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1. Introduction

The Bianchi groups are the groups PSL2(Od), where Od denotes the ring of integers
of the field Q(

√−d) for each square-free positive integer d. These groups have long
been of interest, not only because of their intrinsic interest as abstract groups, but
also because they arise naturally in number theory and geometry. For a discussion of
their algebraic properties we refer the reader to Fine [4]. Among the groups PSL2(R),
with R the ring of integers of an algebraic number field, they are distinguished by
the nature of their normal subgroup structure. It was shown by Serre [20] that if R
is not isomorphic to Z or Od, then for every normal subgroup K of SL2(R) there is
an ideal I of R such that the image in SL2(R)/K of the kernel of the natural map
from SL2(R) to SL2(R/I) is central and isomorphic to a subgroup of the group of
roots of 1 in R. On the other hand, the group PSL2(Z) and the Bianchi groups have
many subgroups of finite index which are not of the above type: this follows easily
from the fact that PSL2(Z) is a free product of a group of order 2 and a group of
order 3, and the fact, proved by Grunewald and Schwermer [6], that each Bianchi
group has a normal subgroup of finite index which can be mapped epimorphically
to a non-abelian free group.

Among the Bianchi groups PSL2(Od), the ones which have proved most amenable
to study are those for which Od is a Euclidean domain. These groups, the groups
PSL2(Od) with d = 1, 2, 3, 7, 11, are sometimes called the Euclidean Bianchi groups.
Our object here is to give another illustration that four of these groups have many
normal subgroups of finite index. A group G is said to be conjugacy separable if
whenever a, b are non-conjugate elements of G there is some finite quotient group of
G in which the images of a, b fail to be conjugate. The notion of conjugacy separability
owes its importance to the fact, first pointed out by Mal’cev [14], that the conjugacy
problem has a positive solution in finitely presented conjugacy separable groups. It is
well known that PSL2(Z) is conjugacy separable. We shall prove the following result.

Theorem 1. The Bianchi group PSL2(Od) is conjugacy separable for d = 1, 2, 7, 11.

Since Theorem 1 holds because of the existence of normal subgroups of finite index
which are not closely related to kernels of maps to groups PSL2(Od/I), and which
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therefore have no immediate number-theoretic significance, we approach the proof
with group-theoretic methods. These depend on characterizations, due to Fine [4],
of PSL2(O1) as an amalgamated free product and of PSL2(Od) for d = 2, 7, 11 as an
HNN extension. There are results asserting that, under fairly stringent conditions
on the free factors G1, G2, an amalgamated free product G1 ∗H G2 with a cyclic
amalgamated subgroup H is conjugacy separable (see [3, 19, 17]). In the expression
of PSL2(O1) as an amalgamated free product G1 ∗H G2, the amalgamated subgroup
H is the natural image of PSL2(Z), and although this is not cyclic, there is additional
information available on G1, G2 and the embeddings of G1, G2, H in PSL2(O1). We
recall that the profinite topology on a group X is the topology having the family of all
cosets of subgroups of finite index in X as a base of open sets; a subgroup Z is closed
in this topology if and only if it equals the intersection of all subgroups of finite in-
dex containing it, and the profinite topology on X induces a (subspace) topology on
a subgroup Z which is generally weaker than the profinite topology on Z. A group
X is residually finite if and only if the profinite topology is Hausdorff, and X is con-
jugacy separable if and only if each of its conjugacy classes is closed in the profinite
topology. We shall say that the profinite topology on an amalgamated free product
G = G1 ∗H G2 is efficient if G is residually finite, the profinite topology on G induces
the profinite topology onG1, G2, H, andG1, G2, H are closed in the profinite topology
on G. We shall show that PSL2(O1) satisfies the hypotheses of the following result.

Theorem 2 (a). Let G = G1 ∗H G2 be an amalgamated free product satisfying the
following conditions:

(i) the profinite topology on G is efficient;
(ii) G1, G2, H are finitely generated virtually free groups;
(iii) H w gHg−1 is cyclic for all g ∈ G \G2;
(iv) there exist a conjugacy separable group T and an epimorphism τ : G → T such

that τ |G1 is injective and τ ({g ∈ G | gHg−1 6 G1}) = T .
Then G is conjugacy separable.

We shall also prove a corresponding result for HNN extensions and show that its
hypotheses are satisfied by the groups PSL2(Od) with d = 2, 7, 11. We say that the
profinite topology on an HNN extension G = K ∗f 〈t〉 is efficient if G is residually
finite, the profinite topology on G induces the profinite topology on K and the
associated subgroups H,H1, and K,H,H1 are closed in the profinite topology on G.

