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Abstract

Let X be a proper, nonsingular, connected algebraic curve of genus g over the field C of complex numbers.
The algebraic fundamental group Γ = π1(X) in the sense of SGA-1 [1971] is the profinite completion of
the fundamental group πtop

1 (X) of a compact oriented 2-manifold. We prove that every projective normal
(respectively, caracteristic, accessible) subgroup of Γ is isomorphic to a normal (respectively, caracteristic,
accessible) subgroup of a free profinite group. We use this description to give a complete solution of the
congruence subgroup problem for aritmetic lattices in SL2(R).

Introduction

Let X be a proper, nonsingular, connected algebraic curve of genus g over the field C of complex
numbers. As a topological space X is a compact oriented 2-manifold and is simply a sphere with g handles
added. The group Π = πtop

1 (X) is called a surface group and has 2g generators ai, bi (i = 1, . . . , g) subject
to one relation [a1, b1][a2, b2] · · · [ag, bg] = 1. The subgroup structure of Π is well known. Namely, if H is a
subgroup of Π of finite index n, then H is again a surface group of genus n(g − 1) + 1. If n is infinite, then
H is free.

The algebraic fundamental group Γ = π1(X) in the sense of SGA-1 [1971] is the profinite completion
of the fundamental group πtop

1 (X) in the topological sense (see Exp. 10, p. 272 in [SGA-1]). It follows that
the profinite surface group π1(X) has exactly the same presentation. However, the subgroup structure of Γ
has not been described. First note that subgroups of a free profinite group are not necessarily free; they are
so called projective groups or equivalently profinite groups of cohomological dimension 1. It is possible to
characterize projective subgroups of Γ in terms of their index. Indeed, a subgroup H of Γ is projective if and
only if [G : H] viewing as supernatural number

∏
pnp has infinite p-component for every p (see Proposition

2 below), so that the situation here is somewhat similar to the discrete one. However, this is as far as we
can go: there is no satisfactory description of projective profinite groups.

The situation with normal subgroups of a free profinite group is much better. O.V. Melnikov [M]
described normal subgroups of free profinite groups up to isomorphism (see also Chapter 8 in [RZ]). So it
is natural to ask whether every projective normal subgroup is isomorphic to a normal subgroup of a free
profinite group. The objective of this paper is to answer this positively. In fact, we prove this also for
characteristic subgroups.

Theorem Let Γ = Γg be a profinite surface group of genus g and N be a projective normal (resp. charac-
teristic) subgroup of Γ. Then N is isomorphic to a normal (resp. characteristic) subgroup of a free profinite
group of countable rank.

Actually we prove the result first for so called accessible subgroups (i.e., subgroups which are subnormal
in every finite image). Then using Melnikov’s description of them we prove the theorem above. We do not
know whether this theorem holds if the characteristic is positive.

This theorem allows us to give the complete solution of the congruence subgroup problem for aritmetic
lattices in SL2(R). Namely we prove in Section 3 that the congruence kernel of any such arithmetic group
is isomorphic to a free profinite group of countable rank.

Section 1. Projective subgroups

We collect in the next lemma some properties of a profinite surface group.

* Supported by CNPq.
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Lemma 1.1. Let Γ = Γg be the profinite completion of the fundamental group Π of a compact surface M
of genus g, where g > 0 if the surface is orientable and g > 1 if not. Let p be a prime. Then:
(i) The maximal pro-p quotient Γ(p) of Γ is the pro-p completion of Π and Γ(p) is a Demushkin group.
(ii) If L is an open subgroup of Γ of index divided by p then the restriction

Res: H2(Γ,Fp) −→ H2(L,Fp)

is the zero map.

Proof: (i) It is easy to see that Γ(p) is the pro-p completion of Π. By Exer. 2, p. 43 [Serre] Γ(p) is a
Demushkin group.

(ii) The natural embedding L −→ Π corresponds to the finite covering η: S −→ M and so the corestric-
tion of homology groups

Cor: H2(L ∩Π,Fp) −→ H2(Π,Fp)

coincides with the homomorphism
H2(S,Fp) −→ H2(M,Fp)

induced by η. Therefore it is just multiplication by the index [Π : (Π ∩ L] = [Γ : L] and so is the zero map.
Hence, the dual map Res: H2(Π,Fp) −→ H2(Π ∩ L,Fp) is the 0-map. Consider a commutative diagram

H2(Γ,Fp)
Res //

²²

H2(L,Fp)

²²
H2(Π,Fp)

Res // H2(L ∩Π,Fp)

.

