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Abstract

Let G be a finitely presented pro-C group with discrete
relations. We prove that the kernel of an epimorphism of G
to ẐC is topologically finitely generated if G does not contain
a free pro-C group of rank 2. In the case of pro-p groups
the result is due to J.Wilson and E. Zelmanov and does not
require that the relations are discrete [15], [17].

For a pro-p group G of type FPm we define a homologi-
cal invariant Σm(G) and prove that this invariant determines
when a subgroup H of G that contains the commutator sub-
group G′ is itself of type FPm. This generalises work of J.
King for Σ1(G) in the case when G is metabelian [10].

Both parts of the paper are linked via two conjectures
for finitely presented pro-p groups G without free non-cyclic
pro-p subgroups. The conjectures suggest that the above con-
ditions on G impose some restrictions on Σ1(G) and on the
automorphism group of G.
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1 Introduction

This paper contains two parts. The first part is concerned with ker-
nels of surjective homomorphisms G → ẐC, where G is a pro-C group,
C a class of finite groups closed under subgroups, quotients and ex-
tensions and ẐC the pro-C completion of the infinite cyclic group
Z. In the second part we define new homological invariants of pro-p
groups. The Conjecture 1 stated at the end of the Introduction can
be viewed as a bridge between both parts of the paper.

Theorem 1 Let G0 be a discrete finitely presented group and

ϕ0: G0 −→ Z

be an epimorphism. Then the kernel of the induced epimorphism

ϕ: Ĝ0 −→ ẐC

is either topologically finitely generated or Ĝ0 has a free pro-C group
of rank 2, where Ĝ0 is the pro-C completions of G0.

The proof of Theorem 1 is a modification of a result of R. Bieri and
R. Strebel that decomposes a finitely presented discrete group with
infinite cyclic quotient as an HNN extension with finitely generated
base and finitely generated associated subgroups [2]. In the case
when G is a pro-p group (i.e. C is the class of finite p-groups) the
above result is known in more general form i.e. the kernel of every
epimorphism ϕ from a finitely presented pro-p group G to Zp for
G without non-cyclic pro-p free subgroups is topologically finitely
generated. Indeed by a recent result of Zelmanov a pro-p group that
satisfies the Golod-Shafarevich type inequality always contains a free
non-cyclic pro-p subgroup [17]. Furthermore the proofs of the results
of [15, Thm A, Cor A] or their versions in the last chapter of [16]
imply that every kernel of a surjective homomorphism of a finitely
presented pro-p group that does not satisfy a Golod-Shafarevich type
inequality

to Zp is (topologically) finitely generated.
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In the second part of the paper we consider only pro-p groups. For
every m ≥ 1 we define an invariant Σm(G) for a pro-p group G of
homological type FPm, FP1 being (topologically) finitely generated,
FP2 - finitely presented in the category of pro-p groups. By definition

T (G) = {χ: G → K[[t]]× | χ is continuous homomorphism},

where K is the algebraic closure of the field with p elements. Define
χ as the unique continuous ring homomorphism Zp[[G]] → K[[t]] that
lifts χ. We view the (continuous) homology groups Hi([G,G],Zp) as
(right) pro-p Zp[[G]]-modules via the right action of G on [G,G] by
conjugation. Note that since G is (topologically) finitely generated
[G, G] is a closed subgroup of G [13, Lemma 4.2.3]. Observe that
Hi([G,G],Zp) is in fact a (right) pro-p Zp[[G/[G,G] ]]-module.

Definition 1 Let m be a natural number and G be a pro-p group of
type FPm. We define Σm(G) as the set

{χ ∈ T (G)\{1} | annZp[[G]]Hi([G,G],Zp) 6⊆ Ker χ for every 1 ≤ i ≤ m},

where annZp[[G]]Hi([G,G],Zp) is the annihilator of Hi([G,G],Zp) in
Zp[[G]] i.e. contains those elements λ ∈ Zp[[G]] that act trivially on
Hi([G,G],Zp).

We note that the definition of Σm(G) makes sense for groups that
are not of type FPm. Still we want to restrict ourselves to the class
of groups G of type FPm as in this case by Lemma 1 from the pre-
liminaries the homology group Hi([G,G],Zp) is finitely generated as
a pro-p Zp[[G/[G,G] ]]-module for all i ≤ m. It is obvious by the
definition that

. . . ⊆ Σm(G) ⊆ Σm−1(G) ⊆ . . . ⊆ Σ1(G) ⊆ T (G).