Theorem 2 (b). Let G = K ∗f 〈t〉 be an HNN extension such that
(i) the profinite topology on G is efficient;

(ii) K and the associated subgroups H,H1 are finitely generated virtually free groups;
(iii) H w gHg−1 is cyclic for all g ∈ G \H;
(iv) there exist a conjugacy separable group T and an epimorphism τ : G → T such

that τ |K is injective and τ ({g ∈ G | gHg−1 6 K}) = T .
Then G is conjugacy separable.

It is reasonable to conjecture that all of the Bianchi groups are conjugacy sepa-
rable. However a proof would require entirely different techniques from those used
here. The group PSL2(O3) cannot be written either as a non-trivial amalgamated
free product or as an HNN extension, and, while it is possible to write each group
PSL2(Od) with d� 1, 2, 3, 7, 11 as a non-trivial amalgamated free product G1 ∗H G2,
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the structure of the groups Gi seems hard to determine except for a few small values
of d.

Apart from a result of Dyer [3], asserting that an HNN extension of a conju-
gacy separable group with finite associated subgroups is conjugacy separable, and
Theorem 2 (b) above, very little seems to be known about conjugacy separability of
HNN extensions. A conspicuous gap in our knowledge concerns HNN extensions
with cyclic associated subgroups. We shall show how the proof of Theorem 2 (b) can
be modified to yield the following result, which is similar in character to results of
[19, 17] on amalgamated free products.

Theorem 3. Let G = K ∗f 〈t〉 be an HNN extension with cyclic associated subgroups
such that the profinite topology on G is efficient. If in addition K is either a finitely gen-
erated virtually free group or a virtually polycyclic group, then G is conjugacy separable.

We shall prove Theorems 2 (a), 2 (b) and 3 by considering the standard trees on
which amalgamated free products and HNN extensions act and the standard pro-
finite trees on which the profinite completions of the groups act. The necessary
information on abstract and profinite amalgamated free products and HNN exten-
sions and the associated trees is given in Section 2. For a fuller account, we refer the
reader to Serre [21] and Zalesskii and Melnikov [23, 24]. In Section 2 we also collect
some properties of virtually free groups which play an important part in our proofs.
Two of these are new and perhaps of independent interest. Theorems 2 (a), 2 (b) and
3 are proved in Section 3. In Section 4 we study the Bianchi groups occurring in
Theorem 1. One fact which emerges (in Lemma 4·2 (v) and Lemma 4·3 (v)) is that
the profinite topology on each of these groups induces the profinite topology on the
natural image of PSL2(Z), so that the embedding of PSL2(Z) in PSL2(Od) induces
an embedding of profinite completions, for d = 1, 2, 7, 11. This sheds a small amount
of light on a remark of Lubotsky at the end of [12]. The results of Section 4 show
that the Bianchi groups in Theorem 1 satisfy the hypotheses of Theorem 2 (a) and
Theorem 2 (b), and so are conjugacy separable.

This paper was written while the second author was visiting the University of
Birmingham. He would like to thank the School of Mathematics and Statistics for
its support and warm hospitality.

2. Preliminary results

2·1. Completions and standard trees. In Section 3, we shall be concerned with amal-
gamated free products and HNN extensions, with their profinite completions and
with the trees on which they act. We begin here by describing briefly the main defi-
nitions and the results that we shall use.

To each free amalgamated product G = G1 ∗H G2 of abstract groups there cor-
responds a standard tree S(G), constructed as follows: its vertex set is V (S(G)) =
G/G1 xG/G2, its edge set is E(S(G)) = G/H, and the initial and terminal vertices
of an edge e = gH are respectively gG1 and gG2; here we write X/Y to mean the set
of cosets {xY | x ∈ X} of a subgroup Y in a group X. The group G has a natural
action (on the left) on its standard tree.

LetG = K∗f 〈t〉 be an HNN extension of abstract groups: thusK is a group (called
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the base group of the HNN extension), f: H → H1 is an isomorphism between two
subgroups H,H1 of K (called the associated subgroups), and G is generated by
K and t subject to the relations tht−1 = f (h) for all h ∈ H. The standard tree
S(G) of G is constructed as follows: its vertex set is V (S(G)) = G/K, its edge set
is E(S(G)) = G/H, and the initial and terminal vertices of an edge e = gH are
respectively gK and gtK. Again G has a natural action on its standard tree. For
further details and general properties of trees acted on by abstract groups, we refer
the reader to Serre [21].

Both amalgamated free products and HNN extensions may be defined in terms of
universal properties. It is convenient to use the corresponding universal properties
when defining profinite amalgamated free products and HNN extensions.

