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1. Introduction

Let H be an abstract group and let C be a variety of finite groups (i.e., a class of finite
groups closed under taking subgroups, quotients and finite direct products); for example
the variety of all finite p-groups, for a fixed prime p. Consider the smallest topology on
H such that all the homomorphism H −→ C from H to any group C ∈ C (endowed with
the discrete topology) is continuous. We refer to this topology as the pro-C topology of H.
This paper is concerned with the following property on H: whenever H1 and H2 are finitely
generated subgroups of H such that H1 and H2 are closed in the pro-C topology of H, then
the subset H1H2 of H is closed. If H has this property, we call H “2-product subgroup
separable” (relative to the class C; there is an analogous concept of “n-product subgroup
separable”). The original motivation for the study of this property goes back to a problem
posed by J. Rhodes on the existence of an algorithm to compute the so called kernel of a
finite monoid (see [5], [6]). For example, if C is in addition closed under extensions, then
groups that are extensions of free groups by groups in C are n-product subgroup separable,
for any natural number n (see [8], [9]; see also [12] for other examples).

In this paper we show that if the variety C is closed under extensions, then the property
of being 2-product subgroup separable is preserved by taking free products of groups (see
Theorem 3.13). This extends in one direction an analogous result of T. Coulbois [1].

The methods used to prove this result are based in the theories of groups acting on
trees and of profinite groups acting on profinite trees.

2. Preliminaries

In this paper C always denotes an extension closed variety of finite groups, i.e., a
nonempty collection of finite groups such that

(a) C is subgroup closed: whenever G ∈ C and H ≤ G, then H ∈ C;
(b) C is closed under taking quotients: whenever G ∈ C and K / G, then G/K ∈ C;
(c) C is extension closed: whenever 1 −→ K −→ G −→ H −→ 1 is an exact sequence of

finite groups and H,K ∈ C, then G ∈ C.
For example, C could be the class of all finite groups, or the class of all finite p-groups

(for a fixed prime number p), or the class of all finite solvable groups.
All groups considered in this paper are assumed to be residually C (recall that a group

R is residually C if for any 1 6= x ∈ R, there exists a normal subgroup N of finite index in R
such that x 6∈ N and G/N ∈ C). It is well-known that an abstract free group is residually
C (see, for example, [7], Proposition 3.3.15), and that a free product of residually C groups
is residually C (see [4]).
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A pro-C group A is an inverse limit

A = lim←−
i∈I

Ai

of groups in C; we think of G as a topological group with the topology determined by
assigning to each finite group Ai the discrete topology. Equivalently, A is a pro-C group if
it is a compact, Hausdorff and totally disconnected topological group such that A/U ∈ C
for every open normal subgroup U of A. (See [7], Section 9, for general facts about pro-C
groups.)

Let {A1, . . . , An} be a finite collection of pro-C groups. A free pro-C product of these
groups consists of a pro-C group, denoted A =

∐n
i=1 Ai, and continuous homomorphisms

ϕi : Ai −→ A (i = 1, ..., n),

satisfying the following universal property:

A
ψ

ÃÃ
Ai

ϕi

OO

ψi

// B

for any pro-C group B and any set of continuous homomorphisms ψi : Ai −→ B (i =
1, ..., n), there exists a unique continuous homomorphism ψ : A −→ B such that ψi = ψϕi,
for all i = 1, ..., n. Observe that one needs to test the above universal property only for
groups B ∈ C, for then it holds automatically for any pro-C group B, since such a B is an
inverse limit of groups in C. Denote by

L = A1 ∗ · · · ∗An

the free product of A1, . . . , An as abstract groups. Then A =
∐n

i=1 Ai is the completion of
L

lim←−
N∈N

L/N,

where N = {N | N ∩ Ai is open in Ai (i = 1, . . . , n)}. One checks that L is naturally
embedded in A (see, for example, [7], Proposition 9.1.8).

Recall that a topological space X is a profinite space if it is the inverse limit of finite
discrete spaces; in other words, X is profinite if it is compact, Hausdorff and totally
disconnected.

A profinite graph Γ (oriented) is a profinite space with a distinguish closed subset
V (Γ) (the vertices of the graph) and a pair of continuous maps d0, d1 : Γ → V (Γ) (the
incidence maps) such that di(v) = v for all v ∈ V (Γ) (i = 0, 1). The elements of the
subspace E(Γ) = Γ − V (Γ) are the edges of the graph. In this paper, the space E(Γ)
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is assumed to be always closed, and so it is enough to define d0 and d1 continuously on
E(Γ). Let ZĈ denote the free pro-C group of rank 1, and for a profinite space X, let [[ZĈX]]
denote the free ZĈ-module on the basis X (or, equivalently, the free abelian pro-C group
on the basis X). Such a profinite graph is called a pro-C tree if the following sequence

0 −→ [[ZĈE(Γ)]] δ−→ [[ZĈV (Γ)]] ε−→ ZĈ −→ 0

of free pro-C abelian groups is exact, where ε(v) = 1 for every v ∈ V (Γ), δ(e) = d1(e)−d0(e)
for every e ∈ E(Γ). (See [3] for a general definition of pro-C tree and its properties.) Finite
abstract graphs are profinite graphs; and finite abstract trees are pro-C trees for any C.

Let Γ be a profinite pro-C tree and let x, y ∈ Γ. The geodesic [x, y] determined by
x and y is the smallest profinite subtree of Γ containing x and y, or equivalently, the
intersection of all profinite subtrees of Γ containing x and y.

If Γ and Γ′ are profinite graphs, a morphism α : Γ −→ Γ′ is simply a continuous map
such that α(di(x)) = di(α(x)), for all x ∈ Γ (i = 0, 1). A morphism is an embedding if it
is an injection.

