## **PROFINITE TOPOLOGIES IN FREE PRODUCTS OF GROUPS**

Luis Ribes and Pavel Zalesskii

## 1. Introduction

Let H be an abstract group and let  $\mathcal{C}$  be a variety of finite groups (i.e., a class of finite groups closed under taking subgroups, quotients and finite direct products); for example the variety of all finite p-groups, for a fixed prime p. Consider the smallest topology on H such that all the homomorphism  $H \longrightarrow C$  from H to any group  $C \in \mathcal{C}$  (endowed with the discrete topology) is continuous. We refer to this topology as the pro- $\mathcal{C}$  topology of H. This paper is concerned with the following property on H: whenever  $H_1$  and  $H_2$  are finitely generated subgroups of H such that  $H_1$  and  $H_2$  are closed in the pro- $\mathcal{C}$  topology of H, then the subset  $H_1H_2$  of H is closed. If H has this property, we call H "2-product subgroup separable" (relative to the class  $\mathcal{C}$ ; there is an analogous concept of "n-product subgroup separable"). The original motivation for the study of this property goes back to a problem posed by J. Rhodes on the existence of an algorithm to compute the so called kernel of a finite monoid (see [5], [6]). For example, if  $\mathcal{C}$  is in addition closed under extensions, then groups that are extensions of free groups by groups in  $\mathcal{C}$  are n-product subgroup separable, for any natural number n (see [8], [9]; see also [12] for other examples).

In this paper we show that if the variety C is closed under extensions, then the property of being 2-product subgroup separable is preserved by taking free products of groups (see Theorem 3.13). This extends in one direction an analogous result of T. Coulbois [1].

The methods used to prove this result are based in the theories of groups acting on trees and of profinite groups acting on profinite trees.

## 2. Preliminaries

In this paper C always denotes an extension closed variety of finite groups, i.e., a nonempty collection of finite groups such that

- (a)  $\mathcal{C}$  is subgroup closed: whenever  $G \in \mathcal{C}$  and  $H \leq G$ , then  $H \in \mathcal{C}$ ;
- (b)  $\mathcal{C}$  is closed under taking quotients: whenever  $G \in \mathcal{C}$  and  $K \triangleleft G$ , then  $G/K \in \mathcal{C}$ ;
- (c)  $\mathcal{C}$  is extension closed: whenever  $1 \longrightarrow K \longrightarrow G \longrightarrow H \longrightarrow 1$  is an exact sequence of finite groups and  $H, K \in \mathcal{C}$ , then  $G \in \mathcal{C}$ .

For example, C could be the class of all finite groups, or the class of all finite *p*-groups (for a fixed prime number *p*), or the class of all finite solvable groups.

All groups considered in this paper are assumed to be residually  $\mathcal{C}$  (recall that a group R is residually  $\mathcal{C}$  if for any  $1 \neq x \in R$ , there exists a normal subgroup N of finite index in R such that  $x \notin N$  and  $G/N \in \mathcal{C}$ ). It is well-known that an abstract free group is residually  $\mathcal{C}$  (see, for example, [7], Proposition 3.3.15), and that a free product of residually  $\mathcal{C}$  groups is residually  $\mathcal{C}$  (see [4]).

A pro-C group A is an inverse limit

$$A = \lim_{i \in I} A_i$$

of groups in  $\mathcal{C}$ ; we think of G as a topological group with the topology determined by assigning to each finite group  $A_i$  the discrete topology. Equivalently, A is a pro- $\mathcal{C}$  group if it is a compact, Hausdorff and totally disconnected topological group such that  $A/U \in \mathcal{C}$ for every open normal subgroup U of A. (See [7], Section 9, for general facts about pro- $\mathcal{C}$ groups.)

Let  $\{A_1, \ldots, A_n\}$  be a finite collection of pro- $\mathcal{C}$  groups. A free *pro-\mathcal{C} product* of these groups consists of a pro- $\mathcal{C}$  group, denoted  $A = \coprod_{i=1}^n A_i$ , and continuous homomorphisms

$$\varphi_i: A_i \longrightarrow A \quad (i = 1, ..., n),$$

satisfying the following universal property:



for any pro- $\mathcal{C}$  group B and any set of continuous homomorphisms  $\psi_i : A_i \longrightarrow B$  (i = 1, ..., n), there exists a unique continuous homomorphism  $\psi : A \longrightarrow B$  such that  $\psi_i = \psi \varphi_i$ , for all i = 1, ..., n. Observe that one needs to test the above universal property only for groups  $B \in \mathcal{C}$ , for then it holds automatically for any pro- $\mathcal{C}$  group B, since such a B is an inverse limit of groups in  $\mathcal{C}$ . Denote by

$$L = A_1 * \dots * A_n$$

the free product of  $A_1, \ldots, A_n$  as abstract groups. Then  $A = \coprod_{i=1}^n A_i$  is the completion of L

$$\lim_{N \in \mathcal{N}} L/N,$$

where  $\mathcal{N} = \{N \mid N \cap A_i \text{ is open in } A_i \ (i = 1, ..., n)\}$ . One checks that L is naturally embedded in A (see, for example, [7], Proposition 9.1.8).

Recall that a topological space X is a *profinite space* if it is the inverse limit of finite discrete spaces; in other words, X is profinite if it is compact, Hausdorff and totally disconnected.

A profinite graph  $\Gamma$  (oriented) is a profinite space with a distinguish closed subset  $V(\Gamma)$  (the vertices of the graph) and a pair of continuous maps  $d_0, d_1 : \Gamma \to V(\Gamma)$  (the incidence maps) such that  $d_i(v) = v$  for all  $v \in V(\Gamma)$  (i = 0, 1). The elements of the subspace  $E(\Gamma) = \Gamma - V(\Gamma)$  are the edges of the graph. In this paper, the space  $E(\Gamma)$ 

is assumed to be always closed, and so it is enough to define  $d_0$  and  $d_1$  continuously on  $E(\Gamma)$ . Let  $\mathbf{Z}_{\hat{\mathcal{C}}}$  denote the free pro- $\mathcal{C}$  group of rank 1, and for a profinite space X, let  $[\![\mathbf{Z}_{\hat{\mathcal{C}}}X]\!]$  denote the free  $\mathbf{Z}_{\hat{\mathcal{C}}}$ -module on the basis X (or, equivalently, the free abelian pro- $\mathcal{C}$  group on the basis X). Such a profinite graph is called a *pro-\mathcal{C} tree* if the following sequence

$$0 \longrightarrow \llbracket \mathbf{Z}_{\hat{\mathcal{C}}} E(\Gamma) \rrbracket \overset{\delta}{\longrightarrow} \llbracket \mathbf{Z}_{\hat{\mathcal{C}}} V(\Gamma) \rrbracket \overset{\varepsilon}{\longrightarrow} \mathbf{Z}_{\hat{\mathcal{C}}} \longrightarrow 0$$

of free pro- $\mathcal{C}$  abelian groups is exact, where  $\varepsilon(v) = 1$  for every  $v \in V(\Gamma)$ ,  $\delta(e) = d_1(e) - d_0(e)$ for every  $e \in E(\Gamma)$ . (See [3] for a general definition of pro- $\mathcal{C}$  tree and its properties.) Finite abstract graphs are profinite graphs; and finite abstract trees are pro- $\mathcal{C}$  trees for any  $\mathcal{C}$ .

Let  $\Gamma$  be a profinite pro-C tree and let  $x, y \in \Gamma$ . The geodesic [x, y] determined by x and y is the smallest profinite subtree of  $\Gamma$  containing x and y, or equivalently, the intersection of all profinite subtrees of  $\Gamma$  containing x and y.

If  $\Gamma$  and  $\Gamma'$  are profinite graphs, a morphism  $\alpha : \Gamma \longrightarrow \Gamma'$  is simply a continuous map such that  $\alpha(d_i(x)) = d_i(\alpha(x))$ , for all  $x \in \Gamma$  (i = 0, 1). A morphism is an embedding if it is an injection.

Let A be a profinite group. We say that A acts on a profinite graph  $\Gamma$  from the left if there exists a continuous function  $A \times \Gamma \longrightarrow \Gamma$ , denoted  $(a, x) \mapsto ax$   $(a \in A, x \in \Gamma)$ , such that (aa')x = a(a'x), 1x = x and  $d_i(ax) = ad_i(x)$ , for all  $a, a' \in G, x \in \Gamma$  (i = 0, 1). There is a similar concept of right action of A on  $\Gamma$ . If a profinite group A acts from the left on a profinite graph  $\Gamma$ , we denote the corresponding quotient graph of orbits by  $A \setminus \Gamma$ . If A acts on  $\Gamma$  from the right, we denote the quotient graph by  $\Gamma/A$ . Let A act on  $\Gamma$  from the left and let

$$\varphi: \Gamma \longrightarrow A \backslash \Gamma$$

be the corresponding quotient map. If  $A \setminus \Gamma$  is finite, there is a maximal subtree T' of  $A \setminus \Gamma$ ; hence there exists a *connected*  $\varphi$ -transversal (also called simply a transversal) J containing a lifting T of T', i.e., T is a subtree of  $\Gamma$  that is mapped isomorphically to T' by  $\varphi$ , J is a subset (not necessarily a subgraph) of  $\Gamma$  containing T such that  $\varphi$  induces a bijection from J to  $A \setminus \Gamma$ ,  $d_0(J) \subseteq J$  and  $V(\Gamma) \cap J = V(T)$ .