Let Γ1 and Γ2 be profinite groups with a common closed subgroup ∆. The profinite
amalgamated free product of Γ1 and Γ2 with the amalgamated subgroup ∆ consists
of a profinite group Γ and two homomorphisms i1: Γ1 → Γ, i2: Γ2 → Γ which agree
on ∆ and have the following universal property: for any profinite group Ω and any
pair of homomorphisms φ1: Γ1 → Ω, φ2: Γ2 → Ω such that φ1|∆ = φ2|∆, there is a
unique homomorphism φ0 : Γ → Ω such that φ1 = φ0i1 and φ2 = φ0i2. In order to
verify that Γ is the profinite amalgamated free product, it is sufficient to check this
universal property when Ω is finite.

Let ∆ be a profinite group and let f :A→ A1 be a continuous isomorphism between
closed subgroups A,A1 of ∆. The profinite HNN extension Γ = ∆ tf 〈t〉 of ∆ with
respect to f consists of a profinite group Γ, an element t ∈ Γ, and a homomorphism
i: ∆→ Γ satisfying the following universal property: for any profinite group Ω, any
s ∈ Ω and any homomorphism φ: ∆→ Ω satisfying s(φ(a))s−1 = φf (a) for all a ∈ A,
there is a unique homomorphism φ0: Γ → Ω which satisfies φ = φ0i and maps t to
s. Just as for profinite amalgamated products, to verify that Γ is the profinite HNN
extension it is sufficient to check the universal property when Ω is finite.

Corresponding to each profinite amalgamated free product and each profinite
HNN extension there is a standard profinite tree. The standard profinite tree S(Γ) of
a profinite amalgamated product Γ = Γ1t∆ Γ2 has vertex set V (S(Γ)) = Γ/Γ1xΓ/Γ2,
edge set E(S(Γ)) = Γ/∆, and the edge e = γ∆ has initial and terminal vertices γΓ1

and γΓ2 respectively. Similarly, the standard profinite tree S(Γ) of a profinite HNN
extension Γ = ∆tf 〈t〉with first associated subgroupA has vertex set V (S(Γ)) = Γ/∆,
edge set E(S(Γ)) = Γ/A, and the initial and terminal vertices of an edge e = gA are
g∆ and gt∆ respectively. In both of these cases, V (S(Γ)) and E(S(Γ)) are profinite
spaces (that is, they are compact Hausdorff totally disconnected topological spaces)
and the natural action of Γ on S(Γ) is continuous. For further information about
standard profinite trees we refer the reader to [23, 24], where the properties of pro-
finite trees have been studied in a somewhat wider context.

Let G = G1 ∗HG2 be an amalgamated free product of abstract groups and suppose
that G is residually finite. It follows from the universal property of the profinite
amalgamated free product that the profinite completion Ĝ of G is equal to G1tHG2,
where G1, H,G2 denote closures in Ĝ. In particular, if the profinite topology on G
induces the profinite topologies on G1, G2, H, we have Ĝ = Ĝ1 tĤ Ĝ2. We consider
the standard tree S(G) and the standard profinite tree S(Ĝ). It is easy to see that
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if G1,G2 and H are closed in the profinite topology on G, then S(G) is naturally
embedded in S(Ĝ); and in fact the image of S(G) is dense in S(Ĝ).

Now suppose instead that G = K ∗f 〈t〉 is an HNN extension of abstract groups
which is residually finite. Let H,H1 be the associated subgroups of G. From the
universal property of the profinite HNN extension we have Ĝ = G = K tf̄ 〈t〉,
where K, 〈t〉 denote closures in Ĝ and f̄ is the isomorphism of the closures H,H1 of
H,H1 induced by f ; these closures are isomorphic, since tHt−1 = H1. If the profinite
topology onG induces the profinite topologies onK,H,H1, we have Ĝ = G = Ĥtf̂ 〈̂t〉,
where f̂ is the isomorphism of profinite completions induced by f . We consider the
standard trees S(G), S(Ĝ) corresponding to G = K ∗f 〈t〉 and Ĝ = K tf̄ 〈t〉. It is easy
to see that if K, H and H1 are closed in the profinite topology on G, then S(G) is
naturally embedded in S(Ĝ), and again the image of S(G) is dense in S(Ĝ).

We shall need the following results; we quote them in a form tailored to our pur-
poses.

Proposition 2·1. ([19], Lemma 2·8). (a) Let G = G1 ∗H G2 be an amalgamated free
product such that G is residually finite and G1, G2, H are closed in the profinite topology
on G. If a ∈ G and a is conjugate to an element of G1 xG2 in Ĝ, then a is conjugate to
an element of G1 xG2 in G.

(b) Let G = K ∗f 〈t〉 be an HNN extension such that G is residually finite and such
that K and the associated subgroups are closed in the profinite topology on G. If a ∈ G
and a is conjugate to an element of K in Ĝ, then a is conjugate to an element of K in G.