Let A be a profinite group. We say that A acts on a profinite graph Γ from the left if
there exists a continuous function A× Γ −→ Γ, denoted (a, x) 7→ ax (a ∈ A, x ∈ Γ), such
that (aa′)x = a(a′x), 1x = x and di(ax) = adi(x), for all a, a′ ∈ G, x ∈ Γ (i = 0, 1). There
is a similar concept of right action of A on Γ. If a profinite group A acts from the left on
a profinite graph Γ, we denote the corresponding quotient graph of orbits by A\Γ. If A
acts on Γ from the right, we denote the quotient graph by Γ/A. Let A act on Γ from the
left and let

ϕ : Γ −→ A\Γ
be the corresponding quotient map. If A\Γ is finite, there is a maximal subtree T ′ of A\Γ;
hence there exists a connected ϕ-transversal (also called simply a transversal) J containing
a lifting T of T ′, i.e., T is a subtree of Γ that is mapped isomorphically to T ′ by ϕ, J is a
subset (not necessarily a subgraph) of Γ containing T such that ϕ induces a bijection from
J to A\Γ, d0(J) ⊆ J and V (Γ) ∩ J = V (T ).

Let A =
∐n

i=1 Ai be a free pro-C product. Then the standard pro-C tree S(A) associ-
ated with this free product is defined as follows (cf. [3]): its space of edges is the disjoint
union

E(S(A)) =
⋃
. n

i=1
A

of n copies of A; its space of vertices is the disjoint union

V (S(A)) =
⋃
. n

i=0
A/Ai,

of the quotient spaces A/Ai, where A0 = 1; and its incidence maps d0 and d1 are given by

d0(a) = aA0 = a, d1(a) = aAi, when a is in the ith copy of A in E(S(A)) =
⋃
. n

i=1
A.

Note that A acts naturally on S(A) by left multiplication; the stabilizers of vertices
are conjugates of the groups Ai (i = 1, . . . , n), and all edge stabilizers are trivial. The
quotient graph A\S(A) is a finite tree Tn with n edges and n + 1 vertices:
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Using this finite graph Tn, one can give an alternative description of S(A): we identify
Tn with a canonical transversal of it in S(A) whose vertices are vi = 1Ai (i = 0, 1, . . . , n);
then S(A) is the unique profinite graph obtained as the union of all translations of Tn by
the elements of the group A, with the proviso that the A-stabilizer of the vertex avi is
aAia

−1 (a ∈ A, i = 0, 1, . . . , n) and the A-stabilizer of the edge aei is trivial (i = 1, . . . , n);
furthermore, the topology of S(A) is induced by the product topologies of A× V (Tn) and
A× E(Tn).

Remark that if Bi is a closed subgroup of Ai (i = 1, . . . , n) and if B =
∐n

i=1 Bi is
the free pro-C product of the pro-C groups B1, . . . , Bn, then B is the closed subgroup of A
generated by B1, . . . , Bn (cf. [3], Corollary 9.1.7); hence there is a natural embedding of
the corresponding pro-C graphs S(B) ↪→ S(A).

There is a similar construction of an abstract tree S(G) associated with a free product
G = G1 ∗ · · · ∗Gn of abstract groups G1, . . . , Gn (cf. [10], Section 4.5). Its space of edges
is the disjoint union E(S(G)) =

⋃. n
i=1 G of n copies of G; its space of vertices is the

disjoit union V (S(G)) =
⋃. n

i=0G/Gi, of the quotient spaces G/Gi, where G0 = 1; and
its incidence maps d0 and d1 are given by d0(g) = gG0 = g and d1(g) = aGi, when g ∈
E(S(G)) is in the ith copy of G in E(S(G)) =

⋃. n
i=1 G.

The group G acts naturally on S(G) by left multiplication, and the corresponding
quotient graph is the above finite tree Tn with n edges and n + 1 vertices.

Let R be an abstract group. Denote by NC the collection of all normal subgroups N of
R such that R/N ∈ C. Then there is a unique topology on R making it into a topological
group such that NC is a fundamental system of neighborhoods of the identity element 1 of
R. This is the (full) pro-C topology of R . We say that R is n-product subgroup separable
(with respect to its pro-C topology) if whenever H1, . . . , Hn are closed subgroups of R (in
the pro-C topology of R) which are finitely generated as abstract groups, then the product
subset H1 · · ·Hn is closed in the pro-C topology of R.

If R is an abstract group, we denote by RĈ its completion with respect to its pro-C
topology, i.e.,

RĈ = lim←−
N∈NC

R/N.

Then, there exists a natural embedding

ι : R −→ RĈ ,
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since R is assumed to be residually C.
The following fact is not hard to prove: ‘pro-C completion commutes with free prod-

ucts’, in other words, if
G = G1 ∗ · · · ∗Gn

is a free product of abstract groups G1, . . . , Gn, then

GĈ = (G1)Ĉ q · · · q (Gn)Ĉ (free pro−C product).

Furthermore, since the groups Gi (i = 1, . . . , n) are assumed to be residually C, so is their
free product G, and we have canonical embeddings

Gi
Â Ä //

_Ä

²²

(Gi)Ĉ_Ä

²²
G

Â Ä // GĈ

Moreover, each Gi is closed in the pro-C topology of G (cf. [7], Corollary 3.1.6).
These facts allow us to think of the tree S(G), associated with the abstract free

product G = G1 ∗ · · · ∗Gn, as a subgraph of the pro-C tree S(GĈ), associated with the free
pro-C product GĈ = (G1)Ĉ q · · · q (Gn)Ĉ . More precisely, there is a natural embedding of
graphs

S(G) −→ S(GĈ)

defined as follows.

For vertices: gGi 7→ g(Gi)Ĉ (g ∈ G, i = 1, . . . , n)
For edges: g in the i-th copy of G in E(S(G)) is sent to

g in the i-th copy of GĈ in E(S(GĈ)).

Notation: if H is a subgroup of a group G and x, y ∈ G, then as usual, yx = x−1yx and
Hx = x−1Hx. If X is a subset of a group G, then X̄ denotes the closure of X in the
pro-C completion GĈ of G; observe that the closure Cl(X) of X in the pro-C topology of
G coincides with G ∩ X̄.

3. The Main Theorem

We begin with a reduction result.

Lemma 3.1 Let R be an abstract group, endowed with its pro-C topology, and let U be an
open subgroup of R. Then R is n-product subgroup separable if and only if U is n-product
subgroup separable.

