
On Quasifree Profinite Groups

Luis Ribes, Katherine Stevenson and Pavel Zalesskii

A recent characterization of free profinite groups due to Harbater and Stevenson [Theorem 2.1, HS]
establishes that a profinite group G is free profinite of infinite rank m if and only if

(i) G is projective, and
(ii) whenever one has a diagram

G

f

²²
A

α // B

where A and B are finite groups, α and f are epimorphisms of profinite groups and α splits, there exist
exactly m different epimorphisms λ : G −→ A such that αλ = f .

This builds on other well-known characterizations due to Iwasawa [I], Mel’nikov [M] and Chatzidakis
[C] (see [RZ], Theorems 3.5.9 and 3.5.11 for a unified treatment in a slightly more general context).

In this paper we are interested in profinite groups that satisfy condition (ii) above. For an infinite
cardinal m, we define a profinite group G to be m-quasifree if it satisfies condition (ii) above. The following
result of Harbater and Stevenson provides naturally arising examples of m-quasifree groups which are not
projective, and hence not free profinite.

Theorem [Theorem 1.1, HS] Let k be a field and k ((x, t)) be the fraction field of the power series ring
k[[x, t]], where x and t are indeterminates. Let G = Gk((x,t)) be the absolute Galois group of k ((x, t)). Denote
by m the cardinality of k ((x, t)). Then G is an m-quasifree profinite group which is not projective.

In our main result (Theorem 5.1) we show that open subgroups of m-quasifree groups are m̄-quasifree.
We also provide nonobvious examples of m-quasifree profinite groups.

1. Preliminaries and Examples

Throughout this paper C denotes a variety of finite groups, i.e., a nonempty class of finite groups closed
under the operations of taking subgroups, homomorphic images and finite direct products. For example C
can be taken to be the class of all finite groups or the class of all finite solvable groups. A pro-C groups is
an inverse limit of groups in C. We follow the notation and terminology of [RZ], where basic properties of
these groups can be found.

Recall that an epimorphism α : A −→ B is said to split if there exists a homomorphism τ : B −→ A
such that ατ = idB .

Definition 1.1 Let C be a variety of finite groups and let m be an infinite cardinal. A pro-C group Q is
called an m-quasifree pro-C group if for every diagram of the form

Q

f
²²²²

A
α // // B

where A and B are finite groups in C, α and f are epimorphisms of profinite groups and α splits, there exists
exactly m different epimorphisms λ : Q −→ A such that αλ = f .
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We refer to such diagram as a split embedding problem of pro-C groups for Q, and we say that an
epimorphism λ : Q −→ A such that αλ = f is a solution of the embedding problem. Hence Q is m-quasifree
if every finite split embedding problem has exactly m different solutions.

Lemma 1.2 The minimal number of generators d(Q) of an m-quasifree pro-C group Q is d(Q) = m.

Proof. Recall that the local weight w0(Q) of an infinite profinite group Q is the number of open normal
subgroups of Q. Note that the minimal number of generators d(Q) of Q equals its local weight, d(Q) = w0(Q),
since Q is infinitely generated (see Proposition 2.6.2 in [RZ]). So it suffices to prove that w0(Q) = m. For any
open normal subgroup N of Q, the number of continuous epimorphisms ϕN : Q −→ Q/N with N = Ker(ϕN )
is finite. Therefore for any finite group A, the number nA of open normal subgroups N of Q with Q/N ∼= A
equals the number of continuous epimorphisms Q −→ A, which in turn equals m, because Q is an m-quasifree
group (just put B = 1 in the embedding problem). Now

w0(Q) =
∑

A

nA = mℵ0 = m,

since the number of isomorphism classes of finite groups is ℵ0.

Let C be a variety of finite groups. If G is a profinite group, define RC(G) to be the intersection of all
closed normal subgroups N of G such that G/N ∈ C. Then G/RC(G) is the maximal pro-C quotient of G
(see [RZ], Section 3.4). The following result is clear.

Proposition 1.3 Let C′ ⊆ C be varieties of finite groups, and let m be an infinite cardinal. If Q is an
m-quasifree pro-C group, then its maximal pro-C′ quotient Q/RC′(Q) is an m-quasifree pro-C′ group.

Proposition 1.4 Let G be an m-quasifree pro-C group. Then G contains a free pro-C group of countable
rank.
Proof. We observe (see [RZ], Corollary 2.6.6) that if H is a pro-C that admits a a countable set of generators
converging to 1, then H contains a countable collection of open normal subgroups

H = U0 > U1 > · · ·

that form a fundamental system of neighborhoods of 1, and so

H = lim←−
i∈I

H/Ui ≤
∏

i

H/Ui.