By now the invariant Σm(G) has been known (in a slightly different
form) only in the case m = 1, G metabelian and has turned out to be
extremely useful in the classification of the metabelian pro-p groups
of homological type FPm [9], [11]. We prove two main results about
the new invariants. The first is a pro-p version of a result of R. Bieri
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and B. Renz for discrete groups [1]. Compared to the discrete case,
the proof of the pro-p case is much easier and does not have any
geometric flavour, which is hardly a surprise.

Theorem 2 Let m be a natural number, G be a pro-p group of type
FPm and H be a closed subgroup of G that contains the commutator
subgroup [G,G]. Then H is of type FPm if and only if

T (G,H) = {χ ∈ T (G) | χ(H) = 1} ⊆ Σm(G) ∪ {1}.

In Lemma 5 we show a characterisation of the invariant Σm(G) in
terms of J. King’s invariant ∆V (Q) in the special case when G is an
extension of V by Q, V and Q are abelian and we view V as a right
Zp[[Q]]-module via conjugation. By definition King’s invariant is

∆V (Q) = {χ ∈ T (Q) | annZp[[Q]]V ⊆ Ker χ} ∪ {1}.
This invariant turns out to be important for the classification of the
metabelian pro-p groups of type FPm. In Theorem 3 we find another
characterisation of the invariant ∆V (Q).

Theorem 3 Let Q be a finitely generated abelian pro-p group, V a
(right) finitely generated pro-p Zp[[Q]]–module. Then χ ∈ T (Q)\{1}
is an element of ∆V (Q) if and only if there is a non-zero continuous
Fp-linear map

wχ: V/pV → K[[t]]

such that

wχ(vq) = wχ(v)χ(q) for all v ∈ V/pV, q ∈ Q.

The proof of Theorem 3 relies on developing commutative algebra
methods for the ring Zp[[Q]], where Q is a finitely generated abelian
pro-p group. Commutative algebra methods have already been help-
ful in showing a similar result for the Bryant-Groves invariant of
metabelian Lie algebras [12, Lemma 2]. It is interesting to note that
by now higher dimensional invariants of Lie algebras have not been
defined due to the lack of geometric methods. The invariants intro-
duced in this paper cannot be modified for Lie algebras as in the Lie
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case the homology groups are not entirely responsible for detecting
the homological property FPm. Furthermore in the Lie case it is al-
ready known that for a finitely presented Lie algebra L without free
non-abelian Lie subalgebras every ideal of codimension one is finitely
generated as a Lie algebra [14]. This could be viewed as Lie algebra
counterpart of Theorem 1 (without any restrictions about relations).
It is worth noting that in [14] only the case of a soluble L algebra is
stated but in fact the proof uses only that L has no non-cyclic free
Lie subalgebras.

As a corollary of Lemma 5 and Theorem 3 we obtain the following
result.

Corollary 1 Let G be a pro-p group of type FPm. Then χ ∈ T (G) \
{1} is not in Σm(G) if and only if there is at least one i such that
1 ≤ i ≤ m and there is a non-zero continuous Fp-linear map

wχ,i:Fp⊗ZpHi([G,G],Zp) → K[[t]]

such that for all v ∈ Fp⊗ZpHi([G,G],Zp), q ∈ Q = G/[G,G],

wχ,i(vq) = wχ,i(v)χ(q),

where Q acts on the homology group Hi([G,G],Zp) via the right ac-
tion of G on the commutator [G,G] by conjugation.

We state two conjectures, the first is motivated by the main result
of [3]. We call two elements χ1, χ2 of T (G) antipodal if χ1χ2 = 1.
An element χ of T (G) is trivial if χ = 1.

Conjecture 1 Let G be a pro-p group such that G is finitely pre-
sented (in the pro-p sense) and [G,G] is without non-cyclic free pro-p
subgroups. Then T (G)\Σ1(G) does not have non-trivial antipodal el-
ements.

Conjecture 2 Let G be a pro-p group such that G is finitely pre-
sented (in pro-p sense), [G,G] is not (topologically) finitely generated
and [G,G] is without non-cyclic free pro-p subgroups. Then there does
not exist a (continuous) automorphism β of G such that the induced
by β automorphism to Q = G/[G,G] is the antipodal automorphism.
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Note that Conjecture 1 if true would imply Conjecture 2. As well
it would imply another proof of the more general version of Theorem
1 in the pro-p case (i.e. without any restrictions on the type of
relations) that does not use Zelmanov’s result [17]. Indeed if G is
a pro-p group satisfying the assumptions of Conjecture 1 then by
the conclusion of Conjecture 1 and the King’s criterion [9] G/G′′ is
finitely presented (in the pro-p sense). Finally by [15, Cor A] any
kernel of a projection of a finitely presented soluble pro-p group to
Zp is (topologically) finitely generated.