Proposition 2·2. ([23], Theorem 3·12). (a) Let Γ = Γ1 t∆ Γ2 be a profinite amalga-
mated free product and let γ ∈ Γ. If either (i) j = 1 and γ ∈ Γ \Γ1 or (ii) j = 2, then
Γ1 w γΓjγ−1 6 µ∆µ−1 for some µ ∈ Γ1.

(b) Let Γ = ∆tf 〈t〉 be a profinite HNN extension, with first associated subgroup A. If
γ ∈ Γ \∆, then ∆ w γ∆γ−1 6 µAµ−1 for some µ ∈ ∆.

2·2. Properties of virtually free groups. Here we collect some results concerning
subgroups of virtually free groups, beginning in Proposition 2·3 with some which
are either known or easy extensions of known results. We recall that a group G is
subgroup separable if wheneverH is a finitely generated subgroup and g is an element
of G \H, there is a normal subgroup N of finite index in G such that g ^ HN ;
equivalently, G is subgroup separable if each finitely generated subgroup H of G is
closed in the profinite topology onG. IfG is residually finite,G is subgroup separable
if and only if the intersection with G of the closure of H in Ĝ equals H, for each
finitely generated subgroup H.

Proposition 2·3. Let G be a finitely generated virtually free group. Then
(a) G is conjugacy separable;
(b) G is subgroup separable;
(c) the profinite topology onG induces the profinite topology on each finitely generated

subgroup of G;
(d) for each finitely generated subgroup H of G there is a free subgroup F of finite

index in G such that F = (H w F ) ∗R, for some subgroup R;
(e) for each pair H1, H2 of finitely generated subgroups of G one has H1H2 w G =

H1H2 (where H1H2 is the closure of H1H2 in Ĝ).
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Assertion (a) is a theorem of Dyer [2]. Assertion (b) in the case when G is free is a
result of M. Hall [7], and the general case follows immediately. Assertion (c) follows
from (b) since if H is finitely generated then so are the subgroups of finite index in
H, and (d) follows directly from another theorem of M. Hall (see [1], Theorem 1 or
Lyndon and Schupp [13], Proposition I·3·10). Assertion (e) in the case when G is
free is a theorem of Niblo [15] (see also [18] for a more general result); and again the
general case follows immediately.

Proposition 2·4. Let G be a finitely generated virtually free group and let H1, H2 be
finitely generated subgroups of G. Then H1 wH2 = H1 wH2.

Proof. We must prove that H1 wH2 > H1 wH2, since, clearly H1 wH2 6 H1 wH2.
Suppose first that there is a subgroup F of finite index such that H1 wH2 w F >
H1 w F wH2 w F . For i = 1, 2 the subgroup (Hi w F )Hi is closed in Ĝ, since Hi w F
contains a subgroup of finite index in Hi, and so Hi = (Hi w F )Hi. Let w ∈ H1wH2,
and write w = u1h1 = u2h2 with ui ∈ Hi w F , hi ∈ Hi, for i = 1, 2. Thus

h2h
−1
1 = u−1

2 u1 ∈ (H1 w F )(H2 w F ) wG.

By Proposition 2·3 (e) we have (H1 w F )(H2 w F ) w G = (H1 w F )(H2 w F ). Thus
we can find v1 ∈ H1 w F, v2 ∈ H2 w F such that v−1

2 v1 = u−1
2 u1, and the element

k = u2v
−1
2 = u1v

−1
1 satisfies

k ∈ H1 w F wH2 w F 6 H1 wH2 w F .

Since v1h1 = v2h2 ∈ H1 w H2, we conclude that w = u1h1 = kv1h1 ∈ H1 wH2, as
required.

Now we return to the general case. By Proposition 2·3 (d) there is a free subgroup
F of finite index in G such that F = (H1 w F ) ∗ R for some subgroup R. Since the
profinite topology on G induces the profinite topology on F , it will suffice from the
above paragraph to prove the result with F replacing G and HiwF replacing Hi for
i = 1, 2. In other words, we may assume that G is free and that G = H1 ∗R for some
subgroupR. WriteH = H1wH2. Consider L = G∗H1G

′, whereG′ is a copy ofG; write
H ′2 for the image of H2 in G′ and set P = 〈H2, H

′
2〉. By the subgroup theorem for

amalgamated free products we have P%H2 ∗H H ′2. We note that all the subgroups
G,G′, H1, H2, H

′
2, P,H of L are finitely generated (the last of these being finitely

generated by Howson’s theorem [8]; see [13], p. 18), and that L is a free group. It
follows from Proposition 2·3 (b), (c) that each of these subgroups is closed in L and
that its closure in L̂ is isomorphic to its profinite completion. Thus the natural maps
α: ĜtĤ1

Ĝ′ → L̂ and β: Ĥ2tĤ Ĥ ′2 → P induced by inclusion maps from G,G′, H2, H
′
2

are isomorphisms. In particular, since β is an isomorphism we have H2 w H ′2 = H.
Since α is an isomorphism we can define a homomorphism φ: L̂→ Gwhich maps each
element of G to itself and each element of G′ to its preimage under the isomorphism
from G to G′. Clearly φ(H1 wH2) = φ(H1 wH ′2), and since the restriction of φ to G is
the identity map we conclude that H1wH2 = H1wH ′2. Thus H1wH2 6 H2wH ′2 = H,
as required.