Let  $A = \coprod_{i=1}^{n} A_i$  be a free pro- $\mathcal{C}$  product. Then the standard pro- $\mathcal{C}$  tree S(A) associated with this free product is defined as follows (cf. [3]): its space of edges is the disjoint union

$$E(S(A)) = \bigcup_{i=1}^{n} A$$

of n copies of A; its space of vertices is the disjoint union

$$V(S(A)) = \bigcup_{i=0}^{n} A/A_i,$$

of the quotient spaces  $A/A_i$ , where  $A_0 = 1$ ; and its incidence maps  $d_0$  and  $d_1$  are given by

$$d_0(a) = aA_0 = a, \ d_1(a) = aA_i$$
, when a is in the *i*th copy of A in  $E(S(A)) = \bigcup_{i=1}^n A$ .

Note that A acts naturally on S(A) by left multiplication; the stabilizers of vertices are conjugates of the groups  $A_i$  (i = 1, ..., n), and all edge stabilizers are trivial. The quotient graph  $A \setminus S(A)$  is a finite tree  $T_n$  with n edges and n + 1 vertices:



Using this finite graph  $T_n$ , one can give an alternative description of S(A): we identify  $T_n$  with a canonical transversal of it in S(A) whose vertices are  $v_i = 1A_i$  (i = 0, 1, ..., n); then S(A) is the unique profinite graph obtained as the union of all translations of  $T_n$  by the elements of the group A, with the proviso that the A-stabilizer of the vertex  $av_i$  is  $aA_ia^{-1}$   $(a \in A, i = 0, 1, ..., n)$  and the A-stabilizer of the edge  $ae_i$  is trivial (i = 1, ..., n); furthermore, the topology of S(A) is induced by the product topologies of  $A \times V(T_n)$  and  $A \times E(T_n)$ .

Remark that if  $B_i$  is a closed subgroup of  $A_i$  (i = 1, ..., n) and if  $B = \coprod_{i=1}^n B_i$  is the free pro- $\mathcal{C}$  product of the pro- $\mathcal{C}$  groups  $B_1, \ldots, B_n$ , then B is the closed subgroup of Agenerated by  $B_1, \ldots, B_n$  (cf. [3], Corollary 9.1.7); hence there is a natural embedding of the corresponding pro- $\mathcal{C}$  graphs  $S(B) \hookrightarrow S(A)$ .

There is a similar construction of an abstract tree S(G) associated with a free product  $G = G_1 * \cdots * G_n$  of abstract groups  $G_1, \ldots, G_n$  (cf. [10], Section 4.5). Its space of edges is the disjoint union  $E(S(G)) = \bigcup_{i=1}^{n} G$  of n copies of G; its space of vertices is the disjoit union  $V(S(G)) = \bigcup_{i=0}^{n} G/G_i$ , of the quotient spaces  $G/G_i$ , where  $G_0 = 1$ ; and its incidence maps  $d_0$  and  $d_1$  are given by  $d_0(g) = gG_0 = g$  and  $d_1(g) = aG_i$ , when  $g \in E(S(G))$  is in the *i*th copy of G in  $E(S(G)) = \bigcup_{i=1}^{n} G$ .

The group G acts naturally on S(G) by left multiplication, and the corresponding quotient graph is the above finite tree  $T_n$  with n edges and n + 1 vertices.

Let R be an abstract group. Denote by  $\mathcal{N}_{\mathcal{C}}$  the collection of all normal subgroups N of R such that  $R/N \in \mathcal{C}$ . Then there is a unique topology on R making it into a topological group such that  $\mathcal{N}_{\mathcal{C}}$  is a fundamental system of neighborhoods of the identity element 1 of R. This is the *(full) pro-C topology of* R. We say that R is *n*-product subgroup separable (with respect to its pro- $\mathcal{C}$  topology) if whenever  $H_1, \ldots, H_n$  are closed subgroups of R (in the pro- $\mathcal{C}$  topology of R) which are finitely generated as abstract groups, then the product subset  $H_1 \cdots H_n$  is closed in the pro- $\mathcal{C}$  topology of R.

If R is an abstract group, we denote by  $R_{\hat{\mathcal{C}}}$  its completion with respect to its pro- $\mathcal{C}$  topology, i.e.,

$$R_{\hat{\mathcal{C}}} = \lim_{N \in \mathcal{N}_{\mathcal{C}}} R/N$$

Then, there exists a natural embedding

 $\iota: R \longrightarrow R_{\hat{\mathcal{C}}},$ 

since R is assumed to be residually C.

The following fact is not hard to prove: 'pro-C completion commutes with free products', in other words, if

$$G = G_1 * \dots * G_n$$

is a free product of abstract groups  $G_1, \ldots, G_n$ , then

$$G_{\hat{\mathcal{C}}} = (G_1)_{\hat{\mathcal{C}}} \amalg \cdots \amalg (G_n)_{\hat{\mathcal{C}}}$$
 (free pro- $\mathcal{C}$  product).

Furthermore, since the groups  $G_i$  (i = 1, ..., n) are assumed to be residually C, so is their free product G, and we have canonical embeddings



Moreover, each  $G_i$  is closed in the pro- $\mathcal{C}$  topology of G (cf. [7], Corollary 3.1.6).

These facts allow us to think of the tree S(G), associated with the abstract free product  $G = G_1 * \cdots * G_n$ , as a subgraph of the pro- $\mathcal{C}$  tree  $S(G_{\hat{\mathcal{C}}})$ , associated with the free pro- $\mathcal{C}$  product  $G_{\hat{\mathcal{C}}} = (G_1)_{\hat{\mathcal{C}}} \amalg \cdots \amalg (G_n)_{\hat{\mathcal{C}}}$ . More precisely, there is a natural embedding of graphs

$$S(G) \longrightarrow S(G_{\hat{\mathcal{C}}})$$

defined as follows.

For vertices:  $gG_i \mapsto g(G_i)_{\hat{\mathcal{C}}}$   $(g \in G, i = 1, ..., n)$ For edges: g in the *i*-th copy of G in E(S(G)) is sent to g in the *i*-th copy of  $G_{\hat{\mathcal{C}}}$  in  $E(S(G_{\hat{\mathcal{C}}}))$ .

Notation: if H is a subgroup of a group G and  $x, y \in G$ , then as usual,  $y^x = x^{-1}yx$  and  $H^x = x^{-1}Hx$ . If X is a subset of a group G, then  $\overline{X}$  denotes the closure of X in the pro- $\mathcal{C}$  completion  $G_{\hat{\mathcal{C}}}$  of G; observe that the closure Cl(X) of X in the pro- $\mathcal{C}$  topology of G coincides with  $G \cap \overline{X}$ .

#### 3. The Main Theorem

We begin with a reduction result.

**Lemma 3.1** Let R be an abstract group, endowed with its pro-C topology, and let U be an open subgroup of R. Then R is n-product subgroup separable if and only if U is n-product subgroup separable.

*Proof:* First observe that since C is extension closed, the pro-C topology of U is precisely the topology induced by the pro-C topology of R (see Lemma 3.1.4(a) in [7]). Assume R is n-product subgroup separable. Then plainly U is n-product subgroup separable.

Conversely assume that U is *n*-product subgroup separable. By the above, the core  $U_R$  of U in R is *n*-product subgroup separable as well. Hence, replacing U by  $U_R$ , if necessary, we may assume that U is open and normal in R. Let  $H_1, \ldots, H_n$  be finitely generated closed subgroups of R. We shall prove by induction on the number of  $H_i$  which are not contained in U that  $H_1 \cdots H_n$  is closed in the pro-C topology of R. If  $H_i \leq U$  for all  $i = 1, \ldots, n$ , the result is clear. Since each  $H_i$  is finitely generated and  $U \cap H_i$  has finite index in  $H_i$ , we have that  $U \cap H_i$  is also finitely generated. Pick  $H_t \leq U$ . Write  $H_t = \bigcup_i h_j (U \cap H_t), (h_j \in H_t)$ . Therefore we get a finite union

$$H_1 \cdots H_n = \bigcup_j h_j H_1^{h_j} \cdots H_{t-1}^{h_j} (U \cap H_t) H_{t+1} \cdots H_n$$

By the induction hypothesis,  $H_1^{h_j} \cdots H_{i-1}^{h_j} (U \cap H_i) H_{i+1} \cdots H_n$  is closed in R. Thus  $H_1 \cdots H_n$  is closed in R.