Proof: First observe that since C is extension closed, the pro-C topology of U is precisely
the topology induced by the pro-C topology of R (see Lemma 3.1.4(a) in [7]). Assume R
is n-product subgroup separable. Then plainly U is n-product subgroup separable.
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Conversely assume that U is n-product subgroup separable. By the above, the core
UR of U in R is n-product subgroup separable as well. Hence, replacing U by UR, if
necessary, we may assume that U is open and normal in R. Let H1, . . . , Hn be finitely
generated closed subgroups of R. We shall prove by induction on the number of Hi which
are not contained in U that H1 · · ·Hn is closed in the pro-C topology of R. If Hi ≤ U
for all i = 1, . . . , n, the result is clear. Since each Hi is finitely generated and U ∩Hi has
finite index in Hi, we have that U ∩ Hi is also finitely generated. Pick Ht 6≤ U . Write
Ht =

⋃.
j hj(U ∩Ht), (hj ∈ Ht). Therefore we get a finite union

H1 · · ·Hn =
⋃
.

j
hjH

hj

1 · · ·Hhj

t−1(U ∩Ht)Ht+1 · · ·Hn.

By the induction hypothesis, H
hj

1 · · ·Hhj

i−1(U ∩ Hi)Hi+1 · · ·Hn is closed in R. Thus
H1 · · ·Hn is closed in R.

Lemma 3.2 Let G be an abstract group that acts freely on a tree T . Endow G with its
pro-C topology. Let K be a closed subgroup of G and let ∆ be a finite subgraph of K\T .
Then there exists an open subgroup V of G containing K such that the natural map of
graphs

τV : K\T −→ V \T
is injective on ∆.

Proof: Since K is closed, K =
⋂

i∈I Ui, where {Ui | i ∈ I} is the collection of all open
subgroups of G containing K. Consider the map of graphs τG : K\T −→ G\T . Since ∆ is
finite, it is a finite union of intersections as follows:

∆ =
m⋃

t=1

(∆ ∩ τ−1
G (xt)),

for some xt ∈ G\T and m ∈ N. We claim that for each t = 1, . . . ,m, there exists some
it ∈ I such that τUit

is injective on ∆∩ τ−1
G (xt). Since G acts freely on T , the set τ−1

G (xt)
may be identified with K\G; moreover, if K ≤ U ≤ G, the restriction of τU : K\T −→ U\T
to τ−1

G (xt) may be identified with the canonical surjection τU : K\G −→ U\G. Since
∆ ∩ τ−1

G (xt) can be thought of as a finite subset of K\G, the existence of the required it
follows from K =

⋂
i∈I Ui. Define V to be V =

⋂m
t=1 Uit . Then clearly τV is injective on

∆.

Let v be a vertex of an abstract graph Γ. Then StarΓ(v) is the set of edges e of Γ such
that v = d0(e) or v = d1(e). A morphism of graphs ϕ : Γ −→ Γ′ is called an immersion if,
for each vertex v ∈ Γ, the map StarΓ(v) −→ StarΓ′(ϕ(v)), induced by ϕ, is an injection.

Lemma 3.3 Let ϕ : Γ −→ ∆ be an immersion of finite connected graphs. If ϕ induces an
epimorphism π1(Γ) −→ π1(ϕ(Γ)), then ϕ is an injection.

Proof: An immersion of graphs induces a monomorphism of fundamental groups (cf.
Proposition 5.3 in [11]); hence, π1(Γ) −→ π1(ϕ(Γ)) is an isomorphism. Define m to be the
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rank of the free group π1(Γ). Then we also have rank(π1(ϕ(Γ)) = m. By Corollary 1.8 in
[2] we have that

∑

v∈V (Γ)

(|StarΓ(v)| − 2) = 2m− 2 =
∑

w∈V (ϕ(Γ))

(|Starϕ(Γ)(w)| − 2).

Since |StarΓ(v)| ≥ |Starϕ(Γ)(ϕ(v))| for all v ∈ V (Γ), we deduce that

|StarΓ(v)| = |Starϕ(Γ)(ϕ(v))|, ∀v ∈ V (Γ), and |V (Γ)| = |V (ϕ(Γ))|.

I.e, ϕ is an injection.

Lemma 3.4 Let an abstract group G act on an abstract tree S. Let K be a closed
subgroup (in the pro-C topology) of G. Let D be a K-invariant subtree of S such that
K\D is finite. Endow G with its pro-C topology; then for every open subgroup U of G
containing K, there exists an open subgroup V of G with K ≤ V ≤ U ≤ G such that the
morphism

τV : K\D −→ V \S
induces an epimorphism of fundamental groups

fV : π1(K\D) −→ π1(τV (K\D)).

Proof: Let K̃ denote the subgroup of K generated by all the stabilizers of the vertices of
D (under the action of K) and let Ũ denote the subgroup of U generated by all stabilizers
of the vertices of S (under the action of U); observe that K̃ / K and Ũ / U . Then
K/K̃ = π1(K\D) and U/Ũ = π1(U\S) (cf. [10], page 55, Corollary 1). Moreover Ũ\S is a
tree (see [10], page 55, Exercise 2); since U/Ũ acts freely on this tree, it follows that U/Ũ
is a free group. Consider the image DU of D in Ũ\S. Clearly KŨ/Ũ acts freely on DU

and hence, π1((KŨ/Ũ)\DU ) = KŨ/Ũ (use again [10], page 55, Corollary 1). Therefore,
since K̃ ≤ Ũ , the homomorphism

fKŨ : π1(K\D) −→ π1(τŨK(K\D)) = π1((KŨ/Ũ)\DU )

coincides with the natural epimorphism K/K̃ −→ KŨ/Ũ .
Since U/Ũ is free and acts freely on Ũ\S, by Lemma 3.2 there exists an open subgroup

V of U containing KŨ such that the restriction

ϕ : (KŨ/Ũ)\DU −→ (V/Ũ)\(Ũ\S(G))

of the natural morphism

(KŨ/Ũ)\(Ũ\S) −→ (V/Ũ)\(Ũ\S)

to (KŨ/Ũ)\DU is an injection.