A subgroup H of a group G is said to be conjugacy distinguished if whenever a
is an element of G having no conjugate in H, there exists a normal subgroup N of
finite index in G such that no conjugate of a lies in HN . Thus if G is residually finite,
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then H is conjugacy distinguished in G if and only if the following condition holds:
whenever a ∈ G and there is an element γ ∈ Ĝ with γaγ−1 ∈ H then there is an
element g ∈ G with gag−1 ∈ H.

Proposition 2·5. Every finitely generated subgroupH of a finitely generated virtually
free group G is conjugacy distinguished.

Proof. Let a ∈ G and suppose that γaγ−1 ∈ H for some γ ∈ Ĝ.

First suppose that a has finite order. SinceH is virtually free, it is the fundamental
group of a finite graph of finite groups by a theorem of Karrass, Pietrowski and
Solitar [10], and its profinite completion Ĥ is the profinite fundamental group of
the same finite graph of groups (see Zalesskii and Mel’nikov [23], paragraph 3·3). It
follows from Theorem 3·10 in [23] that every conjugacy class of elements of finite
order of Ĥ contains an element of H. Since the closure of H in Ĝ is isomorphic to Ĥ
by Proposition 2·3 (c), we conclude that the conjugacy class in H of γaγ−1 contains
an element a1 which belongs to H. Since G is conjugacy separable by Proposition
2·3 (a) there is an element g ∈ G with gag−1 = a1, and the result follows.

Now suppose that a has infinite order. By Proposition 2·3 (d), there exists a free
subgroup F of finite index in G such that F = H1 ∗ R for some subgroup R, where
H1 = H w F . Since F has finite index in G we have Ĝ = GF , and so, replacing a
by a conjugate in G, we can assume that γ ∈ F . Pick n ∈ N such that an ∈ F . It
follows from Proposition 2·1 that an is conjugate in F to an element of H1 or R;
since F = F̂ = Ĥ1 t R̂, it follows from Proposition 2·2 that no non-trivial element of
R̂ can be conjugate to an element of Ĥ1 in F̂ . Thus there is an element g ∈ F with
gang−1 ∈ H1. Write a1 = gag−1 and γ1 = γg−1. We have an1 ∈ H1 and γ1a

n
1 γ
−1
1 ∈ H1,

and so H1 w γ1H1γ
−1
1 is non-trivial. It follows from Proposition 2·2 that γ1 ∈ H1,

and since γ1a1γ
−1
1 = γaγ−1 ∈ H we have a1 = gag−1 ∈ H wG = H, as required.

3. Proof of Theorems 2 (a), 2 (b) and Theorem 3

We shall prove Theorems 2 (a), 2 (b) simultaneously and afterwards explain the
modifications necessary for the proof of a result which implies Theorem 3. To sim-
plify the exposition, in Theorem 2 (b) we define G1, G2 and H to be respectively K,
the trivial subgroup, and the first associated subgroup. Thus G is either (a) an amal-
gamated free productG1∗HG2 or (b) an HNN extensionG1∗f 〈t〉 with first associated
subgroup H, and our hypotheses are as follows:

(i) the profinite topology on G is efficient;
(ii) G1, G2, H are finitely generated and virtually free;
(iii) H w gHg−1 is cyclic for all g ∈ G \G2 if G is an amalgamated free product

and for all g ∈ G \H if G is an HNN extension;
(iv) there exist a conjugacy separable group T and an epimorphism τ : G → T

such that τ |G1 is injective and τ ({g ∈ G | gHg−1 6 G1}) = T .
Let a, b ∈ G, and assume that γaγ−1 = b for some γ ∈ Ĝ. Our aim is to show that
gag−1 = b for some g ∈ G. Our strategy is to replace a, b repeatedly by conjugates
under G until we can make effective use of hypothesis (iii) or hypothesis (iv).

Case 1. One of the elements a, b is conjugate to an element of G1 or G2.