**Lemma 3.2** Let G be an abstract group that acts freely on a tree T. Endow G with its pro-C topology. Let K be a closed subgroup of G and let  $\Delta$  be a finite subgraph of  $K \setminus T$ . Then there exists an open subgroup V of G containing K such that the natural map of graphs

$$\tau_V: K \backslash T \longrightarrow V \backslash T$$

is injective on  $\Delta$ .

*Proof:* Since K is closed,  $K = \bigcap_{i \in I} U_i$ , where  $\{U_i \mid i \in I\}$  is the collection of all open subgroups of G containing K. Consider the map of graphs  $\tau_G : K \setminus T \longrightarrow G \setminus T$ . Since  $\Delta$  is finite, it is a finite union of intersections as follows:

$$\Delta = \bigcup_{t=1}^{m} (\Delta \cap \tau_G^{-1}(x_t)),$$

for some  $x_t \in G \setminus T$  and  $m \in \mathbf{N}$ . We claim that for each  $t = 1, \ldots, m$ , there exists some  $i_t \in I$  such that  $\tau_{U_{i_t}}$  is injective on  $\Delta \cap \tau_G^{-1}(x_t)$ . Since G acts freely on T, the set  $\tau_G^{-1}(x_t)$  may be identified with  $K \setminus G$ ; moreover, if  $K \leq U \leq G$ , the restriction of  $\tau_U : K \setminus T \longrightarrow U \setminus T$  to  $\tau_G^{-1}(x_t)$  may be identified with the canonical surjection  $\tau_U : K \setminus G \longrightarrow U \setminus G$ . Since  $\Delta \cap \tau_G^{-1}(x_t)$  can be thought of as a finite subset of  $K \setminus G$ , the existence of the required  $i_t$  follows from  $K = \bigcap_{i \in I} U_i$ . Define V to be  $V = \bigcap_{t=1}^m U_{i_t}$ . Then clearly  $\tau_V$  is injective on  $\Delta$ .

Let v be a vertex of an abstract graph  $\Gamma$ . Then  $Star_{\Gamma}(v)$  is the set of edges e of  $\Gamma$  such that  $v = d_0(e)$  or  $v = d_1(e)$ . A morphism of graphs  $\varphi : \Gamma \longrightarrow \Gamma'$  is called an *immersion* if, for each vertex  $v \in \Gamma$ , the map  $Star_{\Gamma}(v) \longrightarrow Star_{\Gamma'}(\varphi(v))$ , induced by  $\varphi$ , is an injection.

**Lemma 3.3** Let  $\varphi : \Gamma \longrightarrow \Delta$  be an immersion of finite connected graphs. If  $\varphi$  induces an epimorphism  $\pi_1(\Gamma) \longrightarrow \pi_1(\varphi(\Gamma))$ , then  $\varphi$  is an injection.

*Proof:* An immersion of graphs induces a monomorphism of fundamental groups (cf. Proposition 5.3 in [11]); hence,  $\pi_1(\Gamma) \longrightarrow \pi_1(\varphi(\Gamma))$  is an isomorphism. Define *m* to be the

rank of the free group  $\pi_1(\Gamma)$ . Then we also have  $\operatorname{rank}(\pi_1(\varphi(\Gamma)) = m$ . By Corollary 1.8 in [2] we have that

$$\sum_{v \in V(\Gamma)} (|Star_{\Gamma}(v)| - 2) = 2m - 2 = \sum_{w \in V(\varphi(\Gamma))} (|Star_{\varphi(\Gamma)}(w)| - 2).$$

Since  $|Star_{\Gamma}(v)| \geq |Star_{\varphi(\Gamma)}(\varphi(v))|$  for all  $v \in V(\Gamma)$ , we deduce that

$$|Star_{\Gamma}(v)| = |Star_{\varphi(\Gamma)}(\varphi(v))|, \quad \forall v \in V(\Gamma), \text{ and } |V(\Gamma)| = |V(\varphi(\Gamma))|.$$

I.e,  $\varphi$  is an injection.

v

**Lemma 3.4** Let an abstract group G act on an abstract tree S. Let K be a closed subgroup (in the pro-C topology) of G. Let D be a K-invariant subtree of S such that  $K \setminus D$  is finite. Endow G with its pro-C topology; then for every open subgroup U of G containing K, there exists an open subgroup V of G with  $K \leq V \leq U \leq G$  such that the morphism

$$\tau_V: K \backslash D \longrightarrow V \backslash S$$

induces an epimorphism of fundamental groups

$$f_V: \pi_1(K \setminus D) \longrightarrow \pi_1(\tau_V(K \setminus D)).$$

Proof: Let  $\tilde{K}$  denote the subgroup of K generated by all the stabilizers of the vertices of D (under the action of K) and let  $\tilde{U}$  denote the subgroup of U generated by all stabilizers of the vertices of S (under the action of U); observe that  $\tilde{K} \triangleleft K$  and  $\tilde{U} \triangleleft U$ . Then  $K/\tilde{K} = \pi_1(K \backslash D)$  and  $U/\tilde{U} = \pi_1(U \backslash S)$  (cf. [10], page 55, Corollary 1). Moreover  $\tilde{U} \backslash S$  is a tree (see [10], page 55, Exercise 2); since  $U/\tilde{U}$  acts freely on this tree, it follows that  $U/\tilde{U}$  is a free group. Consider the image  $D_U$  of D in  $\tilde{U} \backslash S$ . Clearly  $K\tilde{U}/\tilde{U}$  acts freely on  $D_U$  and hence,  $\pi_1((K\tilde{U}/\tilde{U}) \backslash D_U) = K\tilde{U}/\tilde{U}$  (use again [10], page 55, Corollary 1). Therefore, since  $\tilde{K} \leq \tilde{U}$ , the homomorphism

$$f_{K\tilde{U}}: \pi_1(K\backslash D) \longrightarrow \pi_1(\tau_{\tilde{U}K}(K\backslash D)) = \pi_1((K\tilde{U}/\tilde{U})\backslash D_U)$$

coincides with the natural epimorphism  $K/\tilde{K} \longrightarrow K\tilde{U}/\tilde{U}$ .

Since  $U/\tilde{U}$  is free and acts freely on  $\tilde{U}\backslash S$ , by Lemma 3.2 there exists an open subgroup V of U containing  $K\tilde{U}$  such that the restriction

$$\varphi: (K\tilde{U}/\tilde{U}) \setminus D_U \longrightarrow (V/\tilde{U}) \setminus (\tilde{U} \setminus S(G))$$

of the natural morphism

$$(K\tilde{U}/\tilde{U})\backslash(\tilde{U}\backslash S) \longrightarrow (V/\tilde{U})\backslash(\tilde{U}\backslash S)$$

to  $(K\tilde{U}/\tilde{U})\backslash D_U$  is an injection.

Clearly  $(V/\tilde{U})\setminus (\tilde{U}\setminus S(G)) = V\setminus S(G)$  and  $(K\tilde{U}/\tilde{U})\setminus D_U = K\tilde{U}\setminus D$ . Hence from the commutativity of the diagram



one deduces that  $\varphi((K\tilde{U}/\tilde{U})\backslash D_U) = \tau_V(K\backslash D)$ . In other words

$$(K\tilde{U}/\tilde{U})\backslash D_U \longrightarrow \tau_V(K\backslash D)$$

is an isomorphism. So it induces an isomorphism of fundamental groups

$$\eta: \pi_1(K\tilde{U}/\tilde{U}) \setminus D_U \longrightarrow \pi_1(\tau_V(K \setminus D)).$$

Thus  $f_V = \eta f_{K\tilde{U}}$  is an epimorfism as asserted.