Furthermore by King’s classification [9] Conjecture 1 holds for
metabelian pro-p groups. Hence Conjecture 2 holds for metabelian
pro-p groups. We show in Proposition 1 that the property deduced in
Conjecture 2 does not characterise finite presentability of metabelian
pro-p groups, namely there is a (topologically) finitely generated
metabelian pro-p group that is not finitely presented (in the pro-p
sense) and there is no (continuous) automorphism of G that induces
the antipodal map on the abelianization G/[G,G]. In contrast the
property deduced in Conjecture 1 characterises finite presentability
in the category of metabelian pro-p groups.

2 Preliminaries

2.1 Homological properties of pro-p groups

In this section G is a pro-p group, Zp[[G]] is the completed group
algebra of G i.e. the inverse limit of ordinary group algebras

(Z/pkZ)[G/N ]

over all k ∈ N and all open normal subgroups N of G. We call a
(right) module M over Zp[[G]] a pro-p Zp[[G]]-module if its additive
structure makes it a pro-p group, the action of Zp[[G]] on M is con-
tinuous and the action of Zp is the standard one. The category of
pro-p Zp[[G]]-modules has enough projectivities i.e. every module is
a quotient of a free module and this allows us to develop a homo-
logical machinery. A good reference about homological properties of
pro-finite groups is [13].
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A pro-p group G is said to be of homological type FPm if there is a
projective (continuous) resolution of the trivial pro-p Zp[[G]]-module
Zp

F : . . . → Fi → Fi−1 → . . . → F0 → Zp → 0

with all Fi (topologically) finitely generated pro-p Zp[[G]]-modules
for i ≤ m. It is not difficult to see that G is of type FPm if and only

if all continuous homology groups Hi(G,Fp) = Tor
Zp[[G]]
i (Zp,Fp) are

finite for i ≤ m, where Tor
Zp[[G]]
i (Zp, V ) for V a (left) pro-p Zp[[G]]-

module is the homology group in the category of pro-p groups i.e. it is
calculated using a continuous projective resolution of Zp. In fact the
equivalence between G having type FPm and Hi(G,Fp) being finite
for i ≤ m is an easy corollary of the fact that a subset X of a pro-p
Zp[[G]]-module M is a (topological) generating set if and only if the
image of X in M ⊗Zp[[G]] Fp is a (topological) generating set over Fp.
Furthermore if X is finite and generates M as pro-p Zp[[G]]-module
then it generates M as abstract module over the ring Zp[[G]] [5, 1.5].

The above criterion for groups G of type FPm can be slightly
improved when G has a normal subgroup N such that Zp[[G/N ]]
is topologically (right) Noetherian i.e. increasing sequences of closed
submodules always stabilize. Note that the completed group algebras
of pro-p groups of finite rank (in the sense of [7]) are topologically
(right) Noetherian [16, Thm 8.7.8].

Lemma 1 ([10]) Suppose G is a pro-p group with normal closed sub-
group N such that G/N has finite rank. Then G is of type FPm if
and only if Hi(N,Fp) is a finitely generated (right) pro-p Fp[[G/N ]]-
module (topologically or abstractly is the same) for all i ≤ m, where
the right action of G/N on Hi(N,Fp) is induced by the conjugation
of G on N .

2.2 King’s invariant for metabelian groups

Suppose Q is a finitely generated abelian pro-p group and A is a
finitely generated (right) pro-p Zp[[Q]]-module. King’s invariant

∆A(Q) = {χ ∈ T (Q) | annZp[[Q]]A ⊆ Ker χ} ∪ {1}
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turns out to be important for the classification of the metabelian
pro-p groups of type FPm stated in the following theorem. The case
m = 2 is done in [9] and the case of general m can be found in [11].

Theorem 4 Let 1 → A → G → Q → 1 be a short exact sequence
of pro-p groups, G (topologically) finitely generated, A and Q abelian
and m > 1 be an integer. Then the following are equivalent :

1. G is of type FPm;
2. The m-th completed exterior power of A is finitely generated

over Zp[[Q]] via the diagonal Q-action;
3. The m-th completed tensor power of A is finitely generated over

Zp[[Q]] via the diagonal Q-action;
4. Whenever χ1, . . . , χm ∈ ∆A(Q) and χ1 . . . χm = 1 then all χi

are 1.