7



Clearly (V/Ũ)\(Ũ\S(G)) = V \S(G) and (KŨ/Ũ)\DU = KŨ\D. Hence from the
commutativity of the diagram

K\D τV //

## ##HH
HH

HH
HH

H
V \S

KŨ\D
ϕ

;;wwwwwwwww

one deduces that ϕ((KŨ/Ũ)\DU ) = τV (K\D). In other words

(KŨ/Ũ)\DU −→ τV (K\D)

is an isomorphism. So it induces an isomorphism of fundamental groups

η : π1(KŨ/Ũ)\DU −→ π1(τV (K\D)).

Thus fV = ηfKŨ is an epimorfism as asserted.

Lemma 3.5 Let G1, . . . , Gm be groups and let H be a finitely generated closed subgroup
of the free product G = G1 ∗ · · · ∗Gm (endowed with its pro-C topology). Let S(G) be the
standard tree of the free product G = G1 ∗ · · · ∗Gm and let D be an H-invariant subtree
of S(G) such that H\D is finite. Then for any connected transversal ΣH of H\D in D,
there exists an open subgroup U of G and a connected transversal ΣU of U\S(G) in S(G)
such that

(a) H\D is canonically embedded in U\S(G) and ΣH ⊆ ΣU ;
(b)

U =
[∗w∈V (ΣU )Uw

] ∗ FU ,

where FU is the free group π1(U\S(G)) and where Uw denotes the stabilizer in U of
the vertex w;

(c)
H =

[∗w∈V (ΣH)Hw

] ∗ FH ,

where FH is the free group π1(H\D) and where Hw is the stabilizer in H of the vertex
w;

(d) FH is a free factor of FU .

Proof: Consider the canonical morphism of graphs

τU : H\D −→ H\S(G) −→ U\S(G).

Observe first that, by Lemma 3.4, for every open subgroup U containing H there exists an
open subgroup V ≤ U containing H such that the morphism τV induces an epimorphism
of fundamental groups fV : π1(H\D) −→ π1(τV (H\D).
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Hence, by Lemma 3.3, to show that the morphism above is injective it suffices to show
the existence of an open subgroup U containing H such that τU is an immersion. Choose
w̄ ∈ V (H\D), where w̄ = Hw and w ∈ D ⊂ S(G). Since H\D is finite, it suffices to
prove the existence of U such that (τU )|StarH\D(w̄) is injective. Now we use the structure
of G\S(G). If w = v, then the result follows from the fact that |StarH\D(v̄)| = |StarD(v)|
and |StarU\S(G)(v̄)| = |StarS(G)(v)|, for every open subgroup U .

Assume next that w̄ 6= vH. Then StarH\D(w̄) is a finite subset of StarH\S(G)(w̄) =
(H ∩ Gw)\Gw. Since H is closed, we have that H =

⋂
V , where V ranges over all the

open subgroups of G containing H. Hence H ∩Gw =
⋂

(V ∩Gw); so there exists an open
subgroup U of G containing H such that all elements of StarH\D(w) are distinct modulo
U ∩Gw as needed. This proves that τU is injective.

Thus we may regard H\D as a subgraph of U\S(G). Choose a maximal subtree TH

of H\D and extend it to a maximal subtree TU of U\S(G). Let

j : H\D −→ ΣH

be a bijection onto a connected transversal ΣH of H\D in D containing a lifting of TH .
Extend j to a bijection, which we denote also by j,

j : U\S(G) −→ ΣU

onto a connected transversal ΣU of U\S(G) in S(G) containing a lifting of TU .
For every edge e ∈ U\S(G)− TU , choose an element ge ∈ G such that

gej(d1(e)) = d1(j(e)).

Then (see, for example, [10], Section I.5.5, Theorem 14)

U =∗w∈V (ΣU )Uw ∗ FU ,

where FU is a free group on the set BU = {ge | e ∈ U\S(G) − TU} and where Uw is the
stabilizer in U of the vertex w.

We also have that
H =

[∗w∈V (ΣH)Hw

] ∗ FH ,

where FH is a free group on the set BH = {ge | e ∈ H\D − TH} and where Hw is the
stabilizer in H of the vertex w.

Part (d) is clear since H\D is a subgraph of U\S(G).

Corollary 3.6 Let G1, . . . , Gm be groups and let H be a finitely generated closed subgroup
of the free product G = G1 ∗ · · · ∗ Gm. Then there exists an open subgroup U of G and
(Kurosh-type) decompositions

U = U1 ∗ · · · ∗ Ut and H = H1 ∗ · · · ∗Ht
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such that

(a) Hi ≤c Ui (i = 1, . . . , t);
(b) For each i = 1, . . . , t − 1, Ui is an open subgroup of a conjugate of some Gj (j =

1, . . . , m), i.e., Ui = U ∩ τGjτ
−1 for some τ ∈ G;

(c) Ut is a free group of finite rank and Ht is a free factor of Ut.

Moreover, the decomposition for U (respectively for H) can be chosen to contain as
factors all the intersections U ∩Gi (respectively, H ∩Gi) (1 ≤ i ≤ m).

Proof: Consider the standard tree S(G) of the free product G = G1 ∗ · · · ∗Gm. Define a
subtree of S(G)

D =
( ⋃

j∈J

H[v0, rjv]
) ∪ ( m⋃

i=1

H[v0, vi]
)
,

where {rj | j ∈ J} is a finite set of generators for H. Choose a connected transversal ΣH of
H\D in D containing all the vi. Now apply the preceding lemma and observe that if v ∈ Σ
and v = τvj , then Uv = U ∩ τGjτ

−1 and Hv = H ∩ τGjτ
−1; in particular, Uvi = U ∩Gi

and Hvi = H ∩Gi.

Corollary 3.7 Let G1, . . . , Gm be groups and let G = G1 ∗ · · · ∗Gm be their free product.
Assume that H is a finitely generated and closed subgroup of G (in its pro-C topology).
Then there exists a Kurosh decomposition

H =
[∗n

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ

−1
]] ∗ F

of H, where F is a free group, such that

H̄ =
[ n∐

i=1

[ ∐

τ∈H\G/Gi

H ∩ τGiτ−1
]]q F̄ ,

where if X is a subset of H, then X̄ denotes the topological closure of X in GĈ . Moreover,
F̄ = FĈ is a free pro-C group.