**Lemma 3.5** Let  $G_1, \ldots, G_m$  be groups and let H be a finitely generated closed subgroup of the free product  $G = G_1 * \cdots * G_m$  (endowed with its pro- $\mathcal{C}$  topology). Let S(G) be the standard tree of the free product  $G = G_1 * \cdots * G_m$  and let D be an H-invariant subtree of S(G) such that  $H \setminus D$  is finite. Then for any connected transversal  $\Sigma_H$  of  $H \setminus D$  in D, there exists an open subgroup U of G and a connected transversal  $\Sigma_U$  of  $U \setminus S(G)$  in S(G)such that

(a)  $H \setminus D$  is canonically embedded in  $U \setminus S(G)$  and  $\Sigma_H \subseteq \Sigma_U$ ;

(b)

$$U = \left[ \bigstar_{w \in V(\Sigma_U)} U_w \right] * F_U,$$

where  $F_U$  is the free group  $\pi_1(U \setminus S(G))$  and where  $U_w$  denotes the stabilizer in U of the vertex w;

(c)

$$H = \left[ \bigstar_{w \in V(\Sigma_H)} H_w \right] * F_H,$$

where  $F_H$  is the free group  $\pi_1(H \setminus D)$  and where  $H_w$  is the stabilizer in H of the vertex w;

(d)  $F_H$  is a free factor of  $F_U$ .

*Proof:* Consider the canonical morphism of graphs

$$\tau_U: H \backslash D \longrightarrow H \backslash S(G) \longrightarrow U \backslash S(G).$$

Observe first that, by Lemma 3.4, for every open subgroup U containing H there exists an open subgroup  $V \leq U$  containing H such that the morphism  $\tau_V$  induces an epimorphism of fundamental groups  $f_V : \pi_1(H \setminus D) \longrightarrow \pi_1(\tau_V(H \setminus D))$ .

Hence, by Lemma 3.3, to show that the morphism above is injective it suffices to show the existence of an open subgroup U containing H such that  $\tau_U$  is an immersion. Choose  $\bar{w} \in V(H \setminus D)$ , where  $\bar{w} = Hw$  and  $w \in D \subset S(G)$ . Since  $H \setminus D$  is finite, it suffices to prove the existence of U such that  $(\tau_U)_{|Star_{H \setminus D}(\bar{w})|}$  is injective. Now we use the structure of  $G \setminus S(G)$ . If w = v, then the result follows from the fact that  $|Star_{H \setminus D}(\bar{v})| = |Star_D(v)|$ and  $|Star_{U \setminus S(G)}(\bar{v})| = |Star_{S(G)}(v)|$ , for every open subgroup U.

Assume next that  $\bar{w} \neq vH$ . Then  $Star_{H\setminus D}(\bar{w})$  is a finite subset of  $Star_{H\setminus S(G)}(\bar{w}) = (H \cap G_w) \setminus G_w$ . Since H is closed, we have that  $H = \bigcap V$ , where V ranges over all the open subgroups of G containing H. Hence  $H \cap G_w = \bigcap (V \cap G_w)$ ; so there exists an open subgroup U of G containing H such that all elements of  $Star_{H\setminus D(w)}$  are distinct modulo  $U \cap G_w$  as needed. This proves that  $\tau_U$  is injective.

Thus we may regard  $H \setminus D$  as a subgraph of  $U \setminus S(G)$ . Choose a maximal subtree  $T_H$  of  $H \setminus D$  and extend it to a maximal subtree  $T_U$  of  $U \setminus S(G)$ . Let

$$j: H \setminus D \longrightarrow \Sigma_H$$

be a bijection onto a connected transversal  $\Sigma_H$  of  $H \setminus D$  in D containing a lifting of  $T_H$ . Extend j to a bijection, which we denote also by j,

$$j: U \setminus S(G) \longrightarrow \Sigma_U$$

onto a connected transversal  $\Sigma_U$  of  $U \setminus S(G)$  in S(G) containing a lifting of  $T_U$ .

For every edge  $e \in U \setminus S(G) - T_U$ , choose an element  $g_e \in G$  such that

$$g_e j(d_1(e)) = d_1(j(e)).$$

Then (see, for example, [10], Section I.5.5, Theorem 14)

$$U = \bigstar_{w \in V(\Sigma_U)} U_w * F_{U_2}$$

where  $F_U$  is a free group on the set  $B_U = \{g_e \mid e \in U \setminus S(G) - T_U\}$  and where  $U_w$  is the stabilizer in U of the vertex w.

We also have that

$$H = \left[ \bigstar_{w \in V(\Sigma_H)} H_w \right] * F_H,$$

where  $F_H$  is a free group on the set  $B_H = \{g_e \mid e \in H \setminus D - T_H\}$  and where  $H_w$  is the stabilizer in H of the vertex w.

Part (d) is clear since  $H \setminus D$  is a subgraph of  $U \setminus S(G)$ .

**Corollary 3.6** Let  $G_1, \ldots, G_m$  be groups and let H be a finitely generated closed subgroup of the free product  $G = G_1 * \cdots * G_m$ . Then there exists an open subgroup U of G and (Kurosh-type) decompositions

$$U = U_1 * \cdots * U_t$$
 and  $H = H_1 * \cdots * H_t$ 

such that

- (a)  $H_i \leq_c U_i \ (i = 1, \dots, t);$
- (b) For each i = 1, ..., t 1,  $U_i$  is an open subgroup of a conjugate of some  $G_j$  (j = 1, ..., m), i.e.,  $U_i = U \cap \tau G_j \tau^{-1}$  for some  $\tau \in G$ ;
- (c)  $U_t$  is a free group of finite rank and  $H_t$  is a free factor of  $U_t$ .

Moreover, the decomposition for U (respectively for H) can be chosen to contain as factors all the intersections  $U \cap G_i$  (respectively,  $H \cap G_i$ )  $(1 \le i \le m)$ .

*Proof:* Consider the standard tree S(G) of the free product  $G = G_1 * \cdots * G_m$ . Define a subtree of S(G)

$$D = \left(\bigcup_{j \in J} H[v_0, r_j v]\right) \cup \left(\bigcup_{i=1}^m H[v_0, v_i]\right),$$

where  $\{r_j \mid j \in J\}$  is a finite set of generators for H. Choose a connected transversal  $\Sigma_H$  of  $H \setminus D$  in D containing all the  $v_i$ . Now apply the preceding lemma and observe that if  $v \in \Sigma$  and  $v = \tau v_j$ , then  $U_v = U \cap \tau G_j \tau^{-1}$  and  $H_v = H \cap \tau G_j \tau^{-1}$ ; in particular,  $U_{v_i} = U \cap G_i$  and  $H_{v_i} = H \cap G_i$ .

**Corollary 3.7** Let  $G_1, \ldots, G_m$  be groups and let  $G = G_1 * \cdots * G_m$  be their free product. Assume that H is a finitely generated and closed subgroup of G (in its pro-C topology). Then there exists a Kurosh decomposition

$$H = \left[ \bigstar_{i=1}^{n} \left[ \bigstar_{\tau \in H \setminus G/G_{i}} H \cap \tau G_{i} \tau^{-1} \right] \right] * F$$

of H, where F is a free group, such that

$$\bar{H} = \left[\prod_{i=1}^{n} \left[\prod_{\tau \in H \setminus G/G_i} \overline{H \cap \tau G_i \tau^{-1}}\right]\right] \amalg \bar{F},$$

where if X is a subset of H, then  $\overline{X}$  denotes the topological closure of X in  $G_{\hat{\mathcal{C}}}$ . Moreover,  $\overline{F} = F_{\hat{\mathcal{C}}}$  is a free pro- $\mathcal{C}$  group.

*Proof:* Choose U open in G and Kurosh decompositions

$$U = U_1 * \cdots * U_t$$
 and  $H = H_1 * \cdots * H_t$ 

satisfying the conditions of Corollary 3.6. Using the fact that U is open in G and the form of the decomposition, one can show that

$$\bar{U} = \bar{U}_1 \amalg \cdots \amalg \bar{U}_t$$

where  $\bar{U} = U_{\hat{\mathcal{C}}}$  and  $\bar{U}_t = (U_t)_{\hat{\mathcal{C}}}$  is a free pro -  $\mathcal{C}$  group (cf. [7], Corollary 9.1.7 and Theorem 9.1.9). Next observe that  $\bar{H}$  coincides with the closed subgroup of  $\bar{U}$  generated by the groups  $\bar{H}_i$   $(i = 1, \ldots, t)$ . Note that the latter group is  $\bar{H}_1 \amalg \cdots \amalg \bar{H}_t$  (cf. [7], Corollary

9.1.7). Finally, since  $H_t$  is a free factor of  $U_t$ , we have that the topology on  $H_t$  induced from the pro- $\mathcal{C}$  topology of  $U_t$  coincides with the full pro- $\mathcal{C}$  topology of  $H_t$  (cf. [7], Corollary 3.1.6); therefore  $\bar{F} = F_{\hat{\mathcal{L}}}$ .

**Lemma 3.8** Let  $G_1, \ldots, G_m$  be groups and let H be a closed subgroup of the free product  $G = G_1 * \cdots * G_m$  (endowed with its pro- $\mathcal{C}$  topology). Let S(G) be the standard tree of the free product  $G = G_1 * \cdots * G_m$  and let D be an H-invariant subtree of S(G) such that  $H \setminus D$  is finite. Then

$$H \backslash D = \bar{H} \backslash \bar{D},$$

where  $\overline{H}$  denotes the closure of H in  $G_{\hat{C}}$ , and  $\overline{D}$  is the closure of D in  $S(G_{\hat{C}})$ .