Note that for G metabelian, A = [G,G] and Q = G/A we have
that H1(A,Zp) ' A and hence there is a natural isomorphism be-
tween ∆A(Q) and Σ1(G)c: = T (G)\Σ1(G). Furthermore the invariant
∆A(Q) is important for understanding the structure of the module
A.

Theorem 5 ([9]) Suppose Q is a (topologically) finitely generated
abelian pro-p group, H a (closed) subgroup of Q and A a finitely
generated pro-p Zp[[Q]]-module. Then A is finitely generated as a
pro-p Zp[[H]]-module if and only if

T (Q,H) ∩∆A(Q) = {1},

where T (Q,H) = {χ ∈ T (Q) | χ(H) = 1}. In particular A is
(topologically) finitely generated if and only if ∆A(Q) = {1}.

Finally we remind the reader that the invariant ∆A(Q) is additive.

Lemma 2 [9, Lemma 2.3] Let 0 → A1 → A → A2 → 0 be a short
exact sequence of finitely generated pro-p Zp[[Q]]-modules. Then

∆A(Q) = ∆A1(Q) ∪∆A2(Q).
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3 Proof of Theorem 1

The proof of Theorem 1 uses the construction of pro-C HNN exten-
sion. Following [13, p. 390] we consider a pro-C group H with closed
subgroups A and B and with a continuous isomorphism η : A → B.
Then the pro-C HNN-extension HNN C(H,A, B, t) with base H, as-
sociated subgroups A and B and stable letter t is a pro-C group given
by presentation 〈H, t | t−1at = η(a), a ∈ A〉. It satisfies a universal
property as in the discrete case and there is a natural homomorphism
of pro-C groups from H to HNN C(H, A, B, t) that in general is not
injective. When this map is injective we say that H is embedded in
HNN C(H,A, B, t). The images of A and B in HNN C(H, A,B, t)
are isomorphic via conjugation with t.

Lemma 3 Let G = HNN C(H,A, B, t) be a pro-C HNN-extension
with the base group H embedded in G and associated subgroups A,B.
If G does not contain non-abelian free pro-C subgroups then A = B =
H.

Proof Suppose without loss of generality A 6= H. Then there exists
an open normal subgroup N of G such that NA 6= NH. Note that
by the universal property of pro-C HNN -extensions [13, p. 390] the
canonical homomorphism H → HN/N extends to a homomorphism
of pro-C groups

G = HNN C(H,A, B, t) → HNN C(HN/N,AN/N, BN/N, t),

that is in fact an epimorphism. Thus we may assume that H, A,B
are in C, hence finite. Then G is just the pro-C completion KC of
the discrete HNN-extension K of H with associated subgroups A,B.
Since H is finite and A 6= H we have |B| = |A| < |H|, hence B 6= H.

Let θ : K → G = KC be the canonical homomorphism from a group
to its pro-C completion. As H embeds in G there is an epimorphism
ψ : G → L, where L ∈ C such that H ∩ Ker ψ = 1. Let F be
the kernel of the homomorphism ϕ = ψθ : K → L. By [6, Section
8.5, Thm 27] F is the fundamental group of a connected graph of
trivial groups, say with α vertices and β edges, where α is the number
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of double coset classes FgH in G and β is the number of double coset
classes FgA in G. If s is the index of A in H then β = sα. As a
maximal subtree in a connected graph with α vertices has α−1 edges
it follows that F is free of rank β− (α−1) = α(s−1)+1 ≥ α+1 ≥ 2
i.e. F is non-abelian.

Note that K/F is a subgroup of L, C is subgroup closed and hence
K/F ∈ C. Then the fact that C is extension closed implies that the
pro-C topology of K induces on F the full pro-C topology. Finally
by [13, Lemma 3.2.6] the pro-C completion of F embeds in G = KC.

¤

Proof of Theorem 1.

Let F be a finitely generated free discrete group such that G0 is
a quotient of F , π: F → G0 be the canonical epimorphism and the
kernel of π be a normal subgroup generated by a finite subset R of
F . Then one has the induced surjective homomorphism

ψ: F̂C → G = Ĝ0

with kernel the minimal normal closed subgroup containing R, where
F̂C is the pro-C completion of F . Without loss of generality we can
assume that F has a basis X = {x1, . . . , xn}, ϕ0π(x1) is a generator
of Z and ϕ0π(xi) = 0 for all i ≥ 2. Let F1 be the free subgroup of

F with basis X1 = {xxj
1

i }2≤i≤n,j∈Z, thus F1 = Ker(ϕ0π), and F1 be

the closure of F1 in F̂C. Then for N = Ker ϕ we have ψ−1(N) =

F1 ⊂ F̂C and all relators R are in ψ−1(N). Note that there is some
natural number d such that R is in the subgroup of F1 generated by

{xxj
1

i }2≤i≤n,−d≤j≤d.