It follows that H appears as a closed subgroup of the catesian product of the set of all finite groups in C. In
particular the free pro-C group F of countable rank appears as a closed subgroup of such cartesian product.

Therefore to prove the proposition it is enough to construct an epimorphism λ : G −→ ∏∞
i=0 Ki, where

Ki runs over all finite groups in C, where we assume K0 = 1. To do this we construct inductively compatible
epimorphisms

λn : G −→
n∏

i=0

Ki.

If λn−1 has been constructed consider the following split embedding problem

G

λn−1²²²²∏n
i=0 Ki

αn // // ∏n−1
i=1 Ki

,

where α is the natural projection. Since G is quasifree, there exists an epimorphism λn : G −→ ∏n
i=0 Ki

such that αnλn = λn−1 (n = 1, 2, . . .). The inverse limit of these maps
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λ = lim←− nλn : G −→
∞∏

i=0

Ki

provides the required epimorphism.

If A and B are pro-C groups, we denote by A q B their free pro-C product, i.e., their coproduct in the
category of pro-C groups (see [RZ], Section 9.1). For simplicity we state the following lemma only for finite
groups A and B, but the result is valid in general. One says that a variety of finite groups C is extension
closed if whenever 1 → K → G → H → 1 is an exact sequence of finite groups such that K,H ∈ C, then
G ∈ C.

Lemma 1.5 Assume that the variety of finite groups C is extension closed. Let G = A q B be a free pro-C
product of two pro-C groups A and B. Let AG denote the smallest closed normal subgroup of G generated by
A. Then AG is the free pro-C product of the subgroups {Ab = b−1Ab | b ∈ B} of G.

Proof: This follows from the analogous of the Kurosh subgroup theorem for free products of pro-C groups.
Indeed, observe that K = AG is a normal open subgroup of G = A q B with G/K ∼= B. Then (see [RZ],
Theorem 9.1.9)

K =
[ ∐

τ∈K\G/A

K ∩ gτAg−1
τ

]
q

[ ∐

τ∈K\G/B

K ∩ g′νBg′−1
ν

]
,

where gτ ranges through a set of representatives of the double cosets K\G/A and gν ranges through a set of
representatives of the double cosets K\G/B, and where F is a free pro-C group of rank
1 + [G : K] − |K\G/A| − K\G/B. In our case, since K / G, K ≥ A and G/K ∼= B, it follows that
rank (F ) = 0 and K =

∐
b∈B Ab, the free pro-C product of the conjugates Ab of A by the elements of B.

Examples 1.6

1. A free profinite group F = F (m) of rank m is m-quasifree. In fact a profinite group is free profinite
of rank m if and only if it is m-quasifree and projective.

2. (D. Haran) If Q is an m-quasifree group and H is a profinite group with d(H) ≤ m, then their free
profinite product QqH is m-quasifree.

3. Let F be a free profinite group on a countable set of generators x1, y1, x2, y2, . . . convergent to 1.
Observe that the infinite product [x1, y1][x2, y2] · · · converges in F and so it defines a unique element r.
Define a profinite group G imposing on F the relation [x1, y1][x2, y2] · · ·, i.e., G = F/(r), where (r) denotes
the smallest closed normal subgroup of F containing r.

We shall show that G is ℵ0-quasifree. Consider a split embedding problem

G

f
²²²²

A
α // // B

Put K =Ker(α). Let θ : B −→ A be a homomorphism such that αθ = idB . Then A = K × θ(B). Since
B is finite, there exists a natural number t such that f(xj) = f(yj) = 1, for all j > t. Let k1, . . . , kn be the
elements of K.

Next we define an infinite countable set of continuous epimorphism {ηs : F −→ A | s = 0, 1.2, . . .}. The
epimorphism ηs is determined by

ηs(xj) =





(θf)(xj), if 1 ≤ j ≤ t + s;
ki, if j = t + s + i, i = 1, . . . , n;
1 if j > t + s + n.

and
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ηs(yj) =





(θf)(yj), if 1 ≤ j ≤ t + s;
ki, if j = t + s + i, i = 1, . . . , n;
1 if j > t + s + n.

Observe that ηs(r) = 1. Therefore, ηs induces a continuous epimorphism λs : G −→ A. Moreover
λs 6= λs′ , if s 6= s′, and αλs = f , for all s = 0, 1, 2, . . .. Since d(G) = ℵ0, this shows that the above
embedding problem has exactly ℵ0 solutions.

4. It is easy to generalize Example 3 to an infinite family of examples of the same type, for example by
setting r =

∏∞
i=1[x

2
i , y

2
i ].

2. Open Subgroups of Quasifree Groups

Theorem 2.1 Assume that C is an extension closed variety of finite groups. Let H be an open subgroup of
an m-quasifree pro-C group G. Then H is m-quasifree.