*Proof:* Consider the natural continuous map

$$D \longrightarrow \bar{D} \longrightarrow \bar{H} \setminus \bar{D}$$

Since its image is dense and  $H \setminus D$  is finite, it induces an onto map

$$H \setminus D \longrightarrow \overline{H} \setminus \overline{D}$$
.

Now, by Lemma 3.2, there exists an open subgroup U of G containing H such that

$$\tau: H \backslash D \longrightarrow H \backslash S(G) \longrightarrow U \backslash S(G)$$

is injective. Since U is open, one clearly has  $U \setminus S(G) = \overline{U} \setminus S(G_{\hat{\mathcal{C}}})$  (in this case the space edges of these quotient graphs is the set of right cosets  $U \setminus G = \overline{U} \setminus \overline{G}$ , and the set of vertices is the set of open double cosets  $U \setminus G/G_i = \overline{U} \setminus G_{\hat{\mathcal{C}}}/(G_i)_{\hat{\mathcal{C}}}$ ). From the commutativity of the diagram



one deduces that  $H \setminus D \longrightarrow \overline{H} \setminus \overline{D}$  is injective.

**Lemma 3.9** Let  $A = B \amalg C$  be the free pro-C product of pro-C groups B and C. Assume that  $B_1 \leq_c B$ ,  $C_1 \leq_c C$  and  $A = B \amalg C = \overline{\langle B_1, C_1 \rangle}$ . Then  $B = B_1$  and  $C = C_1$ .

*Proof:* Let  $\varphi : A \longrightarrow B$  be the epimorphism induced by the identity homomorphism  $B \longrightarrow B$  and the homomorphism that sends C to 1. Since A is generated by  $B_1$  and  $C_1$  and since  $\varphi(C_1) = 1$ , it follows that  $B = \varphi(B_1) = B_1$ . Similarly  $C = C_1$ .

**Lemma 3.10** Let  $G_1, \ldots, G_m$  be residually  $\mathcal{C}$  groups and let

$$G = G_1 * \dots * G_m.$$

Endow G with the pro-C topology. Let H be a subgroup of G which is either open or finitely generated and closed. Let

$$L = (G_1)_{\hat{\mathcal{C}}} * \cdots * (G_m)_{\hat{\mathcal{C}}}$$

be the abstract free product of the pro- $\mathcal{C}$  completions of the groups  $G_i$ . Denote by D the minimal H-invariant subtree of S(G) containing  $v_0$  if H is finitely generated, and let D = S(G) if H open. Let  $\Sigma_H$  be a connected transversal of  $H \setminus D$  in D. Then

$$H = \left[ \bigstar_{v \in V(\Sigma_H)} H_v \right] * \pi_1(H \setminus D) = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in H \setminus G/G_i} H \cap \tau G_i \tau^{-1} \right] \right] * F$$

and

$$\bar{H} \cap L = \left[ \bigstar_{v \in V(\Sigma_H)} \overline{(H_v)} \right] * F = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in H \setminus G/G_i} \overline{H \cap \tau G_i \tau^{-1}} \right] \right] * F,$$

where  $F = \pi_1(H \setminus D)$ .

Furthermore, for  $\tau \in H \setminus G/G_i$  as above,  $(i = 1, \ldots, m)$ ,

$$\bar{H} \cap \tau \bar{G}_i \tau^{-1} = \overline{H \cap \tau G_i \tau^{-1}}.$$

*Proof:* Note that  $G_{\hat{\mathcal{C}}} = (G_1)_{\hat{\mathcal{C}}} \amalg \cdots \amalg (G_m)_{\hat{\mathcal{C}}}$ . By Lemma 3.8  $H \setminus D = \bar{H} \setminus \bar{D}$ . Let D' be the intersection of  $\bar{D}$  with the abstract connected component of  $S(G_{\hat{\mathcal{C}}})$  containing S(G) (this connected component coincides with S(L)). Then

$$(\bar{H} \cap L) \setminus D' = H \setminus D = \bar{H} \setminus \bar{D};$$

indeed, the natural map of graphs

 $D' \longrightarrow \bar{H} \backslash \bar{D}$ 

is clearly an epimorphism, and if  $d_1 = hd_2$  for some  $h \in \overline{H}$ ,  $d_1, d_2 \in D'$ , then  $h \in \overline{H} \cap L$ (just notice that  $d_1$  and  $d_2$  are either both in L or both of the form  $gv_i$ , where  $g \in L$ ,  $i = 1, \ldots, n$ ), i.e.,

$$(\bar{H} \cap L) \backslash D' \longrightarrow \bar{H} \backslash \bar{D}$$

is bijective.

Let  $\Sigma_H$  be a connected transversal of  $H \setminus D$  in S(G). Put  $F = \pi_1(H \setminus D) = \pi_1((\bar{H} \cap L) \setminus D')$ . Then (cf. [10], page 43, Example 1)

$$H = \left[ \bigstar_{v \in \Sigma_H} H_v \right] * \pi_1(H \setminus D) = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in H \setminus G/G_i} H \cap \tau G_i \tau^{-1} \right] \right] * F$$

and

$$\bar{H} \cap L = \left[ \bigstar_{v \in \Sigma_{H}} (\bar{H} \cap L)_{v} \right] * \pi_{1} ((\bar{H} \cap L) \setminus D')$$
$$= \left[ \bigstar_{i=1}^{m} \left[ \bigstar_{\tau \in H \setminus G/G_{i}} \bar{H} \cap \tau \bar{G}_{i} \tau^{-1} \right] \right] * F.$$
(2)

It remains to prove that for  $\tau \in H \setminus G/G_i$  as above and  $i = 1, \ldots, m$ ,

$$\bar{H} \cap \tau \bar{G}_i \tau^{-1} = \overline{H \cap \tau G_i \tau^{-1}}$$

Suppose first that H is open. Then  $\overline{H} = H_{\hat{C}}$  and so,

$$\bar{H} = \left[ \prod_{i=1}^{n} \prod_{\tau \in H \setminus G/G_i} (H \cap \tau G_i \tau^{-1})_{\hat{\mathcal{C}}} \right] \amalg F_{\hat{\mathcal{C}}} = \left[ \prod_{i=1}^{n} \prod_{\tau \in H \setminus G/G_i} \overline{H \cap \tau G_i \tau^{-1}} \right] \amalg \bar{F}_{\hat{\mathcal{C}}}$$

(see Exercise 9.1.1(a) and Corollary 3.1.6 in [7]). Note that since H is open  $H \setminus G/G_i = \overline{H} \setminus G_{\hat{C}}/G_i$ ; it follows that (see Theorem 9.1.9 in [7] and its proof together with the equation (2) above)

$$\bar{H} = \prod_{i=1}^{n} \prod_{\tau \in H \setminus G/G_i} (\bar{H} \cap \tau \bar{G}_i \tau^{-1}) \amalg F_{\hat{\mathcal{C}}}.$$

Then, comparing these two decompositions of  $\bar{H}$  and using Lemma 3.9 we get that  $\bar{H} \cap \tau \bar{G}_i \tau^{-1} = \overline{H \cap \tau G_i \tau^{-1}}$ .

Suppose now that H is closed and finitely generated. Then  $H \cap \tau G_i \tau^{-1}$  is also closed.

Let  $\mathcal{V}$  be the set of all open subgroups of G containing H. Then  $H = \bigcap_{V \in \mathcal{V}} V$  because H is closed. Hence

$$H \cap \tau G_i \tau^{-1} = \bigcap_{V \in \mathcal{V}} (V \cap \tau G_i \tau^{-1})$$

Since every open subgroup of  $G_{\hat{\mathcal{C}}}$  containing  $\bar{H}$  is of the form  $\bar{V}$  for some  $V \in \mathcal{V}$ , we have that  $\bar{H} = \bigcap_{V \in \mathcal{V}} \bar{V}$ .