234 J. S. Wilson and P. A. Zalesskii

In this case, by Proposition 2·1, each of a, b is conjugate to an element of G1 or G2,
and so we may assume that a, b ∈ G1 x G2. If γ belongs to the closure in Ĝ of the
one of these subgroups which contains a, then the result follows from hypothesis
(ii) and the conjugacy separability of G1, G2. Otherwise, by Proposition 2·2, we have
a ∈ αHα−1, b ∈ βHβ−1 for some α, β ∈ G1 x G2. Then a and b are conjugate to
elements of H by Proposition 2·5, and so we may assume that a, b ∈ H. We can
now use hypothesis (iv). The elements a, b are conjugate in Ĝ, and so, applying the
epimorphism from Ĝ to T̂ induced by τ , we see that τ (a), τ (b) are conjugate in T̂ .
Since T is conjugacy separable, it follows that τ (a), τ (b) are conjugate in T , and that
there is an element z ∈ {g ∈ G | gHg−1 6 G1} such that zaz−1, b have the same
image under τ . However zaz−1, b ∈ G1, and since τ |G1 is injective we must have
zaz−1 = b. This concludes the treatment of Case 1.

Case 2. Neither of a, b is conjugate to an element of G1 or G2.

In this case we shall study the actions of G, Ĝ on the associated trees S(G), S(Ĝ).
Consider the standard tree S(G) corresponding to the amalgamated free product

G = G1 ∗H G2 (resp. the HNN extension G = G1 ∗f 〈t〉) and the standard profinite
tree S(Ĝ) corresponding to the profinite amalgamated product Ĝ = Ĝ1 tĤ Ĝ2 (resp.
the profinite HNN extension Ĝ = Ĝ1tf̂ 〈t〉). From (i), the natural map from S(G) to

S(Ĝ) is an embedding and we shall regard this as inclusion. The hypothesis of Case
2 implies that a, b act freely on S(G). Thus we have ma,mb > 0, where

ma = min {l(v, av) | v ∈ V (S(G))}, mb = min {l(v, bv) | v ∈ V (S(G))},

and where l(u, v) denotes the distance between two vertices u, v in S(G). Write

Va = {v ∈ V (S(G)) | l(v, av) = ma} and Vb = {v ∈ V (S(G)) | l(v, bv) = mb}.

By a theorem of Tits (cf. [21], proposition 24), there are doubly infinite paths Ta, Tb
in S(G) having vertex sets Va, Vb respectively, and moreover a, b act freely on Ta, Tb
as translations of lengths ma,mb, respectively. Let T1 and T2 be finite paths in Ta
and Tb of lengths ma and mb, respectively. Then Ta = 〈a〉T1 and Tb = 〈b〉T2.

Write e for the edge in S(G) whose stabilizer in G is H (so that e is, in fact, H
regarded as a coset of H in G). First we claim that one may assume that e ∈ T1.
To see this, consider g1 ∈ G such that e ∈ g1T1 and set a′ = g1ag

−1
1 . Then a′ is

not conjugate to an element of G1 or G2, and there is a straight line Ta′ = g1Ta
corresponding to a′. Define T ′1 = g1T1. Then clearly Ta′ = 〈a′〉T ′1. Since a and b are
conjugate if and only if a′ and b are conjugate, the claim follows.

Consider the profinite subgraphs of S(Ĝ) defined by T a = 〈a〉T1 and T b = 〈b〉T2. By
proposition 2·9 in [19], the subgroups 〈a〉 and 〈b〉 act freely on T a and T b, respectively.
Since γaγ−1 = b, the element b also acts freely on γT a. By lemma 2·2 (ii) in [19], we
have γT a = T b, and so γe ∈ T b. Choose b′ ∈ 〈b〉 such that b′γe ∈ T2. Then b′γe = ge for
some g ∈ G, and hence b′γ = gδ for some δ ∈ H. Now a = γ−1b′−1bb′γ = δ−1g−1bgδ.
Therefore, replacing b by g−1bg and γ by δ we can assume that γ is in H.

We need to arrange that γ fixes longer paths in Ta than the path whose only edge
is e. Suppose that P is a finite path in Ta which has e as one of its edges and such
that γ ∈ L, where L is the intersection of the stabilizers in G of the edges of P :
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we shall show that γ can be replaced by an element which lies in the closure of the
intersection of the edge stabilizers of a path strictly containing P .