Proof. Consider the following finite split embedding problem of pro-C groups for H

H

f

²²
A

α // B

We shall prove first that this embedding problem has at least one solution.
Put K = Ker(α), and let T = Ker(f)G denote core of the subgroup Ker(f) in G, that is, the intersection

of all conjugates of Ker(f) in G. Then T is open and normal in G. Let β : G −→ B′ = G/T be the canonical
epimorphism and define B′

H = β(H) = H/T . Denote by

f̄ : B′
H = H/T −→ B

the natural map induced by f .
Construct the free pro-C product A′ = KqB′ of K and B′. By Lemma 1.5, the closed normal subgroup

K̃ of A′ generated by K is the free profinite product K̃ =
∐

b∈B′ K
b. Note that

A′ = K qB′ = K̃ × B′.

Consider the open subgroup

L = K̃ × B′
H

of A′.
Observe that the subgroup B′

H of L normalizes the free factors
∐

b∈B′
H

Kb and
∐

b∈(B′−B′
H

) Kb of

K̃ =
∐

b∈B′ K
b = (

∐
b∈B′

H
Kb) q (

∐
b∈(B′−B′

H
) Kb). It follows from Lemma 1.5 that the closed normal

subgroup of K̃ generated by
∐

b∈(B′−B′
H

) Kb is normalized by B′
H , and therefore it is normal in L. Thus

there is a natural epimorphism

γ : L −→ (
∐

b∈B′
H

Kb)× B′
H = K qB′

H .
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K = Ker(α) // A = K × B α
// B

Let
σ1 : K qB′

H −→ A = K × B

be the continuous epimorphism induced by the identity map K −→ K and the map f̄ : B′
H −→ B. Put

σ = σ1γ.
Define

N = (Ker(σ) ∩ K̃)A′ ,

the core of Ker(σ) ∩ K̃ in A′; so that N is open normal in A′ and contained in Ker(σ) ∩ K̃. Observe that
N ∩B′ = N ∩K = 1. Consider the finite group

A′/N = (K̃/N)× B′.

Let
π : A′ −→ A′/N and α′ : A′/N −→ B′

be the the canonical epimorphisms. Since G is m-quasifree and α′ is an epimorphism of finite groups which
splits, there exists an epimorphism

λ : G −→ A′/N

such that α′λ = β. Since N ≤ Ker(σ), we deduce that σ factors through L/N = π(L). Let σ̃ : L/N −→ A
be the map induced by σ.

We claim that L/N = λ(H). To see this it suffices to show that π−1(λ(H)) = L. We show first that

λ(H) = α′−1(β(H)).

Since β(H) = α′(λ(H)), we clearly have that λ(H) ≤ α′−1(β(H)). For the reverse inclusion, note that

[G : H] ≥ [λ(G) : λ(H)] ≥ [α′−1(B′) : α′−1(β(H))] = [B′ : β(H)] = [B′ : B′
H ] = [G : H].

Hence
λ(H) = α′−1(β(H)) = (K̃/N)× B′

H ,

as desired. Therefore,
λ(H) ≥ Ker(α′) = K̃/N,

and so,
π−1(λ(H)) ≥ K̃.
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Since obviously π−1(λ(H)) ≥ B′
H , we deduce that π−1(λ(H)) ≥ L = K̃ × B′

H . If π−1(λ(H)) 6= L, then
π−1(λ(H)) would contain elements of B′ −B′

H , and so

B′
H = β(H) = (α′λ)(H) = (α′ππ−1λ)(H) 6= B′

H ,

a contradiction. Thus π−1(λ(H)) = L, proving the claim.
Next define λ′ = σ̃λ|H . We check now that αλ′ = f . Indeed, α′(L/N) ≤ BH′ . On the other hand,

since L = K̃ × B′
H we have L/N = (K̃/N)× B′

H Applying σ̃ to B′
H and K/N as subgroups of L/N , we get

σ̃|B′
H

= f̄ and σ̃(K̃/N) ≤ K. Thus, ασ̃ = f̄α′|L/N . Hence αλ′ = f̄α′λ|H = f̄β|H = f , as needed.
To finish the proof that H is m-quasifree, we must verify that the above split embedding problem has

exactly m solutions. The number of maps λ in the diagram above is m, since G is m-quasifree. Since m is
infinite and the index of H in G is finite, the number of λ′ that can be obtained by the construction above
is m. So the total number of solutions of the diagram

H

f

²²
A

α // B

is at least m. But obviously the total number of solutions is at most d(H) = d(G). By Lemma 1.2, d(G) = m.
Thus the total number of solutions is m.
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