Now we construct a pro-C HNN extension G̃ that will turn out to
be isomorphic to G. First we define the subgroups A,B and D of G
as the subgroups that are (topologically) generated by

{ψ(x
xj
1

i )}i≥2,−d≤j≤d−1, {ψ(x
xj
1

i )}i≥2,−d+1≤j≤d

and {ψ(x
xj
1

i )}i≥2,−d≤j≤d respectively.
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Then G̃ is given by the pro-C presentation 〈D, t | At ' B〉, where
the isomorphism At ' B is given by t−1at = ψ(x1)

−1aψ(x1) ∈ B.

We claim that D embeds in G̃ via the above presentation of G̃. In
general the base of a pro-C group does not embed in pro-C HNN
extension [8] but in our case D is already a subgroup of G i.e. we can
construct first a homomorphism from the free pro-C product D ∗ ẐC

to G which is identity on D and sends a generator t of ẐC to ψ(x1)

and then factor it through G̃ to get a homomorphism of pro-C groups

µ: G̃ → G.

We show that µ is an isomorphism by constructing its inverse. Let
θ be the homomorphism of pro-C groups F̂C → G̃ sending x1 to t,
xi to ψ(xi) ∈ D for i ≥ 2. We claim that the choice of D implies
that θ(R) = 1, hence θ factors through G and gives the inverse of

µ. Indeed an element r ∈ R is a word w = w(x
xj
1

i : i ≥ 2,−d ≤
j ≤ d) and θ(w) = w(ψ(xi)

tj : i ≥ 2,−d ≤ j ≤ d). Note that by

the definition of the base and associated subgroups of G̃ we have

ψ(xi)
tj = ψ(x

xj
1

i ) ∈ D ⊂ G̃ for i ≥ 2,−d ≤ j ≤ d. Thus θ(w) =

w(ψ(x
xj
1

i ): i ≥ 2,−d ≤ j ≤ d) ∈ D and w(ψ(x
xj
1

i ): i ≥ 2,−d ≤ j ≤
d) = ψ(w(x

xj
1

i : i ≥ 2,−d ≤ j ≤ d)) = ψ(r) = 1 as required.
Now we have decomposed G as a pro-C HNN extension with (topo-

logically) finitely generated base D and (topologically) finitely gen-
erated associated subgroups A and B. By Lemma 3 a pro-C HNN
extension where the base embeds in the group and is not equal to
the associated subgroups always contains a free pro-C subgroup of
rank 2. If G does not contain such free pro-C subgroup it follows
that D = A = B = Aψ(x1). Hence A = D is normal in G and equal
to the kernel of ϕ. This completes the proof of the theorem as D by
definition is (topologically) finitely generated.¤

Corollary 2 Let G be a finitely presented pro-C group with discrete
relations R and without non-cyclic free pro-C subgroups. Suppose G
admits an infinite procyclic quotient. Then G = N o ẐC with N
(topologically) finitely generated.
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Proof Let µ: G = Ĝ0 → M be an epimorphism on an infinite pro-
cyclic quotient M of G and β: G0 → Ĝ0 be the canonical map. As
β(G0) is dense in G and M is infinite and abelian we deduce that
the abelianization of β(G0) is infinite, hence G0/[G0, G0] is infinite.
Then as G0 is finitely generated it has Z as an epimorphic image.
Finally we apply Theorem 1. ¤

Note that the fact that C is extension closed was used only in the
last paragraph of the proof of Lemma 3. Therefore, one obtains the
same results making the restriction on C milder, but strengthening
the restriction on G.

Lemma 4 Let C be a class of finite groups closed for subgroups, ho-
momorphic images and extensions with abelian kernel. Let

G = HNN C(H, A,B, t)

be a pro-C HNN-extension with the base group H embedded in G and
associated subgroups A,B. If G does not contain non-abelian free
pro-p subgroups for any prime p then A = B = H.