Let e1 be an edge of Ta \P connected to P , write v for the common vertex of
e1 and P , and write P+ for the path with edges those of P together with e1. Let
e2 = γe1 ∈ T b. First we note that e2 ∈ Tb. Indeed, let e′ be an edge in Tb. There
is a path in S(G) connecting e′ to e1, and so since e1, e2 share a vertex there is a
path connecting e′ to e2. However if f1, f2 are edges of a profinite tree then there is a
unique smallest profinite subtree containing f1, f2, from [23], paragraph 1.19, and so
since e2 = γe1 ∈ γTa = Tb and e′ ∈ Tb, it follows that the shortest path connecting e′

and e2 lies in Tb. The connected component of T b containing e′ is precisely Tb (by [17],
lemma 4·3 (iii) ), and so we conclude that e2 ∈ Tb. Now since v is a common vertex of
e1 and e2, we have ge1 = e2 for some g in the stabilizer Gv of v in G. If x is a vertex
or edge in S(G) then its stabilizer Gx in G is conjugate to G1, G2 or H, and so Gx is
finitely generated and Gx is the stabilizer of x in Ĝ. Thus since e1 = g−1e2 = γ−1e2

the element γ1 = γg−1 is in Ge2 . Moreover both L and Ge2 are finitely generated (the
former by Howson’s theorem [8]), and since they are both subgroups of the virtually
free group Gv we have Ge2LwGv = Ge2L from Proposition 2·3 (e). Therefore because
g = γ−1

1 γ we can find h1 ∈ L, h2 ∈ Ge2 with g = h2h1. Set γ+ = h−1
1 γ. Thus

γ+e1 = h−1
1 e2 = g−1h2e2 = g−1e2 = e1,

and so γ+ ∈ Ge1 . We also have γ+ ∈ L. Both L and Ge1 are finitely generated
subgroups of the virtually free group Gv and it follows from Proposition 2·4 that γ+

is in the closure of the intersection of the edge stabilizers of the path P+. We may
therefore replace γ by γ+ and b by h−1

1 bh1 and so assume that γ is in the closure of
the intersection of the edge stabilizers of P+.

Let f be an edge in Ta having a vertex in common with e; in the case when G is
an amalgamated free product, we choose f so that this common vertex is the coset
G1. From above, we can assume that there is a finite path P whose edges include
e, f, ae, af such that γ ∈ L, where L is the intersection of the stabilizers of the edges
of P . Write D = H wGf ; thus L 6 D w aDa−1 and D is a cyclic group by (iii).

Our next claim is that a normalizes L. Let N be a normal subgroup of finite index
inG and consider the quotient groupG/N . The subgroup LN/N has the same index,
m, say, in bothDN/N , (aDa−1)N/N , since these subgroups are conjugate. Thus if dN
generates DN/N , then (dN )m and (aN )(dN )m(aN )−1 both generate LN/N , and we
conclude that LN is normalized by a. However, since L is closed in H by Proposition
2·3 (b), and hence closed inG, the subgroup L is the intersection of all such subgroups
LN and so it is normalized by a.

Let h be a generator of L and write E = 〈h, a〉. If h either has finite order or
centralizes a then clearly the conjugacy class of a in E is finite and hence closed in
G. If h has infinite order and does not centralize a then we have aha−1 = h−1; in
this case 〈h2〉 is closed in H by Proposition 2.3 (b) and hence closed in G, so that the
conjugacy class

{kak−1 | k ∈ 〈h〉} = {kak−1a−1 | k ∈ 〈h〉}a = 〈h2〉a

of a in E is closed in G.
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Now a ∈ E and γ ∈ L 6 E, so that b = γaγ−1 ∈ E. Moreover a, b are congruent
modulo the closed normal subgroup of E generated by γ. It follows that

ab−1 ∈ L wG = L w (H wG) = L wH,

and so ab−1 ∈ L by Proposition 2·3 (b). Therefore a, b are elements of E conjugate in
E, and since the conjugacy classes of E are closed it follows that a, b are conjugate
in E. This completes the proof of Theorems 2 (a), 2 (b).

Now we turn to Theorem 3. We shall show that the following somewhat stronger
theorem holds:

Theorem 3′

LetG = K∗f 〈t〉 be an HNN extension with cyclic associated subgroupsH,H1 such that
the profinite topology on G is efficient. Suppose that K satisfies the following conditions:

(i) K is conjugacy separable;
(ii) for any pair A,B of cyclic subgroups of K, the set AB is closed in K;
(iii) for any pair A,B of cyclic subgroups of K, the subgroups A wB and AwB are

equal;
(iv) every cyclic subgroup of K is conjugacy distinguished.
Then G is conjugacy separable.

To see that Theorem 3 follows from this we need to explain why finitely generated
virtually free groups and virtually polycyclic groups have the properties required of
K above. The required properties of virtually free groups were given in Section 2. The
conjugacy separability of virtually polycyclic groups was established by Remeslen-
nikov [16] and Formanek [5], and property (ii) for virtually polycyclic groups K
follows from a result of Lennox and Wilson [11]. Properties (iii) and (iv) are shown
to hold for virtually polycyclic groups in [17].

Proof of Theorem 3′.