By Lemma 5.12 (iii) in [EHKZ] the vertical maps are bijective. Therefore, the upper horizontal map is
the 0-map as well.

Proposition 1.2. Let Γ = Γg be a profinite surface group of genus g and L be a subgroup of Γ. Then L
is projective if and only if the index [Γ : L] (as a supernatural number) has infinite p-component for every
prime p.

Proof: Put Γ = Π̂, where Π is the corresponding surface group. Let U be the family of all open subgroups
of Γ containing L. Recall that L is the intersection of all U ∈ U and hence can be regarded as the inverse
limit L = lim←− U∈UU . Therefore H2(L,Fp) = lim−→ U∈UH2(U,Fp), the direct limit.

Consider U2 ⊂ U1 in U . If [U1 : U2] is divided by p, then by Lemma 1.1 (ii) the restriction H2(U1,Fp) −→
H2(U2,Fp) is the zero map. Therefore, if the index [Γ : L] (as a supernatural number) has infinite p-
component, we can choose a cofinal subfamily V ⊆ U such that all maps in the direct limit lim−→ U∈V H2(U,Fp)

are 0-maps and so H2(L,Fp) = 0.
On the other hand, if the index [Γ : L] (as a supernatural number) has finite p-component then there

exists an open subgroup U ∈ U such that a Sylow subgroup Lp of L is also a Sylow subgroup of U . But any
subgroup of finite index of Π is also a surface group. Therefore any open subgroup U of Γ is the profinite
completion of the surface group U ∩ Π. Hence, by Lemma 1.1 (ii) H2(U,Fp) 6= 0. But the restriction
H2(U,Fp) −→ H2(Lp,Fp) is an injection (see Corollary 6.7.7 in [RZ]), so H2(Lp,Fp) 6= 0. It follows that
H2(L,Fp) 6= 0.

Since L is projective if and only if H2(L,Fp) = 0 for every p the result follows.

Note that a similar description of projective subgroups in terms of index holds also for absolute Galois
group of Qp (see [R, p. 291, Corollary 7.4).

Section 2. Normal projetive subgroups

2



For the reader convinience we begin this section with Melnikov’s characterization of accessible, normal
and characteristic subgroups of free profinite groups. We shall do it for second countable profinite groups only
(i.e. groups that has countable base of open subsets), since this is sufficient for our purpose and simplifies
the terminology.

A closed subgroup H of a profinite group G is said to be accessible if there exists a chain of closed
subgroups of G

H = Gµ ≤ · · · ≤ Gλ ≤ · · · ≤ G2 ≤ G1 = G, (1)

indexed by the ordinals smaller than a certain ordinal µ, such that

(i) Gλ+1 / Gλ for all ordinals λ ≤ µ, and
(ii) if ν is a limit ordinal such that ν ≤ µ, then Gν =

⋂
λ≤ν Gλ.

Observe that H is accessible if and only if the image of H is subnormal in every finite quotient of G.

For a group G denote by M(G) the intersection of maximal normal subgroups of G and by Rp(G) the
kernel of the epimorphism to the maximal pro-p quotient.

If S is a finite simple group MS(G) will denote the kernel of the epimorphism to the maximal direct
power of S; if S is a finite p-group we shall use the notation Mp(G).

A second countable profinite group is said to be homogeneous if any embedding problem:

G

f
²²²²

A
α // // B

(1),

is solvable for A, B finite, K := Ker(α) minimal normal and K ≤ M(A) (this means to find an epimorphism
G −→ A that makes the diagram commutative).

The next theorem collects facts originally proved by Melnikov about homogeneous profinite groups that
also can be found in Chapter 8 of [RZ].

Theorem 2.1. Let G be a second countable profinite group.
Then

(i)
G is homogeneous if and only if it is isomorphic to an accessible subgroup of free profinite group of

countable rank;
(ii) G is isomorphic to a normal subgroup of a free profinite group of countable rank if and only if G is

homogeneous and G/Mp(G) is either trivial or infinite for every p;
(iii) G is isomorphic to a caracteristic subgroup of a free profinite group if and only if G is homogeneous and

G/MS(G) is either trivial or infinite for every finite simple group S.

Theorem 2.2. Let Γ = Γg be a profinite surface group of genus g and N a projective accessible subgroup
of Γ.

Then N is isomorphic to an accessible subgroup of infinite index of a free profinite group.