Proof It suffices to show that a pro-C HNN extension G = HNN C
(H,A, B, t) where the base embeds in the group and is not equal to
the associated subgroups always contains a free pro-p subgroup of
rank 2. Suppose without loss of generality that A 6= H. Then there
exists an open normal subgroup N of G such that NA 6= NH. Note
that G1 = HNN C(HN/N,AN/N,BN/N, t) is a quotient of G. By
[13, Prop. 7.6.7] a free pro-p group is projective as a profinite group,
hence if G1 contains a free pro-p subgroup then there is an isomorphic
copy of this subgroup in G. Thus from now on we may assume that
H,A, B are in C, hence are finite.

Let C0 be the smallest class of finite groups that contains C and
is closed for taking subgroup, quotient and extensions. Let M =
HNNC0(H, A,B, t) be the pro-C0 HNN-extension. Since H embeds
in G the kernel K0 of the natural epimorphism of M to G intersects
H trivially. So there exists an open subgroup F of M containing
K0 that intersects H trivially and therefore F is a free non-abelian
pro-C0 group (see the proof of Lemma 3).
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Since C is closed under extensions with abelian kernel, K0 is per-
fect. Therefore, K0 is in the kernel of an epimorphism of F onto its
maximal pro-p quotient Fp for every p. Furthermore as F is non-
abelian for some prime q the free group Fq is non-abelian. Thus Fq

is a quotient of F/K0 and hence embeds in F/K0 and in G. ¤

Theorem 6 Let C be a class of finite groups closed for subgroups,
homomorphic images and extensions with abelian kernel. Let G =
〈x1, x2, . . . , xn | R〉 be a finitely presented pro-C group having discrete
relations R and having no non-cyclic free pro-p subgroups for every
prime p. Then the following hold:

(i) If ϕ: G → ẐC is an epimorphism induced by an epimorphism of
discrete groups G0 = 〈x1, . . . , xn | R〉 −→ Z, then the kernel of ϕ is
topologically finitely generated ;

(ii) Under the assumptions of (i) G = NoẐC for some (topologically)
finitely generated normal subgroup N of G.

Proof. The proof is the same as the proof of Theorem 1 except that
we use Lemma 4 instead of Lemma 3. ¤

4 Applications of commutative algebra

methods to pro-p groups

We start this section with a simple lemma that is a straight corollary
of the definitions of Σm(G) and King’s invariant ∆A(Q).

Lemma 5 Let m be a natural number and G be a pro-p group of type
FPm. Then the canonical projection G → G/[G,G] sends

∪1≤i≤m∆Hi([G,G],Zp)(G/[G, G])

bijectively to T (G) \ Σm(G).
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Proof of Theorem 2

We note first that H/[G,G] is a (topologically) finitely generated
abelian pro-p group and hence we can apply Lemma 1 i.e. H is
of type FPm if and only if Hi([G,G],Zp) is finitely generated over
Zp[[H/[G, G] ]] via the right action of H on [G,G] by conjugation for
all i ≤ m. Note that as G is of type FPm by Lemma 1 Hi([G,G],Zp)
is finitely generated over Zp[[G/[G,G] ]] for every i ≤ m. By Theo-
rem 5 Hi([G,G],Zp) is finitely generated over Zp[[H/[G,G] ]] if and
only if T (G/[G,G], H/[G,G]) ∩ ∆Hi([G,G],Zp)(G/[G,G]) = 1. This
together with Lemma 5 and the natural isomorphism T (G, H) '
T (G/[G,G], H/[G,G]) completes the proof of the theorem.

Proof of Theorem 3.

1) First we show that the existence of wχ implies that χ ∈ ∆V (Q).
Let v ∈ V/pV such that wχ(v) 6= 0 and I = annZp[[Q]](V ). Then
0 = wχ(0) = wχ(vI) = wχ(v)χ(I) and since K[[t]] does not have
zero-divisors χ(I) = 0.

2) The difficult part of the proof is that χ ∈ ∆V (Q) implies the
existence of wχ. The starting point of our considerations is a lemma
by J.Wilson that for a profinite ring R and a profinite R-module
M every abstractly finitely generated R-submodule of M is a closed
submodule [16, Lemma 7.2.2]. In our case R = Zp[[Q]], where Q
is a (topologically) finitely generated abelian pro-p group. As Zp is
a principal ideal domain and Zp[[Q]] ' Zp[[t1, . . . , tm]] ⊗Zp Zp[Qtor],
where m is the torsion-free rank of Q and Qtor is the torsion part
of Q, we see that Zp[[Q]] is abstractly Noetherian i.e. every ideal is
(abstractly) finitely generated as Zp[[Q]]-module, hence is closed. In
particular we can use the commutative algebra methods developed
for abstract Noetherian rings (warning: the rings Zp[[Q]] and Fp[[Q]]
are not abstractly finitely generated as rings over the basic ring Zp

