ then the result follows from the induction hypothesis. Otherwise, by Theorem 3.12 in [Z-M-89], $g \in \delta \widehat{C} \delta^{-1}$ for some $\delta \in \widehat{G}_{n-1}$. By Proposition 3.1 and Theorem 2.2 C is conjugacy distinguished so g is conjugate in G_{n-1} to an element of G, and therefore we may assume that $g \in C$. By Corollary 2.7 in [R-Z-96] $N_{\widehat{G}}(\overline{\langle g \rangle}) = N_{\widehat{G}_{n-1}}(\overline{\langle g \rangle}) \coprod_{\widehat{C}} N_{\widehat{A}}(\overline{\langle g \rangle})$ and so by Proposition 3.4,

$$C_{\widehat{G}}(g) = N_{\widehat{G}}(\overline{\langle g \rangle}) = N_{\widehat{G}_{n-1}}(\overline{\langle g \rangle}) \coprod_{\widehat{C}} N_{\widehat{A}}(\overline{\langle g \rangle}) = C_{\widehat{G}_{n-1}}(g) \coprod_{\widehat{C}} C_{\widehat{A}}(g).$$

Since $C_{\widehat{G}_{n-1}}(g) = \overline{C_{G_{n-1}}(g)}$ by induction hypothesis, the result follows in this case.

Case 2. g does not stabilize any vertex of S(G).

(b) By Proposition 3.4 in [S-77] there exists the infinite straight lines T_g on which g acts. Since $\overline{T_g}$ is the unique minimal g-invariant subtree of $S(\widehat{G})$ (cf. [R-Z-96], Lemma 2.2), $C_{\widehat{G}}(g)$ acts naturally on $\overline{T_g}$. Moreover, the kernel of this action is trivial. Indeed, if not then by Case 1 (a) all edge stabilizers of $\overline{T_g}$ are equal and so g normalizes an edge stabilizer \widehat{G}_e . But $N_{\widehat{G}}(\widehat{G}_e) = C_{\widehat{G}}(\widehat{G}_e)$ by Lemma 3.4. Therefore, by Case 1 (b) applied to a generated of G_e , so $g \in \widehat{G}_e$, contradicting to g being hyperbolic.

We prove that $\overline{T_g}/C_{\widehat{G}}(g) = T_g/C_G(g)$. Indeed, for $e \in E(T_g)$ and $z \in C_{\widehat{G}}(g)$ suppose $ze \in T_g$. Translating e and conjugating g correspondingly we may assume that e is the edge stabilized by C. Choose $h \in G$ such that he = ze. Then there exists $\hat{c} \in \widehat{C}$ such that $h\hat{c} = z$. Let e_1 be the third edge of [e, ze] (the geodesic [e, ze] has more then two edges since two adjacent edges in $S(\widehat{G})$ have opposite orientation and therefore can not be translations of each other).

We show that if $\hat{c} \notin C$ then $\hat{c}e_1 \notin S(G)$. Indeed, otherwise $\hat{c}\hat{g}_{e_1} \in G$ for some $\hat{g}_{e_1} \in \hat{G}_{e_1}$ and since by Proposition 3.1 G satisfies property (iii) of Theorem 2.2, CG_{e_1} is closed in the profinite topology of G; therefore $\hat{c}\hat{g}_{e_1} = cg_{e_1}$ for some $c \in C$, $g_{e_1} \in G_{e_1}$, so that $c^{-1}\hat{c} = g_{e_1}\hat{g}_{e_1}^{-1}$.

To arrive at contradiction we show that $c^{-1}\hat{c}=1$. Choose two edges from $[e,e_1]$ that have the common vertex v whose stabilizer is a conjugate of \widehat{G}_{n-1} , say e,e_0 . If $1\neq c^{-1}\hat{c}\in\bigcap_{e\in[e,e_1]}\widehat{G}_e$, then by Case 1 (a) $\widehat{C}=\widehat{G}_{e_0}=\widehat{C}^{g_v}$ for some $g_v\in\widehat{G}_v$. Hence $g_v\in N_{\widehat{G}}(\widehat{C})=C_{\widehat{G}}(\widehat{C})$ (see Proposition 3.4) and $g_v\not\in\widehat{C}$. Since C is self centralized, this contradicts maximality of the abelian group \widehat{C} proved in Case 1 (b). Therefore $\widehat{c}=c$ contradicting $\widehat{c}\not\in C$.