Proof:
By Theorem 2.1 we need to solve the following embedding problem for N :

N

f
²²²²

A
α // // B

(1),
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where A, B are finite, K := Ker(α) is minimal normal and K ≤ M(A). If α does not split, then any
homomorphism N −→ A that makes (1) commutative is an epimorphism and so the result follows from the
projectivity of N . Thus we may assume that A = K oB.

By Lemma 8.3.8 in [RZ-2000] there exists an open subgroup U of Γg containing N and an epimorphism
ϕ : U −→ B such that ϕ|N = f . Since an open subgroup of Γg is again a profinite surface group, replacing
Γg by U we may assume the existence of the following commutative diagram:

N

f
²²²²

// Γg

ϕ~~~~~~
~~

~~
~

A
α // // B

(2),

where the top horizontal map is the natural inclusion. Moreover, as N is projective, 2 divides [Γg : N ]
and so passing to an open subgroup of index 2 containing N if necessary, we may assume to be in ori-
ented case. Let Ui be the family of all open subgroups of Γg containing N . Then ϕi := ϕ|Ui

is an
epimorphism for every i. Note that every Ui is again a profinite surface group and so has a presenta-
tion Ui = 〈x1, y1, . . . xgi , ygi |

∏gi

j=1[xi, yi]〉, where the genus gi of Ui can be computed by the formular
gi − 1 = [Γg : Ui](g − 1). This means that we can choose i with the number of generators of Ui suf-
ficiently large, so that there exists i such that reordering generators xj , yj of Ui if necessary, we have
ϕ(x1) = ϕ(xj1) = · · · = ϕ(xjn) and ϕ(y1) = ϕ(yj1) = · · · = ϕ(yjn), where n = |A| and jl > jk when-
ever l > k. We shall use the notation xy for y−1xy in the argument to follow. Suppose j1 6= 2. Then∏gi

j=1[xj , yj ] = [x1, y1][xj1 , yj1 ]([x2, y2] · · · [xj−1, yj−1])[xj1 ,yj1 ][xj+1, yj+1] · · · [xgi , ygi ] so replacing the gener-

ators x2, y2, . . . , xj−1, yj−1 by x
[xj1 ,yj1 ]
2 , y

[xj1 ,yj1 ]
2 , . . . x

[xj1 ,yj1 ]
j−1 , y

[xj1 ,yj1 ]
j−1 we may assume that j1 = 2. Contin-

uing similarly, we in fact may assume that j2 = 3, . . . jn = n + 1. Let η be a map the sends x1, x2, . . . xn to
ϕ(x1)k for some 1 6= k ∈ K and coincides with ϕ on the other generators. Then η extends to a homomorphism
if

[η(x1), η(y1)] . . . [η(xgi), η(ygi)] = 1

(since this would mean that the homomorphism from a free profinite group
F (x1, y1, . . . , xgi , ygi) −→ A extending η factors through Ui). Now putting

k0 := k−ϕ([x1y1])kϕ(y1)

one has

[η(x1), η(y1)] · · · [η(xgi), η(ygi)] =
([ϕ(x1)k, ϕ(y1)])n[ϕ(xn+1), ϕ(yn+1)] · · · [ϕ(xgi), ϕ(ygi)] =
([ϕ(x1), ϕ(y1)]k0)n[ϕ(xn+1), ϕ(yn+1)] · · · [ϕ(xgi), ϕ(ygi)]

Then putting b = [ϕ(x1), ϕ(y1)] and taking into account that b = [ϕ(xi), ϕ(yi)] for all i = 1, . . . , n one has

[η(x1), η(y1)] · · · [η(xgi), η(ygi)] =

bk0k
b−1

0 kb−2

0 · · · kb−n

0 bn−1[ϕ(xn+1), ϕ(yn+1)] · · · [ϕ(xgi), ϕ(ygi)].

Let m = |B| and t = |K|, so that n = mt. Then

k0k
b−1

0 kb−2

0 · · · kb−n

0 = (k0k
b−1

0 kb−2

0 · · · (kb−m+1

0 ))t = 1

so that

[η(x1), η(y1)] · · · [η(xgi), η(ygi)] = [ϕ(x1), ϕ(y1)] · · · [ϕ(xgi), ϕ(ygi)] =
bnϕ([xn+1, yn+1] · · · [xgi , ygi ]) = ϕ([x1, y1] · · · [xgi , ygi ]) = 1

as needed.
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Thus there exists a homomorphism ψ:Ui −→ A such that ϕ = αψ. But K is minimal normal and
ψ(x−1

1 xn+1) = k 6= 1 so ψ is an epimorphism. Now α(ψ(N) = B and so ψ(N)M(A) = A. Since ψ(N) is a
subnormal subgroup of A by Proposition 8.3.6 in [RZ] ψ(N) = A as needed.