and the field Fp, respectively).
From now on we assume that the theorem is true for every proper

quotient of V but not for V itself. Now let χ 6= 1 be an element of
∆V (Q). We write P for the kernel of the extension χ:Zp[[Q]] → K[[t]]
of χ and observe that if χ ∈ ∆W (Q) for a proper quotient W , then
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the assumption allows us to find a map w: W → K[[t]] which can
then be extended to V via the natural epimorphism V → W and
we are done. Then we can assume that χ /∈ ∆W (Q) for any proper
quotient W of V . Thus by Lemma 2, χ ∈ ∆W1(Q) for any non-zero
submodule W1 of V (in this case W = V/W1).

Consider all associative primes P1, . . . , Ps of V as Zp[[Q]]-module.
Note that we have only finitely many associative primes as V is a
finitely generated (topologically or abstractly is the same) Zp[[Q]]-
module and Zp[[Q]] is abstractly Noetherian. Thus for every associa-
tive prime Pi there is an element vi ∈ V such that Pi = AnnZp[[Q]](vi).
Then for the non-zero submodule W1 = Zp[[Q]]vi ' Zp[[Q]]/Pi of V
we have that χ ∈ ∆W1(Q), hence Pi ⊆ Ker(χ) = P i.e. any associ-
ated prime of V is in P .

Now we consider the primary decomposition 0 = ∩i≤sLi of the
trivial submodule of V given by [4, Ch. 4, Section 2, Thm 1] i.e.
all quotients V/Li are Zp[[Q]]-modules with one associated prime
depending on i. If V has more than one associated prime then all Li

are non-zero, and hence V/Li are proper quotients of V . Note that V
embeds in V/L1⊕ . . .⊕V/Ls and by additivity of ∆ given by Lemma
2

χ ∈ ∆V (Q) ⊆ ∆V/L1⊕...⊕V/Ls(Q) = ∪1≤i≤s∆V/Li
(Q)

i.e. for some i we have χ ∈ ∆V/Li
(Q), a contradiction. Therefore we

are in the case when V has just one associated prime I (remember
every associated prime is in P , hence I ⊆ P ). Hence V.Im = 0 for
some m and V/V.I has annihilator I in Zp[[Q]]. If V.I 6= 0 then
V/V.I is a proper quotient of V with annihilator I ⊆ P and so
χ ∈ ∆V/V.I(Q), a contradiction. In other words we can assume that
V.I = 0 i.e. I is the annihilator of V in Zp[[Q]]. Furthermore the
maximal elements in the set {Ann(x) | x ∈ V \ {0}} are associated
primes for V [4, Ch. 4, Section 1, Prop. 2], thus for every x ∈ V \{0}
its annihilator in Zp[[Q]] is the ideal I. All this shows that V is
torsion-free as Zp[[Q]]/I–module.

Now we aim to prove that the annihilator of V/V.P in Zp[[Q]] is P .
This will imply that if I 6= P the module V/V.P is a proper quotient
of V and as P = Ker(χ) we have χ ∈ ∆V/V.P (Q), a contradiction.
Now suppose that the annihilator of V/V.P is bigger than P , i.e.
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contains an element λ ∈ Zp[[Q]] \ P . Then for a finite generating set
e1, . . . , em of V over Zp[[Q]] there exist elements fi,j ∈ P such that
eiλ =

∑
j ejfi,j for all i ≤ m. Then eidet(A) = 0 for every i ≤ m,

where A is the matrix with entries λδi,j − fi,j, δi,j is the Kronecker
symbol, and hence det(A) ∈ ann(ej) = I ⊆ P . As det(A) ∈ λm + P
we have that λm ∈ P , a contradiction as P is a prime ideal and
λ /∈ P .

From now on we assume I = P . We claim that there is a suitable
Fp-linear map w: V → K((t)) extending χ. First we show how the
existence of such a map completes the proof of the theorem. As
V is finitely generated over Zp[[Q]] we have that w(V ) is finitely
generated over χ(Zp[[Q]]) ⊂ K[[t]] and hence Im w ⊆ t−mK[[t]] for
some m ∈ N. Now applying a multiplication with tm after w we
obtain a map V → K[[t]] extending χ, which will be a contradiction
completing the proof of the theorem.