Proof: Choose U open in G and Kurosh decompositions

U = U1 ∗ · · · ∗ Ut and H = H1 ∗ · · · ∗Ht

satisfying the conditions of Corollary 3.6. Using the fact that U is open in G and the form
of the decomposition, one can show that

Ū = Ū1 q · · · q Ūt

where Ū = UĈ and Ūt = (Ut)Ĉ is a free pro - C group (cf. [7], Corollary 9.1.7 and Theorem
9.1.9). Next observe that H̄ coincides with the closed subgroup of Ū generated by the
groups H̄i (i = 1, . . . , t). Note that the latter group is H̄1 q · · · q H̄t (cf. [7], Corollary
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9.1.7). Finally, since Ht is a free factor of Ut, we have that the topology on Ht induced from
the pro-C topology of Ut coincides with the full pro-C topology of Ht (cf. [7], Corollary
3.1.6); therefore F̄ = FĈ .

Lemma 3.8 Let G1, . . . , Gm be groups and let H be a closed subgroup of the free product
G = G1 ∗ · · · ∗ Gm (endowed with its pro-C topology). Let S(G) be the standard tree of
the free product G = G1 ∗ · · · ∗Gm and let D be an H-invariant subtree of S(G) such that
H\D is finite. Then

H\D = H̄\D̄,

where H̄ denotes the closure of H in GĈ , and D̄ is the closure of D in S(GĈ).

Proof: Consider the natural continuous map

D
Â Ä // D̄ // // H̄\D̄

Since its image is dense and H\D is finite, it induces an onto map

H\D −→ H̄\D̄.

Now, by Lemma 3.2, there exists an open subgroup U of G containing H such that

τ : H\D −→ H\S(G) −→ U\S(G)

is injective. Since U is open, one clearly has U\S(G) = Ū\S(GĈ) (in this case the space
edges of these quotient graphs is the set of right cosets U\G = Ū\Ḡ, and the set of vertices
is the set of open double cosets U\G/Gi = Ū\GĈ/(Gi)Ĉ ). From the commutativity of the
diagram

K\D Â Ä //

$$ $$IIIIIIIII
H\S(G) // U\S(G) = // Ū\S(GĈ)

H̄\D̄

44iiiiiiiiiiiiiiiiiiiii

one deduces that H\D −→ H̄\D̄ is injective.

Lemma 3.9 Let A = B qC be the free pro-C product of pro-C groups B and C. Assume
that B1 ≤c B, C1 ≤c C and A = B q C = 〈B1, C1〉. Then B = B1 and C = C1.

Proof: Let ϕ : A −→ B be the epimorphism induced by the identity homomorphism
B −→ B and the homomorphism that sends C to 1. Since A is generated by B1 and C1

and since ϕ(C1) = 1, it follows that B = ϕ(B1) = B1. Similarly C = C1.

Lemma 3.10 Let G1, . . . , Gm be residually C groups and let

G = G1 ∗ · · · ∗Gm.

11



Endow G with the pro-C topology. Let H be a subgroup of G which is either open or
finitely generated and closed. Let

L = (G1)Ĉ ∗ · · · ∗ (Gm)Ĉ

be the abstract free product of the pro-C completions of the groups Gi. Denote by D
the minimal H-invariant subtree of S(G) containing v0 if H is finitely generated, and let
D = S(G) if H open. Let ΣH be a connected transversal of H\D in D. Then

H =
[∗v∈V (ΣH)Hv

] ∗ π1(H\D) =
[∗m

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ

−1
]] ∗ F

and
H̄ ∩ L =

[∗v∈V (ΣH)(Hv)
] ∗ F =

[∗m

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ−1

]] ∗ F,

where F = π1(H\D).
Furthermore, for τ ∈ H\G/Gi as above, (i = 1, . . . , m),

H̄ ∩ τḠiτ
−1 = H ∩ τGiτ−1.

Proof: Note that GĈ = (G1)Ĉ q· · ·q (Gm)Ĉ . By Lemma 3.8 H\D = H̄\D̄. Let D′ be the
intersection of D̄ with the abstract connected component of S(GĈ) containing S(G) (this
connected component coincides with S(L)). Then

(H̄ ∩ L)\D′ = H\D = H̄\D̄;

indeed, the natural map of graphs

D′ −→ H̄\D̄

is clearly an epimorphism, and if d1 = hd2 for some h ∈ H̄, d1, d2 ∈ D′, then h ∈ H̄ ∩ L
(just notice that d1 and d2 are either both in L or both of the form gvi, where g ∈ L,
i = 1, . . . , n), i.e.,

(H̄ ∩ L)\D′ −→ H̄\D̄
is bijective.

Let ΣH be a connected transversal of H\D in S(G). Put F = π1(H\D) = π1((H̄ ∩
L)\D′). Then (cf. [10], page 43, Example 1)

H =
[∗v∈ΣH Hv

] ∗ π1(H\D) =
[∗m

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ

−1
]] ∗ F

and
H̄ ∩ L =

[∗v∈ΣH
(H̄ ∩ L)v

] ∗ π1((H̄ ∩ L)\D′)

=
[∗m

i=1

[∗τ∈H\G/Gi
H̄ ∩ τḠiτ

−1
]] ∗ F. (2)

It remains to prove that for τ ∈ H\G/Gi as above and i = 1, . . . , m,

H̄ ∩ τḠiτ
−1 = H ∩ τGiτ−1.

12



Suppose first that H is open. Then H̄ = HĈ and so,

H̄ =
[ n∐

i=1

∐

τ∈H\G/Gi

(H ∩ τGiτ
−1)Ĉ

]q FĈ =
[ n∐

i=1

∐

τ∈H\G/Gi

H ∩ τGiτ−1
]q F̄

(see Exercise 9.1.1(a) and Corollary 3.1.6 in [7]). Note that since H is open H\G/Gi =
H̄\GĈ/Gi; it follows that (see Theorem 9.1.9 in [7] and its proof together with the equation
(2) above)

H̄ =
n∐

i=1

∐

τ∈H\G/Gi

(H̄ ∩ τḠiτ
−1)q FĈ .