Corollary 2.3.

(i) An accessible projective subgroup of a profinite surface group is a virtually free profinite group.
(ii) two accessible projective subgroups G1 and G2 of profinite surface groups Γg1 and Γg2 are isomorphic if

and only if G1/MS(G1) ∼= G2/MS(G2) for every finite simple group S.
(iii) An accessible projective subgroup of a profinite surface group is a free profinite group of countable rank

if and only if G/MS(G) is infinite for every finite simple group S.

Proof: Theorem 2.2 together with Corollary 8.5.8 in [RZ] implies (i) and together with Theorem 8.5.2 in
[RZ] implies (ii). Item (iii) is a consequence of (ii) and Theorem 2.2.

Theorem 2.4. Let Γ = Γg be a profinite surface group of genus g and N a projective normal subgroup of
Γ. Then N is isomorphic to a normal subgroup of a free profinite group of countable rank.

Proof: By Theorem 2.2 N is isomorphic to an accessible subgoup of infinite index of a free profinite
group. Therefore, by Theorem 2.1 we just need to show that the maximal elementary abelian pro-p quotient
N/Mp(N) of N is infinite or trivial.

Suppose N/Mp(N) is finite. Then Mp(N) is open in N and therefore there exists an open subgroup
U of Γ such that Mp(U) ∩ N = Mp(N). Moreover, N is the intersection of such Us. Put Ū := U/Rp(U),
N̄ = NRp(U)/Rp(U). We shall show that [Ū : N̄ ] is infinite.

Since U is a profinite surface group of genus gU = [Γ : U ](g−1)+1, when [Γ : U ] growes, gU also growes
and so U/Mp(U) growes as well. It means that [U/Mp(U) : NMp(U)/Mp(U)] growes when U tends to N ,
since NMp(U)/Mp(U) is bounded by N/Mp(N). But [Ū : N̄ ] is not less than [U/Mp(U) : NMp(U)/Mp(U)]
which implies that it is infinite.

Since Ū is a Demushkin group (see Lemma 1.1 (i)), by Exercies 5 on p. 44 in [Serre] N̄ is free pro-p.
Note that |N̄/Mp(N̄)| ≤ |N/Np(M)| < ∞ and the abelianization Ū/Ū ′ is a free abelian pro-p group of

rank 2gU . Since the rank of N̄/N̄ ′ is not bigger than the rank of N̄ we can choose U such that N̄Ū ′/Ū ′ has
rank smaller than rank(Ū/Ū ′) − 2. Pick x ∈ Ū \ N̄ such that xŪ ′ is a generator of Ū/Ū ′ lying outside of
N̄Ū ′/Ū ′. Then xŪ ′ ∩ N̄Ū ′/Ū ′ = Ū ′ and U/〈x, N̄〉U ′ is infinite procyclic. It follows that 〈x〉 ∩ N̄ = 1 and
[Ū : 〈x, N̄〉] is infinite. But infinity of [Ū : 〈x, N̄〉] implies that N̄ is free pro-p by Exercies 5 on p. 44 in
[Serre]. On the other hand, if N̄ is non-trivial 〈x, N̄〉 = N̄ o 〈x〉 has cohomological dimension 2, because as
rank of N̄ is finite it is the sum of cohomological dimensions of N̄ and 〈x〉 (see [RZ, p. 275 Prop. 7.4.2. This
proves that N̄ is trivial and therefore so is N/Mp(N) as required.

Thus N̄ is free pro-p of infinite rank and the theorem is proved.

Theorem 2.4 together with Theorem 8.7.1 in [RZ] implies the following

Corollary 2.5. Every proper open subgroup of N is a free profinite group.

Theorem 2.6. Let Γ = Γg be a profinite surface group of genus g and N a projective characteristic subgroup
of Γ. Then N is isomorphic to a normal characteristic subgroup of a free profinite group of countable rank.