Now $\hat{c}e_1 \not\in S(G)$ implies $\hat{h}\hat{c}e_1 = ze_1 \not\in S(G)$ because h leaves S(G) invariant and so by Lemma 4.3 (iii) in [R-S-Z-98] $\hat{h}\hat{c}e = ze$ can not be in S(G). This contradiction shows that $z \in G \cap C_{\widehat{G}}(g) = C_G(g)$ as required.

Since the action of $C_{\widehat{G}}(g)$ on $\overline{T_g}$ is free and $\overline{T_g}/C_{\widehat{G}}(g) = T_g/C_G(g) = \overline{T_g}/\overline{C_G(g)}$ we deduce $C_{\widehat{G}}(g) = \overline{C_G(g)}$.

(a) Put $Z=\langle g\rangle$. By Proposition 3.4 in [S-77] there exists the infinite straight lines T_g on which g acts. The intersection $\widehat{Z}\cap\widehat{Z}^x$ is non-trivial it acts on $\overline{T_g}\cap x\overline{T_g}$ and since $\overline{T_g}$ have no nontrivial infinite closed subgraphs (see Lemma 4.4 in [R-S-Z-98]) $\overline{T_g}=x\overline{T_g}$. It follows that x acts on $\overline{T_g}$. Let H be the maximal closed

subgroup of \widehat{G} leaving $\overline{T_g}$ invariant. By Case 1 (a) applied to the stabilizer of an edge in T_g , the kernel of the action of H on $\overline{T_g}$ is trivial. Indeed, if not then by Case 1 (a) all edge stabilizers of $\overline{T_g}$ are equal and so g normalizes an edge stabilizer \widehat{G}_e . But $N_{\widehat{G}}(\widehat{G}_e) = C_{\widehat{G}}(\widehat{G}_e)$ by Lemma 3.4. Therefore, by Case 1 (b) applied to a generate of G_e , you have $g \in \widehat{G}_e$, contradicting to g being hyperbolic. Therefore, the g-stabilizers of vertices in g-are of order at most 2 and since g-are to stabilizers of vertices in g-are of order at most 2 and since g-are the profinite fundamental group of a circuit g-acts freely on a circuit g-acts freely on a circuit g-are of order at most 2. Thus g-are of order at most 2 and since g-are the profinite fundamental group of a circuit g-acts freely on g-acts free

In the next proposition we prove the conjugacy separability for a subgroup of finite index of $G_n \in \mathcal{Y}_n$. We note that in general it is an open question whether a subgroup of finite index of a conjugacy separable group is conjugacy separable.

Remark: The statement (b) of Lemma 3.5 is valid in fact for Limit group L. Indeed, L is a subgroup of some $G_n \in \mathcal{Y}_n$. By Theorem 3.7 below there exist a subgroup of finite index H in G that contain L such that L is semi direct factor of H. Therefore it suffices to prove the result for H.

Since $C_H(g) = C_G(g) \cap H$ and $C_{\widehat{H}}(g) = C_{\widehat{G}}(g) \cap \widehat{H}$, then $C_H(g)$ is dense in $C_{\widehat{H}}(g)$ by Exercise 3 on page 9 in [W-1998].

Proposition 3.6. Let H be a finitely generated finite index subgroup of a group $G = G_n \in \mathcal{Y}_n$. Then H is conjugacy separable.

Proof. Let $h_1, h_2 \in H$ be elements such that $h_1 = h_2^{\gamma}$, where $\gamma \in \widehat{H}$. We show that h_1 and h_2 are conjugate in H.

By Proposition 3.1 G_n is conjugacy separable, so there exists $g \in G_n$ such that $h_1^g = h_2$. Then $\delta := g\gamma \in C_{\widehat{G}}(h_1)$. It follows that $\gamma^{-1}\delta \in C_{\widehat{G}}(h_1)\widehat{H} \cap G$. Since H is of finite index in G the set $C_G(h_1)H$ is closed in the profinite topology, i.e. $\overline{C_G(h_1)H} \cap G = C_G(h_1)H$. By Lemma 3.5 $\overline{C_G(h_1)H} = C_{\widehat{G}}(h_1)\widehat{H}$, so $C_{\widehat{G}}(h_1)\widehat{H} \cap G = C_G(h_1)H$ and therefore g = ch for some $c \in C_G(h_1)$, $h \in H$. Hence $h_1^g = h_1^h = h_2$ as needed.

Theorem 3.7 (W-2006). Let G be a limit group and H a finitely generated subgroup of G. Then there exists a finite index subgroup K of G containing H and a epimorphism $\varphi: K \to H$, such that $\varphi_{|H} = id$.

Theorem 3.8. A limit group is conjugacy separable.