We claim that

$$\bigcap_{V \in \mathcal{V}} \overline{V \cap \tau G_i \tau^{-1}} = \overline{H \cap \tau G_i \tau^{-1}}.$$

To see this it suffices to show that for any open subgroup W of  $\tau G_i \tau^{-1}$  containing  $H \cap \tau G_i \tau^{-1}$ , there exists some  $V \in \mathcal{V}$  such that  $V \cap \tau G_i \tau^{-1} \leq W$  (indeed, since any open subgroup of  $\tau \overline{G}_i \tau^{-1}$  containing  $\overline{H} \cap \tau \overline{G}_i \tau^{-1}$  is of the form  $\overline{W}$ , this would mean that every open subgroup of  $\tau \overline{G}_i \tau^{-1}$  containing  $\overline{H} \cap \tau \overline{G}_i \tau^{-1}$  contains also some  $\overline{V} \cap \tau \overline{G}_i \tau^{-1}$ ). Choose  $U \in \mathcal{V}$  satisfying the statement of Corollary 3.6 with respect to H:

$$U = U \cap \tau G_i \tau^{-1} * \cdots$$
$$H = H \cap \tau G_i \tau^{-1} * \cdots$$

Consider the natural epimorphism of U onto  $U \cap \tau G_i \tau^{-1}$ . Let V be the preimage of  $W \cap U \cap \tau G_i \tau^{-1}$ . Then V is open and contains H, i.e.,  $V \in \mathcal{V}$ ; moreover  $V \cap \tau G_i \tau^{-1} = W \cap U \cap \tau G_i \tau^{-1} = W \cap U \leq W$ .

Now,

$$\bar{H} \cap \tau \bar{G}_i \tau^{-1} = \bigcap_{V \in \mathcal{V}} (\bar{V} \cap \tau \bar{G}_i \tau^{-1}) = \bigcap_{V \in \mathcal{V}} \overline{V \cap \tau G_i \tau^{-1}} = \overline{H \cap \tau G_i \tau^{-1}},$$

as desired.

**Lemma 3.11** Let  $G_1, \ldots, G_m$  be groups and let H be a finitely generated closed subgroup of the free product  $G = G_1 * \cdots * G_m$  (endowed with the pro- $\mathcal{C}$  topology). Fix  $i \in \{1, \ldots, m\}$ 

and assume that the group  $G_i$  is 2-subgroup separable. Then HK and KH are closed subsets of G for any closed subgroup K of  $G_i$ .

*Proof:* We prove that HK is closed; for KH the proof is similar. We must show that  $G \cap \overline{HK} = HK$ .

Let S(G) be the standard tree of the free product  $G = G_1 * \cdots * G_m$  and let Dbe a minimal H-invariant subtree of S(G) containing  $v_0$ . Then  $H \setminus D$  is finite. Choose a connected transversal  $\Sigma_H$  of  $H \setminus D$  in D. Then by Lemma 3.5 there exists an open subgroup U of G containing H and a connected transversal  $\Sigma_U$  of  $U \setminus S(G)$  in S(G) with  $\Sigma_H \subseteq \Sigma_U$ such that

$$U = \left[ \bigstar_{w \in V(\Sigma_U)} U_w \right] * F_U = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in U \setminus G/G_i} U \cap \tau G_i \tau^{-1} \right] \right] * F_U, \tag{3}$$

where  $F_U$  is the free group  $\pi_1(U \setminus S(G))$ , and

$$H = \left[ \bigstar_{w \in V(\Sigma_H)} H_w \right] * F_H = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in H \setminus G/G_i} H \cap \tau G_i \tau^{-1} \right] \right] * F_H,$$

where  $F_H$  is the free group  $\pi_1(H \setminus D)$ ; moreover  $F_H$  is a free factor of  $F_U$ .

Since HK is closed if and only if  $H(U \cap K)$  is closed (see the proof of Lemma 3.1) we may assume that  $K \leq U$ . Pick  $h \in \overline{H}$  and  $k \in \overline{K}$  with  $hk = g \in G$ . Note that  $g \in U$ , because  $\overline{H}, \overline{K} \leq \overline{U}$  and  $U = G \cap \overline{U}$ , since U is open (cf. Proposition 3.2.2 in [7]). Let

$$L = (G_1)_{\hat{\mathcal{C}}} * \cdots * (G_m)_{\hat{\mathcal{C}}}$$

be the abstract free product of the completions of the groups  $G_i$ . Since  $k \in \overline{G}_i$ , one has  $h \in \overline{H} \cap L \leq \overline{U} \cap L$ . By the preceding lemma

$$\bar{H} \cap L = \left[ \bigstar_{v \in V(\Sigma_H)} \overline{(H_v)} \right] * F_H = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in H \setminus G/G_i} \overline{H \cap \tau G_i \tau^{-1}} \right] \right] * F_H$$

and

$$\bar{U} \cap L = \left[ \bigstar_{v \in V(\Sigma_U)} \overline{(U_v)} \right] * F_U = \left[ \bigstar_{i=1}^m \left[ \bigstar_{\tau \in U \setminus G/G_i} \overline{U \cap \tau G_i \tau^{-1}} \right] \right] * F_U.$$
(4)

Write  $h = h_{m_1} \cdots h_{m_l}$  as the reduced word of this free product decomposition of  $\overline{H} \cap L$ . Note that this is also a reduced word for the free product decomposition of  $\overline{U} \cap L$  above. Observe that any reduced word in the free product decomposition of U above, is also reduced in the free product decomposition of  $\overline{U} \cap L$ .

We consider two cases. First assume that  $h_{m_l} \notin \overline{U \cap G_i}$ . Then, since  $k \in \overline{U \cap G_i}$ , we have that  $g = hk = h_{m_1} \cdots h_{m_l}k$  is reduced as a word in the free product decomposition of  $\overline{U} \cap L$  given above. On the other hand, g = hk can be written as a product according to the free product decomposition of (3) of U; since such a product is also a product according to the free product decomposition (4) and it is unique, we deduce that the elements  $h_{m_1}, \cdots, h_{m_l}, k$  are in U, and thus in G. Therefore  $h, k \in G$ . Finally, since Hand K are closed, we deduce that  $G \cap \overline{H} = H$  and  $G \cap \overline{K} = K$ ; so,  $h \in H$  and  $k \in K$ , in particular,  $hk \in HK$ . Thus,  $G \cap \overline{H}\overline{K} = HK$ . Assume next that  $h_{m_l} \in \overline{U \cap G_i}$ . If  $h_{m_l} = k^{-1}$ , then  $hk \in G \cap \overline{H} = H$ , and we are done. Otherwise,  $h_{m_l} \neq k^{-1}$ , and so

$$h_{m_1}\cdots h_{m_{l-1}}(h_{m_l}k)$$

is a reduced expression for g = hk in the free product (4). Again, since  $g \in U$ , this coincides with the unique expression for g in the free product (3). Hence,

$$h_{m_1}, \cdots, h_{m_{l-1}}, (h_{m_l}k) \in U \le G$$

Therefore,  $h_{m_1}, \dots, h_{m_{l-1}} \in G \cap \overline{H} = H$  and  $h_{m_l}k \in G \cap \overline{U \cap G_i} = U \cap G_i$ . Now, since  $U \cap G_i$  is 2-separable (see Lemma 3.1), there are  $h' \in H \cap G_i$ ,  $k' \in K$  with  $h'k' = h_{m_l}k$ . Hence

$$g = hk = h_{m_1} \cdots h_{m_{l-1}}(h'k') = (h_{m_1} \cdots h_{m_{l-1}}h')k' \in HK,$$

as desired.

**Corollary 3.12** Let  $G = G_1 * \cdots * G_m$  be a free product of groups  $G_i$  and assume G is endowed with the pro- $\mathcal{C}$  topology. Let K be a closed subgroup of G and let  $K_i$  be a closed subgroup of  $G_i$  (i = 1, ..., m) such that  $K = K_1 * \cdots * K_m$ . Let  $S(G_{\hat{\mathcal{C}}})$ ,  $S(\bar{K})$ , S(K) and S(G) be the profinite graphs associated with the free pro- $\mathcal{C}$  products  $G_{\mathcal{C}} = (G_1)_{\hat{\mathcal{C}}} \amalg \cdots \amalg (G_m)_{\hat{\mathcal{C}}}, \bar{K} = \bar{K}_1 \amalg \cdots \amalg \bar{K}_m, K = K_1 * \cdots * K_m$  and  $G = G_1 * \cdots * G_m$ , respectively. Then  $S(\bar{K})$ , S(K) and S(G) are naturally embedded in  $S(G_{\hat{\mathcal{C}}})$  and

$$S(\bar{K}) \cap S(G) = S(K).$$

**Proof:** The embeddings are easy to check (in the case of S(K) it follows from the assumption that K and  $K_i$  are closed in G and  $G_i$ , respectively, i = 1, ..., m). We need to check that if  $x \in S(\bar{K}) \cap S(G)$ , then  $x \in S(K)$ . Recall that the graph S(G) consists of the G-translates of the finite graph  $T_m$  (see Section 2) with the proviso that in S(G) the stabilizer of  $xv_i$  is  $xG_ix^{-1}$  where  $G_0 = 1$  and the edge stabilizers are trivial (and analogously for  $S(K), S(G_{\hat{\mathcal{C}}}), S(\bar{K})$ ). If x is an edge or a translate of  $v_0$ , then clearly  $x \in S(K)$  because the stabilizer of x is trivial (e.g., if x has the form  $ge_i = \tilde{k}e_1$ , with  $g \in G$ ,  $\tilde{k} \in \bar{K}$ , then  $g = \tilde{k} \in G \cap \bar{K} = K$ ). Assume next that x is a translate of  $v_i$ , where  $i \geq 0$ . Then x has the form  $gv_i = \tilde{k}v_i$ ; and this implies that  $\tilde{k}^{-1}g \in (G_i)_{\hat{\mathcal{C}}}$  ( $g \in G, \tilde{k} \in \bar{K}$ ), i.e.,  $g = \tilde{k}\tilde{g}_i$ , with  $\tilde{g}_i \in (G_i)_{\hat{\mathcal{C}}}$ . By Lemma 3.11, we have that  $g = kg_i$ , with  $k \in K$  and  $g_i \in G_i$ . Therefore  $gv_i = kv_i \in S(K)$ , as needed.