Proof: Let S be a finite simple group. By Theorem 2.1 (iii) we just need to show that N/MS(N) is infinite
or trivial. As 2 divides [Γ : N ] by Proposition 1.2, passing to an open subgroup of index 2 containing N , we
may assume that we are in orientable case. Note that an oriented surface group of genus g can be mapped
onto free group of rank g (just identify generators xi with yi) and therefore a free profinite group Fg of rank
g is an epimorphic image of Γg. It follows that Fg/MS(Fg) is a quotient of Γg/MS(Γg). We conclude that if
g is growing the order of Γg/MS(Γg) goes to infinity.
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Suppose now that N/MS(N) is finite non-trivial. Then there exists a proper open normal subgroup U
of Γg such that MS(U) ∩ N = MS(N). Moreover, we can choose U having this property of as large index
as we wish, so that we may assume that the order of U/MS(U) is bigger than the order of N/MS(N). But
N/MS(N) is characteristic in U/MS(U) so N/MS(N) = 1 because U/MS(U) ∼= ∏

S.

Following [LS] we shall call a group G to be an F -group if G has presentation

G =〈a1, b1, . . . , an, bn, c1, . . . ct, d1, . . . ds|
cγ1
1 , . . . , cγt

t , d−1
1 · · · d−1

s c−1
1 · · · c−1

t [a1, b1] · · · [an, bn]〉
where n, s, t ≥ 0, and γi > 1.

By Proposition III.7.4 in [LS] any subgroup of finite index of an F -group is again an F -group and so a
torsion free subgroup of an F-group of finite index is a surface group. Using this we can deduce the following

Corollary 2.7. Let G be a profinite F -group, i.e. the profinite completion of an F -group. Then a
projective accessible (resp. normal, characteristic) subgroup U of G is isomorphic to an accessible (resp.
normal, characteristic) subgroup of a free profinite group.

Proof: First note that the subset of torsion elements of G is closed. Indeed, this is true for every profinite
group that has open torsion free subgroup L, since in this case the order of torsiont elements is bounded
by [G : L] and the limit of any converegent sequence of non-trivial torsion elements is again a non-trivial
torsion element. By Proposition III.7.12 in [LS], an F -group contains a torsion free subgroup of finite index,
therefore so is G.

Now since U is projective, it is torsion free. Since U is the intersection of all open subgroups of G
containing U , there exists a torsion free open subgroup of G containing U . Now use the fact just mentioned
before the statement of the corollary.

Remark. The results of this paper are valid also for pro-C groups, where C is a class of finite groups
closed for normal subgroups, extensions and quotients. If C is the class of finite p-groups, then Γ is a
Demushkin group for which the results of the paper are known. Otherwise, C involves at least two primes
and all the proofs are the same except the case when C does not contain 2-groups. In the latter case the
proofs of Theorem 2.2 and 2.6 have to be adapted for non-oriented case, since one can not pass to the
orientable case.

The proof of Theorem 2.2 can be performed similarly using a presentation 〈x1, . . . , xg | x2
1x

2
2 · · ·x2

g〉.
For the proof of Theorem 2.6 note that Γ is prosolvable in this case and so one needs to show that

Γ/Mp(Γ) is infinite or trivial. But this is exactly what is done in the proof of Theorem 2.4.

Section 3. The congruence kernel of arithmetic groups in SL2(R)

Let k be a global field and G be a connected, simply-connected algebraic group over k. We denote the
set of k-rational points, G(k), by G. Let G(O) be the group of S-integral poins in G, where O = O(S) is the
ring of S-integers in k, for some non-empty, finite set S of places k, containing all the archimedean places.
Define two tologies on G(O), the profinite topology and the congruence topology. These two topologies are
defined by taking as basis of neighbourhoods of the identity all subgroups of finite index and the congruence
subgroups G(a) = {g ∈ G(O)} | g ≡ 1(mod a)} corresponding to non-zero ideals a of O(S). Note that every
congruence subgroup has finite index in G(O). The congruence kernel C = C(G) is the kernel of the natural
epimorphism Ĝ(O) −→ Ḡ(O), where Ĝ(O) is the completion with respect to the topology of all subgroups
of finite index of G(O) and G(O) is the completions of G(O) with respect to the topology of the congruence
subgroups. The congruence subgroup problem, in its modern interpretation (see [Mar] p. 268), consists of
describing of the congruence kernel C.

An arithmetic subgroup Γ of G is a subgroup commensurable with G(O(S)) for a suitable ring O(S),
i.e. a subgroup that has a common subgroup of finite index with G(O(S)). Then the congruence subgroup
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problem may also be considered for Γ. Indeed, a congruence subgroups of Γ are Γ(a) := Γ ∩G(a) and the
congruence completion of Γ is Γ̄ = lim←− a Γ/Γ(a). Then one has the natural epimorphism Γ̂ −→ Γ̄ and the

congruence kernel of Γ is the kernel of this homomorphism. Note that the closure of Γ(a) in Γ̂ coincides with
the profinite completion Γ̂(a) and coincides with the preimage in Γ̂ of the closure of Γ(a) in Γ̄. Therefore,
Γ̂(a) contains the congruence kernel for every a.