Proof. Let G be a limit group and $h_1, h_2 \in G$ elements such that $h_1 = h_2^{\gamma}$ for some $\gamma \in \widehat{G}$. We show that h_1 and h_2 are conjugate in G. Pick G_n such that $G \leq G_n$.

Since every finitely generated subgroup of a Lyndon group is a limit group, G_n is a limit group. Then by Theorem 3.7 there exists a finite index subgroup U of G_n and an epimorphism $f:U\longrightarrow G$ such that $f_{|G}=id$. By Proposition 3.6 U is conjugacy separable, so h_1 and h_2 are conjugate in U. It follows that $h_1^{f(u)}=h_2$ as needed.

References

- [B-62] Baumslag G., On generalised free products, Math. Zeitschr., **78** (1962), 423–438.
- [K-M-98] Kharlampovich O., Myasnikov A., Irreducible affine varieties over a free group. I. Irreducibility of quadratic extensions and Nullstellensatz, J. Algebra **200** (1998) 472–516.
- [K-M2-98] Kharlampovich O., Myasnikov A., *Irreducible affine varieties over a free group. II. Systems in triangular quasi quadratic form and description of resudually free groups*, J. Algebra **200** (1998) 517–570.
- [K-M-06] Kharlampovich O., Miasnikov A., *Elementary theory of free non-abelian groups* Journal of Algebra **302** (2006) 451–552.
- [K-M-05] Kharlampovich O., Myasnikov A., *Implicit function theorem over free groups* Journal of Algebra, **290** (2005), 1–203.
- [K-M1-05] O. Kharlampovich, A. Miasnikov Effective JSJ decompositions Contemp.Math. AMS, Algorithms, Languages, Logic (Borovik, ed.), CONM/378, 2005, 87–212.
- [L] Lioutikova, E., *Lyndon's group is conjugately residually free*, Internat. J. Algebra Comput. **13** (2003), no. 3, 255–275.
- [M-58] Mal'cev A. I., *On Homormorphisms onto finite groups*, Uchen. Zap. Ivanovskogo Gos. Ped. Inst., **18** (1958) 40-60.

- [K-M-R-S-2004] Kharlampovich O., Myasnikov A. G., Remeslennikov V. N., and Serbin D. E., *Regular Free Length Functions on Lyndon's Free Z*[t]- $group F^{Z[t]}$, Contemporary Mathematics, **360** (2004) 63–101.
- [M-R-96] Myasnikov A. G., Remeslennikov, V. N., Exponential groups 2: extension of centralizers and tensor completion of CSA-groups. Intern. Journal of Algebra and Computation, 6 (1996) 687-711.
- [R-89] Remeslennikov V. N., ∃-*free groups*, Sibirsk. Mat. Zh., **30** (1989), no. 6, 193-197.
- [R-S-Z-98] Ribes L., Segal D., Zalesskii P. A., Conjugacy separability and free products of groups with cyclic amalgamation, J. London Math. Soc., 2, 57 (1998) 609-628.
- [R-Z-96] Ribes, L., Zalesskii, P. A., Conjugacy separability of amalgamated free products of groups, Journal of Algebra, **179** (1996) 751-774.
- [S1] Z. Sela, *Diophantine geometry over groups. I: Makanin-Razborov diagrams*, Publ. Inst. Hautes Études Sci. **93** (2001) 31-105.
- [S2] Sela, Z. Diophantine geometry over groups. II. Completions, closures and formal solutions. Israel J. Math. **134** (2003), 173–254.
- [S3] Sela, Z. Diophantine geometry over groups. III. Rigid and solid solutions. Israel J. Math. **147** (2005) 1–73.
- [S4] Sela, Z. Diophantine geometry over groups. IV. An iterative procedure for validation of a sentence. Israel J. Math. 143 (2004) 1–130.
- [S5] Sela, Z. Diophantine geometry over groups V_2 : quantifier elimination. II. Geom. Funct. Anal. **16** (2006) 537–706.
- [S6] Sela, Z., Diophantine geometry over groups. VI. The elementary theory of a free group, Geom. Funct. Anal. **16** (2006) 707–730.
- [S-77] Serre, J. P., *Trees*, Springer Monographs in Mathematics, Springer, 1977.
- [Z-M-89] Zalesskii, P. A., Mel'nikov, O. V., Subgroups of profinite groups acting on trees, Math. Sb., **63** (1989) 405–424.
- [W-1998] Wilson, J. S., Profinite Groups, 1998. Clarendon Press, Oxford.

[W-2006] Wilton, H., *Hall's theorems for limit groups*, 2006. Preprint. ArXiv: math.GR/0605546.