Finally we show the existence of the map w. Let R = Zp[[Q]]/P
and let S be the field of fractions of R. Observe that χ induces an
injective homomorphism χ′ from S to K((t)). As V is R-torsion-free,
it embeds in V ⊗R S which is a finite dimensional vector space over
S and has one dimensional quotient S that embeds in K((t)) via χ′.
The composition of all these maps gives the desired map w and thus
completes the proof.¤

Proposition 1 There exists a (topologically) finitely generated me-
tabelian pro-p group G such that

(i) G is not finitely presented (in the pro-p sense);

(ii) G/[G,G] ' Z2
p;

(iii) there does not exist a (continuous) automorphism β of G such
that the automorphism induced by β on Q = G/[G,G] is the antipodal
automorphism.

Proof Let α be the (continuous) ring automorphism Fp[[Q]] that
sends q ∈ Q to q−1, where Q = G/G′ ' Zn

p , Q acts on A = G′ via
right conjugation and A is of exponent p. Furthermore assume that
A is cyclic Fp[[Q]]-module with generator a and the annihilator of A
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in Fp[[Q]] is an ideal I i.e. A ' Fp[[Q]]/I. Furthermore we assume
that α(I) 6= I and α(P ) = P for at least one prime ideal P in
Fp[[Q]] with infinite index in Fp[[Q]] and such that I ⊆ P . Note that
A1 = Fp[[Q]]/P is a quotient of A that is not (topologically) finitely
generated as an additive pro-p group and hence ∆A1(Q) 6= {1}. Let
χ1 ∈ ∆A1(Q)\{1}. Then as α(P ) = P we have that χ2 = χ1(α |Q) ∈
∆A1(Q), hence χ1χ2 = 1. As ∆A1(Q) ⊆ ∆A(Q) we get that ∆A(Q)
has antipodal non-trivial elements, hence G is not finitely presented
as a pro-p group.

We show that as α(I) 6= I there does not exist an automorphism
β that induces antipodal maps on the abelianization of G. Assume
first that such β exists. Now considering the restriction of β on
A ' Fp[[Q]]/I and writing overline for the canonical homomorphism
Zp[Q] → Zp[Q]/I we have β(q) = β(1)q−1 = λ1q−1, for some fixed
λ1 ∈ Fp[[Q]] and any q ∈ Q. As β is an automorphism there exists

µ1 ∈ Fp[[Q]] such that λ1α(µ1) = β(µ1) = 1. Then λ1α(µ1) ∈ 1 + I.

Now as 0 = β(0) = β(I) = β(1.I) = β(1)β(I) = λ1α(I) we have
λ1α(I) ⊂ I. As λ1 is invertible mod I we have α(I) ⊆ I. Then
applying α we have I = α2(I) ⊆ α(I), a contradiction.

Finally we give an explicit construction in the case n = 2. The
group G has 3 generators : x, y, a with x−1y−1xy = a and the smallest
closed normal subgroup A of G that contains a is abelian and of
exponent p. Define P as the ideal of Fp[[Q]] generated by x− 1. As
α(x− 1) = x−1 − 1 = −x−1(x− 1) we get α(P ) = P .

If p 6= 2 we define I to be the ideal generated by w = (x− 1)(x +
y − 2). Then α(w) = (x−1 − 1)(x−1 + y−1 − 2) = −x−2y−1(x −
1)(x + y − 2xy) and define w1 = (x− 1)(x + y − 2xy). Assume that
α(I) = I, then 2−1(w − w1) = (x − 1)(xy − 1) ∈ I. Then for some
λ ∈ Fp[[Q]] we have (x− 1)(xy− 1) = (x− 1)(x + y− 2)λ and hence
xy − 1 = (x + y − 2)λ, a contradiction. Thus α(I) 6= I.

If p = 2 we define I to be the principal ideal generated by w =
(x − 1)(x − 1 + (y − 1)3) = (x − 1)(x + y + y2 + y3). Then α(w) =
(x−1−1)(x−1+y−1+y−2+y−3) = −x−2y−3(x−1)(y3+x+xy+xy2) and
define w1 = (x−1)(y3 +x+xy +xy2). Suppose that α(I) = I. Then
w+w1 = (x−1)(y+y2+xy+xy2) = (x−1)2(y+y2) ∈ I. In particular
there is λ ∈ F2[[Q]] such that (x−1)2(y+y2) = (x−1)(x+y+y2+y3)λ.

17



Then (x − 1)(y + y2) = (x + y + y2 + y3)λ, hence λ = (x − 1)µ for
some µ ∈ F2[[Q]] and y + y2 = (x + y + y2 + y3)µ, a contradiction.
Thus α(I) 6= I. ¤
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