Then, comparing these two decompositions of H̄ and using Lemma 3.9 we get that H̄ ∩
τḠiτ

−1 = H ∩ τGiτ−1.
Suppose now that H is closed and finitely generated. Then H ∩ τGiτ

−1 is also closed.
Let V be the set of all open subgroups of G containing H. Then H =

⋂
V ∈V V because

H is closed. Hence
H ∩ τGiτ

−1 =
⋂

V ∈V
(V ∩ τGiτ

−1).

Since every open subgroup of GĈ containing H̄ is of the form V̄ for some V ∈ V, we have
that H̄ =

⋂
V ∈V V̄ .

We claim that ⋂

V ∈V
V ∩ τGiτ−1 = H ∩ τGiτ−1.

To see this it suffices to show that for any open subgroup W of τGiτ
−1 containing

H ∩ τGiτ
−1, there exists some V ∈ V such that V ∩ τGiτ

−1 ≤ W (indeed, since any
open subgroup of τḠiτ

−1 containing H ∩ τGiτ−1 is of the form W , this would mean that
every open subgroup of τḠiτ

−1 containing H ∩ τGiτ−1 contains also some V ∩ τGiτ−1).
Choose U ∈ V satisfying the statement of Corollary 3.6 with respect to H:

U = U ∩ τGiτ
−1 ∗ · · ·

H = H ∩ τGiτ
−1 ∗ · · · .

Consider the natural epimorphism of U onto U ∩ τGiτ
−1. Let V be the preimage of

W ∩ U ∩ τGiτ
−1. Then V is open and contains H, i.e., V ∈ V; moreover V ∩ τGiτ

−1 =
W ∩ U ∩ τGiτ

−1 = W ∩ U ≤ W .
Now,

H̄ ∩ τḠiτ
−1 =

⋂

V ∈V
(V̄ ∩ τḠiτ

−1) =
⋂

V ∈V
V ∩ τGiτ−1 = H ∩ τGiτ−1,

as desired.

Lemma 3.11 Let G1, . . . , Gm be groups and let H be a finitely generated closed subgroup
of the free product G = G1∗· · ·∗Gm (endowed with the pro-C topology). Fix i ∈ {1, . . . ,m}
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and assume that the group Gi is 2-subgroup separable. Then HK and KH are closed
subsets of G for any closed subgroup K of Gi.

Proof: We prove that HK is closed; for KH the proof is similar. We must show that
G ∩ H̄K̄ = HK.

Let S(G) be the standard tree of the free product G = G1 ∗ · · · ∗ Gm and let D
be a minimal H-invariant subtree of S(G) containing v0. Then H\D is finite. Choose a
connected transversal ΣH of H\D in D. Then by Lemma 3.5 there exists an open subgroup
U of G containing H and a connected transversal ΣU of U\S(G) in S(G) with ΣH ⊆ ΣU

such that

U =
[∗w∈V (ΣU )Uw

] ∗ FU =
[∗m

i=1

[∗τ∈U\G/Gi
U ∩ τGiτ

−1
]] ∗ FU , (3)

where FU is the free group π1(U\S(G)), and

H =
[∗w∈V (ΣH)Hw

] ∗ FH =
[∗m

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ

−1
]] ∗ FH ,

where FH is the free group π1(H\D); moreover FH is a free factor of FU .

Since HK is closed if and only if H(U ∩ K) is closed (see the proof of Lemma 3.1)
we may assume that K ≤ U . Pick h ∈ H̄ and k ∈ K̄ with hk = g ∈ G. Note that g ∈ U ,
because H̄, K̄ ≤ Ū and U = G ∩ Ū , since U is open (cf. Proposition 3.2.2 in [7]). Let

L = (G1)Ĉ ∗ · · · ∗ (Gm)Ĉ

be the abstract free product of the completions of the groups Gi. Since k ∈ Ḡi, one has
h ∈ H̄ ∩ L ≤ Ū ∩ L. By the preceding lemma

H̄ ∩ L =
[∗v∈V (ΣH)(Hv)

] ∗ FH =
[∗m

i=1

[∗τ∈H\G/Gi
H ∩ τGiτ−1

]] ∗ FH

and

Ū ∩ L =
[∗v∈V (ΣU )(Uv)

] ∗ FU =
[∗m

i=1

[∗τ∈U\G/Gi
U ∩ τGiτ−1

]] ∗ FU . (4)

Write h = hm1 · · ·hml
as the reduced word of this free product decomposition of H̄ ∩ L.

Note that this is also a reduced word for the free product decomposition of Ū ∩ L above.
Observe that any reduced word in the free product decomposition of U above, is also
reduced in the free product decomposition of Ū ∩ L.

We consider two cases. First assume that hml
6∈ U ∩Gi. Then, since k ∈ U ∩Gi, we

have that g = hk = hm1 · · ·hml
k is reduced as a word in the free product decomposition

of Ū ∩ L given above. On the other hand, g = hk can be written as a product according
to the free product decomposition of (3) of U ; since such a product is also a product
according to the free product decomposition (4) and it is unique, we deduce that the
elements hm1 , · · · , hml

, k are in U , and thus in G. Therefore h, k ∈ G. Finally, since H
and K are closed, we deduce that G ∩ H̄ = H and G ∩ K̄ = K; so, h ∈ H and k ∈ K, in
particular, hk ∈ HK. Thus, G ∩ H̄K̄ = HK.
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Assume next that hml
∈ U ∩Gi. If hml

= k−1, then hk ∈ G ∩ H̄ = H, and we are
done. Otherwise, hml

6= k−1, and so

hm1 · · ·hml−1(hml
k)

is a reduced expression for g = hk in the free product (4). Again, since g ∈ U , this
coincides with the unique expression for g in the free product (3). Hence,

hm1 , · · · , hml−1 , (hml
k) ∈ U ≤ G.

Therefore, hm1 , · · · , hml−1 ∈ G ∩ H̄ = H and hml
k ∈ G ∩ U ∩Gi = U ∩ Gi. Now, since

U ∩ Gi is 2-separable (see Lemma 3.1), there are h′ ∈ H ∩ Gi, k′ ∈ K with h′k′ = hml
k.

Hence
g = hk = hm1 · · ·hml−1(h

′k′) = (hm1 · · ·hml−1h
′)k′ ∈ HK,

as desired.