Our aim is to describe the congruence kernel for arithmetic groups in SL2(R). We remind the construc-
tion of an arithmetic group in our situation.

Let k be a totally real number field. Set [k : Q] = r and let σ1, . . . , σr : k −→ R be the r distinct
embeddings of k in R. Let D be a quaternion algebra over k such that Dσ1 = D ⊗σ1

k R ∼= M2(R) and for
i = 2, . . . , r the algebra Dσi = D ⊗σi

k R is the (division) algebra of Hamiltonian quaternions. Let O be the
ring of integers of k and O −→ R× · · · ×R defined by a −→ (σ1(a), . . . , σr(a)). Consider G = SL1(D), the
algebraic k-group associated with the group of elements in D having reduced norm 1.

Note that SL1((Dσ1(R)) = SL2(R) and SL1(Dσi(R)) is compact for all i ≥ 2. The group G(O) of
integral points is SL1(A), where A is an order of D (see Chapter IV, §1 in [V]). Then we have a diagonal
embedding G(O) −→ SL2(R)×SL1(Dσ2(R))×· · ·×SL1(Dσr (R)). The projection of the image of G(O) on
the first coordinate gives an arithmetic group in SL2(R) and all arithmetic groups in SL2(R) are obtained
in this manner. The set S in this case consists of all archimedean places. Observe that

∏
v∈S G(Ov)

is not compact and so by Theorem 7.12 in [PR] the strong approximation holds for G with respect to
S, i.e. G(O) =

∏
v 6∈S G(Ov). The congruence kernel C then is the kernel of the natural epimorphism

Ĝ(O) −→ G(Ô) =
∏

v 6∈S G(Ov), where Ô =
∏

v 6∈S Ov is the profinite completion of O. Note that in fact,
G(Ov) ∼= SL2(Ov) for almost all v. Indeed, Av = A⊗O Ov is a maximal order in Dv = D ⊗k kv for almost
all v (see Section 1.5 in [PR]). On the other hand, G(kv) = SL2(kv) for almost all v (see [V], p. 104), so by
Theorem 2.3 in [V] G(Ov) ∼= SL2(Ov) for almost all v.

An arithmetic group Γ in SL2(R) is a Fuchsian group, i.e. a discrete subgroup in SL2(R). Moreover,
it is of finite covolume in SL2(R), see Theorem 5.7 in [PR]. Therefore by the Fricke-Klein theorem (see
Proposition 2.4 in [I]) Γ is an F -group and so we have the following presentation

Γ =〈a1, b1, . . . , an, bn, c1, . . . ct, d1, . . . ds|
cγ1
1 , . . . , cγt

t , d−1
1 · · · d−1

s c−1
1 · · · c−1

t [a1, b1] · · · [an, bn]〉
If Γ is torsion-free then ci are missing in the presentation above, so in this case the group G is either

a surface group (when di are missing in the presentation) or a free group (when di are present there). The
main result of this section is the following

Theorem 3.1. Let Γ be an arithmetic group in SL2(R). Then the congruence kernel C = C(Γ) is a free
profinite group of countable rank.

Proof: As was mentioned at the end of the second paragraph of the section, the profinite completion of any
congruence subgroup contains the congruence kernel, so passing to a suitable congruence subgroup of Γ we
may assume that Γ is torsion-free and is a subgroup of G(O). Then as was observed above Γ is either free
or a surface group. As explained above SL2(Ov) ∼= G(Ov) ≤ Γ̄ for almost all v. It follows that Γ̄ contains
central subgroup C of order 2, namely the group generated by the matrix

(−1 0
0 −1

)

in SL2(Ov). Let N be its preimage in Γ̂. Then C is subgroup of N of index 2. The congruence completion
Γ̄ has an infinite Sylow p-subgroup for every p, because G(Ov) has, where v is a p-adic valuation. Hence
the index [Γ̂ : N ] = |Γ̄/C| as supernatural number has infinite p-component for every prime p. Therefore by
Proposition 1.2, N is a projective normal subgroup of Γ. Now we can apply Corollary 2.5 to deduce that C
is a free profinite group of countable rank.
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[V] M.-F. Vingéras, Arithmétique des Algébres de Quaternions. Lect. Notes in Math. 800, Berlin 1980.

Departamento de Matemática
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