**Theorem 3.13** Let  $G_1, \ldots, G_m$  be groups. Assume that in each  $G_i$  the product of any two finitely generated closed subgroups in the pro-C topology is a closed subset (i.e., each  $G_i$  is 2-product subgroup separable). Then their free product

$$G = G_1 * \dots * G_m$$

is 2-product subgroup separable in the pro- $\mathcal{C}$  topology of G.

*Proof:* Let H and K be finitely generated subgroups of G which are closed in the pro-C topology of G. We must show that the set HK is closed in the pro-C topology of G. By Lemma 3.1 and Corollary 3.6 we may assume that K has the form

$$K = K_1 * \cdots * K_m,$$

where  $K_i$  is a closed subgroup of  $G_i$  (i = 1, ..., m).

Let  $\overline{H}$  and  $\overline{K}$  denote the closures of H and K, respectively, in the pro- $\mathcal{C}$  completion  $G_{\hat{\mathcal{L}}}$  of G. Note that  $\overline{HK} = \overline{HK}$ . To show that HK is closed is equivalent to showing that

$$HK = (\bar{H}\bar{K}) \cap G.$$

Obviously  $HK \subseteq (\bar{H}\bar{K}) \cap G$ . To prove the opposite containment, let  $\bar{h} \in \bar{H}$  and  $\bar{k} \in \bar{K}$ and assume that

$$g = h\bar{k} \in (\bar{H}\bar{K}) \cap G.$$

We have to show that

 $g \in HK$ .

Consider the standard trees S(G) and S(K) associated with the abstract free product decompositions

$$G = G_1 * \cdots * G_m$$
 and  $K = K_1 * \cdots * K_m$ ,

respectively. Observe that  $\bar{K} = \bar{K}_1 \amalg \cdots \amalg \bar{K}_m$ , where  $\bar{K}_i$  is the closure of  $K_i$  in  $G_{\hat{\mathcal{C}}}$  (cf. [7], Corollary 9.1.7). Consider the standard pro- $\mathcal{C}$  trees  $S(G_{\hat{\mathcal{C}}})$  and  $S(\bar{K})$  associated with the free pro- $\mathcal{C}$  product decompositions

$$G_{\hat{\mathcal{C}}} = (G_1)_{\hat{\mathcal{C}}} \amalg \cdots \amalg (G_m)_{\hat{\mathcal{C}}}$$
 and  $\bar{K} = \bar{K}_1 \amalg \cdots \amalg \bar{K}_m$ ,

respectively.

Since  $K_i$  is closed in  $G_i$  (and thus in G) for each i, the canonical map of graphs  $S(K) \longrightarrow S(\bar{K})$  is an embedding. We shall think of S(G) as being canonically embedded in  $S(G_{\hat{C}})$ , of S(K) as being canonically embedded in  $S(\bar{K})$  and in S(G), and of  $S(\bar{K})$  as being canonically embedded in  $S(G_{\hat{C}})$ . Thus we have the following diagram of trees (abstract and profinite):



Remark that all the quotient graphs  $G_{\hat{\mathcal{C}}} \setminus S(G_{\hat{\mathcal{C}}})$ ,  $\overline{K} \setminus S(\overline{K})$ ,  $G \setminus S(G)$  and  $K \setminus S(K)$  are isomorphic to the finite tree  $T_m$  introduced in Section 2; as we explained there, we shall identify  $T_m$  with its canonical transversal in S(K); in particular,  $v_0 = 1K_0$ , where  $K_0$  is the trivial group.

Since  $g \in G$ , it can be written as a finite product of elements from  $G_1, \ldots, G_m$ ; hence the geodesic  $[v_0, gv_0]$  is finite, and therefore so is

$$\tilde{h}^{-1}[v_0, gv_0] = [\tilde{h}^{-1}v_0, \tilde{k}v_0].$$

Let

$$D = \bigcup_{j \in J} H[v_0, r_j v_0],$$

where  $\{r_j \mid j \in J\}$  is a finite set of generators for H; then D is the minimal H-invariant subtree of S(G) containing  $v_0$ . Consider the closure

$$\bar{D} = \bigcup_{j \in J} \bar{H}[v_0, r_j v_0]$$

of D in  $S(G_{\hat{C}})$ . Note that we have equal finite quotient graphs

$$\bar{H} \setminus \bar{D} = H \setminus D$$

by Lemma 3.8. Observe that  $\overline{D}$  is a pro- $\mathcal{C}$  tree. It follows that

$$[\tilde{h}^{-1}v_0, \tilde{k}v_0] \subseteq \bar{D} \cup S(\bar{K}).$$

If  $\tilde{h} \in \bar{K}$ , then

$$\tilde{h}\tilde{k}\in\bar{K}\cap G=K,$$

since K is closed, and thus the result follows. Hence we may assume that  $\tilde{h} \notin \bar{K}$ . Now, since  $[\tilde{h}^{-1}v_0, \tilde{k}v_0]$  is finite, there exists a vertex

$$v' \in [\tilde{h}^{-1}v_0, \tilde{k}v_0] \cap S(\bar{K})$$

such that  $[\tilde{h}^{-1}v_0, v']$  is minimal.

We claim that  $v' \in [\tilde{h}^{-1}v_0, v_0]$ . Indeed, otherwise (since  $[\tilde{h}^{-1}v_0, v']$  is finite) there exists a vertex

$$w \in [\tilde{h}^{-1}v_0, v']$$

such that  $w \in [\tilde{h}^{-1}v_0, v_0]$  but none of the edges of [w, v'] is in  $[\tilde{h}^{-1}v_0, v_0]$ . Then

$$[w, v'] \cap ([w, v_0] \cup S(\bar{K}))$$

is a finite tree (since the intersection is nonempty) consisting of the two vertices w and v' but no edges, a contradiction. This proves the claim. In particular  $v' \in \overline{D}$ . Therefore, one has

$$[\tilde{h}^{-1}v_0, v'] \subseteq [\tilde{h}^{-1}v_0, v_0] \cap [\tilde{h}^{-1}v_0, \tilde{k}v_0].$$

Clearly  $[v', \tilde{k}v_0]$  is a finite path in  $S(\bar{K})$ . Hence  $[\tilde{k}^{-1}v', v_0]$  is finite. On the other hand,

$$[\tilde{k}^{-1}v', v_0] = \tilde{k}^{-1}[v', \tilde{k}v_0] \subseteq \tilde{k}^{-1}[\tilde{h}^{-1}v_0, \tilde{k}v_0] = [\tilde{k}^{-1}\tilde{h}^{-1}v_0, v_0] = [g^{-1}v_0, v_0] \subseteq S(G),$$

and so  $\tilde{k}^{-1}v' \in S(G) \cap S(\bar{K}) = S(K)$  (see Corollary 3.12). Then, there exists  $k \in K$  such that  $kv_i = \tilde{k}^{-1}v'$ , for some i = 0, ..., n. This means that  $v' = \tilde{k}kv_i$ . Now

 $\tilde{h}\tilde{k} \in G$  if and only if  $\tilde{h}\tilde{k}k \in G$ ;

and

$$\tilde{h}\tilde{k} \in HK$$
 if and only if  $\tilde{h}\tilde{k}k \in HK$ 

Hence, replacing  $\tilde{k}k$  for  $\tilde{k}$ , we may assume that  $v' = \tilde{k}v_i$ , for some  $i = 0, \ldots, n$ . Denote by

$$\varphi: \bar{D} \longrightarrow \bar{H} \backslash \bar{D} = H \backslash D$$

the canonical morphism of graphs. Observe that

$$T = \bar{D} \cap S(\bar{K})$$

is a pro- $\mathcal{C}$  subtree of  $S(G_{\hat{\mathcal{C}}})$ . We shall prove first that the quotient graph  $(\bar{H} \cap \bar{K}) \setminus T$  is finite. To see this consider the natural action of  $\bar{H} \cap \bar{K}$  on the space

$$T' = T \cap ((G_{\hat{\mathcal{C}}})v_0 \cup E(S(G_{\hat{\mathcal{C}}}))).$$

We prove first that the set  $(\bar{H} \cap \bar{K}) \setminus T'$  has the same cardinality as  $\varphi(T')$ , and so it is finite. Indeed, note that  $\varphi$  induces a surjection of sets

$$\bar{\varphi}: (\bar{H} \cap \bar{K}) \backslash T' \longrightarrow \varphi(T').$$