Corollary 3.12 Let G = G1 ∗ · · · ∗ Gm be a free product of groups Gi and assume
G is endowed with the pro-C topology. Let K be a closed subgroup of G and let Ki

be a closed subgroup of Gi (i = 1, . . . , m) such that K = K1 ∗ · · · ∗ Km. Let S(GĈ),
S(K̄), S(K) and S(G) be the profinite graphs associated with the free pro-C products
GC = (G1)Ĉ q · · ·q (Gm)Ĉ , K̄ = K̄1q · · ·q K̄m, K = K1 ∗ · · · ∗Km and G = G1 ∗ · · · ∗Gm,
respectively. Then S(K̄), S(K) and S(G) are naturally embedded in S(GĈ) and

S(K̄) ∩ S(G) = S(K).

Proof: The embeddings are easy to check (in the case of S(K) it follows from the as-
sumption that K and Ki are closed in G and Gi, respectively, i = 1, . . . , m). We need to
check that if x ∈ S(K̄)∩S(G), then x ∈ S(K). Recall that the graph S(G) consists of the
G-translates of the finite graph Tm (see Section 2) with the proviso that in S(G) the sta-
bilizer of xvi is xGix

−1 where G0 = 1 and the edge stabilizers are trivial (and analogously
for S(K), S(GĈ), S(K̄)). If x is an edge or a translate of v0, then clearly x ∈ S(K) because
the stabilizer of x is trivial (e.g., if x has the form gei = k̃e1, with g ∈ G, k̃ ∈ K̄, then
g = k̃ ∈ G ∩ K̄ = K). Assume next that x is a translate of vi, where i ≥ 0. Then x has
the form gvi = k̃vi; and this implies that k̃−1g ∈ (Gi)Ĉ (g ∈ G, k̃ ∈ K̄), i.e., g = k̃g̃i, with
g̃i ∈ (Gi)Ĉ . By Lemma 3.11, we have that g = kgi, with k ∈ K and gi ∈ Gi. Therefore
gvi = kvi ∈ S(K), as needed.

Theorem 3.13 Let G1, . . . , Gm be groups. Assume that in each Gi the product of any
two finitely generated closed subgroups in the pro-C topology is a closed subset (i.e., each
Gi is 2-product subgroup separable). Then their free product

G = G1 ∗ · · · ∗Gm
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is 2-product subgroup separable in the pro-C topology of G.

Proof: Let H and K be finitely generated subgroups of G which are closed in the pro-C
topology of G. We must show that the set HK is closed in the pro-C topology of G. By
Lemma 3.1 and Corollary 3.6 we may assume that K has the form

K = K1 ∗ · · · ∗Km,

where Ki is a closed subgroup of Gi (i = 1, . . . , m).
Let H̄ and K̄ denote the closures of H and K, respectively, in the pro-C completion

GĈ of G. Note that HK = H̄K̄. To show that HK is closed is equivalent to showing that

HK = (H̄K̄) ∩G.

Obviously HK ⊆ (H̄K̄) ∩ G. To prove the opposite containment, let h̃ ∈ H̄ and k̃ ∈ K̄
and assume that

g = h̃k̃ ∈ (H̄K̄) ∩G.

We have to show that
g ∈ HK.

Consider the standard trees S(G) and S(K) associated with the abstract free product
decompositions

G = G1 ∗ · · · ∗Gm and K = K1 ∗ · · · ∗Km,

respectively. Observe that K̄ = K̄1 q · · · q K̄m, where K̄i is the closure of Ki in GĈ (cf.
[7], Corollary 9.1.7). Consider the standard pro-C trees S(GĈ) and S(K̄) associated with
the free pro-C product decompositions

GĈ = (G1)Ĉ q · · · q (Gm)Ĉ and K̄ = K̄1 q · · · q K̄m,

respectively.
Since Ki is closed in Gi (and thus in G) for each i, the canonical map of graphs

S(K) −→ S(K̄) is an embedding. We shall think of S(G) as being canonically embedded
in S(GĈ), of S(K) as being canonically embedded in S(K̄) and in S(G), and of S(K̄)
as being canonically embedded in S(GĈ). Thus we have the following diagram of trees
(abstract and profinite):

S(K) Â Ä //
_Ä

²²

S(G)
_Ä

²²
S(K̄) Â Ä // S(GĈ)

Remark that all the quotient graphs GĈ\S(GĈ), K̄\S(K̄), G\S(G) and K\S(K) are iso-
morphic to the finite tree Tm introduced in Section 2; as we explained there, we shall
identify Tm with its canonical transversal in S(K); in particular, v0 = 1K0, where K0 is
the trivial group.
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Since g ∈ G, it can be written as a finite product of elements from G1, . . . , Gm; hence
the geodesic [v0, gv0] is finite, and therefore so is

h̃−1[v0, gv0] = [h̃−1v0, k̃v0].

Let
D =

⋃

j∈J

H[v0, rjv0],

where {rj | j ∈ J} is a finite set of generators for H; then D is the minimal H-invariant
subtree of S(G) containing v0. Consider the closure

D̄ =
⋃

j∈J

H̄[v0, rjv0]

of D in S(GĈ). Note that we have equal finite quotient graphs

H̄\D̄ = H\D

by Lemma 3.8. Observe that D̄ is a pro-C tree. It follows that

[h̃−1v0, k̃v0] ⊆ D̄ ∪ S(K̄).

If h̃ ∈ K̄, then
h̃k̃ ∈ K̄ ∩G = K,

since K is closed, and thus the result follows. Hence we may assume that h̃ 6∈ K̄. Now,
since [h̃−1v0, k̃v0] is finite, there exists a vertex

v′ ∈ [h̃−1v0, k̃v0] ∩ S(K̄)

such that [h̃−1v0, v
′] is minimal.

We claim that v′ ∈ [h̃−1v0, v0]. Indeed, otherwise (since [h̃−1v0, v
′] is finite) there

exists a vertex
w ∈ [h̃−1v0, v

′]

such that w ∈ [h̃−1v0, v0] but none of the edges of [w, v′] is in [h̃−1v0, v0]. Then

[w, v′] ∩ ([w, v0] ∪ S(K̄))

is a finite tree (since the intersection is nonempty) consisting of the two vertices w and v′

but no edges, a contradiction. This proves the claim. In particular v′ ∈ D̄. Therefore, one
has

[h̃−1v0, v
′] ⊆ [h̃−1v0, v0] ∩ [h̃−1v0, k̃v0].

Clearly [v′, k̃v0] is a finite path in S(K̄). Hence [k̃−1v′, v0] is finite. On the other hand,

[k̃−1v′, v0] = k̃−1[v′, k̃v0] ⊆ k̃−1[h̃−1v0, k̃v0] = [k̃−1h̃−1v0, v0] = [g−1v0, v0] ⊆ S(G),
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and so k̃−1v′ ∈ S(G) ∩ S(K̄) = S(K) (see Corollary 3.12). Then, there exists k ∈ K such
that kvi = k̃−1v′, for some i = 0, . . . , n. This means that v′ = k̃kvi. Now

h̃k̃ ∈ G if and only if h̃k̃k ∈ G;

and
h̃k̃ ∈ HK if and only if h̃k̃k ∈ HK.

Hence, replacing k̃k for k̃, we may assume that v′ = k̃vi, for some i = 0, . . . , n.
Denote by

ϕ : D̄ −→ H̄\D̄ = H\D
the canonical morphism of graphs. Observe that

T = D̄ ∩ S(K̄)

is a pro-C subtree of S(GĈ). We shall prove first that the quotient graph (H̄ ∩ K̄)\T is
finite. To see this consider the natural action of H̄ ∩ K̄ on the space

T ′ = T ∩ ((GĈ)v0 ∪ E(S(GĈ)).

We prove first that the set (H̄ ∩ K̄)\T ′ has the same cardinality as ϕ(T ′), and so it is
finite. Indeed, note that ϕ induces a surjection of sets

ϕ̄ : (H̄ ∩ K̄)\T ′ −→ ϕ(T ′).

Now, suppose t, t′ ∈ T ′ and xt = t′ for some x ∈ H̄; in particular t and t′ are in the same
GĈ-orbit. Since t, t′ ∈ S(K̄), there exists k̃′ ∈ K̄ such k̃′t = t′. So,

x−1k̃′t = t.

Since t ∈ T ′, its stabilizer is trivial. Therefore,

x = k̃′ ∈ H̄ ∩ K̄.

Thus, ϕ̄ is a bijection.
Since the edges of T are in T ′, it follows that (H̄ ∩ K̄)\T has only finitely many edges,

and so it is a finite graph. Let

ρ : T −→ (H̄ ∩ K̄)\T

be the canonical epimorphism of graphs. Then we have a commutative diagram

T
ρ //

Ä _

²²

(H̄ ∩ K̄)\T
ψ

²²
D̄

ϕ // H̄\D̄ = H\D
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where the restriction of ψ to (H̄∩K̄)\T ′ (and in particular, to the set of edges of (H̄∩K̄)\T )
is an injection.

We claim that there exists a connected transversal Σ of ρ containing v0 such that
Σ ⊆ D ⊆ S(G). Clearly ρ(v0) lifts to v0 ∈ D. Let ∆ be a maximal subgraph of ρ(T ) for
which there is a ρ-transversal Σ which is in D such that v0 ∈ Σ. Remark that

Σ ⊆ D ∩ S(K̄) ⊆ S(G) ∩ S(K̄) = S(K)

(the last equality follows from Corollary 3.12). If ρ(Σ) 6= ρ(T ) then there exists a vertex
w of Σ such that ρ(w) has an incident edge ē ∈ ρ(T ) which is not in ρ(Σ). Let e be an
edge of T incident with w such that ρ(e) = ē. Say w = yvi for some i (0 ≤ i ≤ m) and
some y ∈ G. Since H̄\D̄ = H\D (see Lemma 3.8), there is an edge e′ of D incident with w
such that ϕ(e′) = ē. Note that the stabilizer of w in S(GĈ) is (Gi)

y

Ĉ = y(Gi)Ĉy
−1. Hence,

since e, e′ ∈ D̄, there exists ĥ ∈ H̄ ∩ (Gi)
y

Ĉ with ĥe = e′. If i = 0, then G0 = 1; so ĥ = 1;
therefore e = e′ is in T and in D. This would contradict the maximality of ∆. Thus we
may assume that 1 ≤ i ≤ m. By Lemma 3.10 we have that H̄ ∩ (Gi)

g

Ĉ = H ∩Gg
i . Let ve

and ve′ be the vertices different from w of e and e′, respectively. Then ĥve = ve′ . On the
other hand ve = k̂v0 for some k̂ ∈ K̄ and ve′ = y′v0 for some y′ ∈ G, since ve ∈ S(K̄) and
ve′ ∈ D ⊆ S(G). Therefore, ĥk̂ = y′. By Lemma 3.11 ĥk̂ = hk, for some h ∈ H ∩ Gy

i ,
k ∈ K. It follows that

h−1ve′ = ky′−1ve′ = kv0 ∈ S(K).

Since h−1w = w, we deduce that h−1e′ ∈ S(K) and h−1e′ is incident with w; hence
h−1e′ ∈ D ∩ S(K) ⊆ T . Since ρ(h−1e′) = ē, we get a contradiction to the maximality of
∆. This proves the claim.

As pointed out above, Σ ⊆ S(K). Now, since v′ ∈ D̄ ∩ S(K̄) = T , there exists some
α ∈ H̄ ∩ K̄ such that αv′ ∈ Σ; hence αk̃vi ∈ Σ ⊆ S(K). Therefore, αk̃vi = xvi, for some
x ∈ K. Since the stabilizer of vi in K̄ is K̄i, we deduce that αk̃ ∈ KK̄i.

Write αk̃ = kk̂i, where k ∈ K, k̂i ∈ K̄i. Note that

h̃α−1αk̃ = h̃k̃ = g ∈ G.

So,
(h̃α−1)kk̂i = g ∈ G.

It follows that
(k−1(h̃α−1)k)k̂i = k−1g ∈ G.

By Lemma 3.11 there exist h ∈ H, ki ∈ Ki such that (k−1hk)ki = k−1g ∈ G and so
h(kki) = g, as required.
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