Now, suppose  $t, t' \in T'$  and xt = t' for some  $x \in \overline{H}$ ; in particular t and t' are in the same  $G_{\hat{\mathcal{C}}}$ -orbit. Since  $t, t' \in S(\overline{K})$ , there exists  $\tilde{k}' \in \overline{K}$  such  $\tilde{k}'t = t'$ . So,

$$x^{-1}\tilde{k}'t = t$$

Since  $t \in T'$ , its stabilizer is trivial. Therefore,

$$x = \tilde{k}' \in \bar{H} \cap \bar{K}.$$

Thus,  $\bar{\varphi}$  is a bijection.

Since the edges of T are in T', it follows that  $(\bar{H} \cap \bar{K}) \setminus T$  has only finitely many edges, and so it is a finite graph. Let

$$\rho: T \longrightarrow (\bar{H} \cap \bar{K}) \backslash T$$

be the canonical epimorphism of graphs. Then we have a commutative diagram

$$\begin{array}{ccc} T & & & \rho \\ & & & & & \bar{K} \backslash T \\ & & & & & & \\ \hline & & & & & & \\ \bar{D} & & & \varphi \\ \hline & & & & \varphi \\ \hline & & & & \varphi \\ \hline & & & & & \bar{H} \backslash \bar{D} = H \backslash D \end{array}$$

where the restriction of  $\psi$  to  $(\bar{H} \cap \bar{K}) \setminus T'$  (and in particular, to the set of edges of  $(\bar{H} \cap \bar{K}) \setminus T$ ) is an injection.

We claim that there exists a connected transversal  $\Sigma$  of  $\rho$  containing  $v_0$  such that  $\Sigma \subseteq D \subseteq S(G)$ . Clearly  $\rho(v_0)$  lifts to  $v_0 \in D$ . Let  $\Delta$  be a maximal subgraph of  $\rho(T)$  for which there is a  $\rho$ -transversal  $\Sigma$  which is in D such that  $v_0 \in \Sigma$ . Remark that

$$\Sigma \subseteq D \cap S(\bar{K}) \subseteq S(G) \cap S(\bar{K}) = S(K)$$

(the last equality follows from Corollary 3.12). If  $\rho(\Sigma) \neq \rho(T)$  then there exists a vertex w of  $\Sigma$  such that  $\rho(w)$  has an incident edge  $\bar{e} \in \rho(T)$  which is not in  $\rho(\Sigma)$ . Let e be an edge of T incident with w such that  $\rho(e) = \bar{e}$ . Say  $w = yv_i$  for some i  $(0 \leq i \leq m)$  and some  $y \in G$ . Since  $\bar{H} \setminus \bar{D} = H \setminus D$  (see Lemma 3.8), there is an edge e' of D incident with w such that  $\varphi(e') = \bar{e}$ . Note that the stabilizer of w in  $S(G_{\hat{C}})$  is  $(G_i)_{\hat{C}}^y = y(G_i)_{\hat{C}}y^{-1}$ . Hence, since  $e, e' \in \bar{D}$ , there exists  $\hat{h} \in \bar{H} \cap (G_i)_{\hat{C}}^y$  with  $\hat{h}e = e'$ . If i = 0, then  $G_0 = 1$ ; so  $\hat{h} = 1$ ; therefore e = e' is in T and in D. This would contradict the maximality of  $\Delta$ . Thus we may assume that  $1 \leq i \leq m$ . By Lemma 3.10 we have that  $\bar{H} \cap (G_i)_{\hat{C}}^g = H \cap G_i^g$ . Let  $v_e$  and  $v_{e'}$  be the vertices different from w of e and e', respectively. Then  $\hat{h}v_e = v_{e'}$ . On the other hand  $v_e = \hat{k}v_0$  for some  $\hat{k} \in \bar{K}$  and  $v_{e'} = y'v_0$  for some  $y' \in G$ , since  $v_e \in S(\bar{K})$  and  $v_{e'} \in D \subseteq S(G)$ . Therefore,  $\hat{h}\hat{k} = y'$ . By Lemma 3.11  $\hat{h}\hat{k} = hk$ , for some  $h \in H \cap G_i^y$ ,  $k \in K$ . It follows that

$$h^{-1}v_{e'} = ky'^{-1}v_{e'} = kv_0 \in S(K).$$

Since  $h^{-1}w = w$ , we deduce that  $h^{-1}e' \in S(K)$  and  $h^{-1}e'$  is incident with w; hence  $h^{-1}e' \in D \cap S(K) \subseteq T$ . Since  $\rho(h^{-1}e') = \bar{e}$ , we get a contradiction to the maximality of  $\Delta$ . This proves the claim.

As pointed out above,  $\Sigma \subseteq S(K)$ . Now, since  $v' \in \overline{D} \cap S(\overline{K}) = T$ , there exists some  $\alpha \in \overline{H} \cap \overline{K}$  such that  $\alpha v' \in \Sigma$ ; hence  $\alpha \tilde{k} v_i \in \Sigma \subseteq S(K)$ . Therefore,  $\alpha \tilde{k} v_i = x v_i$ , for some  $x \in K$ . Since the stabilizer of  $v_i$  in  $\overline{K}$  is  $\overline{K}_i$ , we deduce that  $\alpha \tilde{k} \in K \overline{K}_i$ .

Write  $\alpha \hat{k} = k\hat{k}_i$ , where  $k \in K, \hat{k}_i \in \bar{K}_i$ . Note that

$$\tilde{h}\alpha^{-1}\alpha\tilde{k} = \tilde{h}\tilde{k} = g \in G.$$

So,

$$(\tilde{h}\alpha^{-1})k\hat{k}_i = g \in G.$$

It follows that

$$(k^{-1}(\tilde{h}\alpha^{-1})k)\hat{k}_i = k^{-1}g \in G.$$

By Lemma 3.11 there exist  $h \in H, k_i \in K_i$  such that  $(k^{-1}hk)k_i = k^{-1}g \in G$  and so  $h(kk_i) = g$ , as required.

# $\mathbf{R} \to \mathbf{F} \to \mathbf{R} \to \mathbf{N} \to \mathbf{C} \to \mathbf{S}$

[1]. T. Coulbois, Free products, profinite topology and finitely generated subgroups, *Internat. J. Algebra Comput.*, **11** (2001) 171-184.

[2]. S.M. Gersten, Intersections of fininitely generated subgroups of free groups and resolutions of graphs, *Invent. Math.*, **71** (1983) 567-591.

[3]. D. Gildenhuys and L. Ribes, Profinite groups and Boolean graphs, J. Pure Appl. Algebra, **12** (1978) 21-47.

[4]. K. Gruenberg, Residual properties of infinite soluble groups, *Proc. London Math. Soc.*, **7** (1957)29-62.

[5]. J.-É. Pin, On a conjecture of Rhodes, Semigroup Forum, **39** (1989) 1-15.

[6]. J.-E. Pin and C. Reutenauer, A conjecture on the Hall topology for the free group, *Bull. London Math. Soc.* 23 (1991) 356-362.

[7]. L. Ribes and P. Zalesskii, *Profinite Groups*, Springer, Berlin-New York, 2000.

[8]. L. Ribes and P. Zalesskii, On the profinite topology on a free group, *Bull. London Math. Soc.*, **25** (1993) 37-43.

[9]. L. Ribes and P. Zalesskii, The pro-*p* topology of a free group and algorithmic problems in semigroups, *Internat. J. Algebra Comput.*, **4** (1994) 359-374.

[10]. J-P. Serre, *Trees*, Springer, Berlin-New York, 1980

[11]. J.R. Stallings, Topology of finite graphs, Invent. Math., 71 (1983) 551-565.

[12]. S. You, The product separability of the generalized free product of cyclic groups, J. London Math. Soc., (2) 56 (1996) 91-103.

School of Mathematics and Statistics Carleton University Ottawa, Ont., K1V 8N2, Canada lribes@math.carleton.ca

Departamento de Matematica Universidade de Brasilia Brasilia, Brazil pz@mat.unb.br