LetH be the first associated subgroup ofG. IfH is finite, the result holds from the
theorem of Dyer [3], and so we shall assume that H is infinite. Let a, b be elements of
G which are conjugate in Ĝ. The proof that a, b are conjugate in G divides into two
cases, Case 1 and Case 2, just as in the proof of Theorem 2 (b). In Case 2, we assume
that neither a nor b is conjugate to an element of K. The proof proceeds exactly as
for Theorem 2 (b); the two references to Proposition 2·3 are replaced by references
to hypothesis (ii), and hypothesis (iii) is used instead of Proposition 2·4. In Case 1,
a, b are conjugate to elements of K, and the first part of the argument given for this
case in Theorem 2 (b) shows that a, b may be assumed to lie in H.

Write A = 〈a〉 and B = 〈b〉. If N is a normal subgroup of finite index in G then
AN/N and BN/N are subgroups of equal order in the cyclic group HN/N , and
therefore AN = BN . Since A,B are closed in G it follows that A = B and that b = a
or b = a−1. Suppose therefore that b = a−1. Thus if γ is an element of Ĝ such that
γaγ−1 = a−1, then γ ∈ NĜ(A). If NĜ(A) = NK(A), then the conjugacy separability
of K implies that a, a−1 are conjugate in K. Assume then that NĜ(A) � NK(A).
It follows from Proposition 2·5 in [19] that NĜ(A) = NK(A) tf̄ 〈t〉, where f̄ is the
isomorphism of closures induced by f ; in particular,NĜ(A) is generated as a profinite
group by NK(A) and t. Since the result is clear if tat−1 = a−1 we may assume that
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t centralizes a. However this implies that NĜ(A) = NK(A)CĜ(A), so that there is
an element γ1 ∈ NK(A) with γ1aγ

−1
1 = a−1. Because K is conjugacy separable we

conclude that sas−1 = a−1 for some s ∈ K, and the proof of Theorem 3′ is complete.

4. Proof of Theorem 1

In this section it remains to show that the hypotheses of Theorem 2 (a) and The-
orem 2 (b) are satisfied by the Bianchi groups PSL2(Od) with d = 1, 2, 7, 11. The
information we require is contained in the following three lemmas.

Lemma 4·1. Let m be a square-free integer with m� 0, 1, let u2 = m, and let R be the
ring of algebraic integers of Q(u). Let Γ = SL2(R) and let M be the image of PSL2(Z)
in Γ. Then

(a) M is closed in the profinite topology on Γ;
(b) NΓ(M )/M has order 2 if u2 = −1 and is trivial otherwise;
(c) if g ∈ Γ \NΓ(M ) then M wMg is cyclic.

Proof. (a) The centre of SL2(R) consists of the two matrices ±1 and coincides with
the centre of SL2(Z). Therefore it is sufficient to show that SL2(Z) is closed in SL2(R).
Let R be generated as a ring by θ, and for each integer n > 0 let Rn be the subring
generated by nθ. The group SL2(Rn) has finite index in SL2(R) since it contains the
kernel of the natural map from SL2(R) to SL2(R/nR). Clearly SL2(Z) =

⋂
SL2(Rn),

and (a) follows.
(b), (c) Since M is a free product of a group of order 2 and a group of order 3,

the subgroup theorem for free products implies that the centralizer of each non-
trivial element of M is cyclic, and, in particular, that each abelian subgroup of M is
cyclic. Since the kernel of the map from SL2(Z) to M has order 2, torsion-free abelian
subgroups of SL2(Z) are also cyclic. We note that if l is a 2 × 2 matrix over Q such
that l2 = 0 and if there exists a matrix k ∈ SL2(Q) such that lk = −kl then l = 0. For
otherwise, conjugating l, k by a suitable element of GL2(Q), we may assume that

l =
(

0 1
0 0

)
.

Write

k =
(
a b
c d

)
.

Multiplying and equating coefficients, we find that c = 0 and a = −d. But then
1 = det (k) = −a2, and we have a contradiction.

Write G = SL2(R), let H be the preimage of M in G, and let A be the ring of
2 × 2 matrices over Q. Choose g ∈ G, and set S = A w gAg−1; this is a Q-algebra
of dimension at most 4 containing H w gHg−1. First suppose that dim S 6 3. If S
is semisimple, it must be a direct sum of fields, by the Wedderburn–Artin Theorem
(see [9], p. 41) so that S is commutative and H w gHg−1 is abelian. It follows that
the image of H w gHg−1 in Γ is abelian, and hence cyclic. If S is not semisimple,
it has an ideal I � 0 with I2 = 0. Then (1 + I) w H is a non-trivial free abelian
group normalized by H w gHg−1, and so is cyclic; let h = 1 + l be a generator. The
centralizer of h in H w gHg−1 has index at most 2. However if k ∈ H w gHg−1 and
k does not centralize h then we have

khk−1 = k(1 + l)k−1 = (1 + l)−1 = 1− l,
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and hence lk = −kl, and we have a contradiction from the above paragraph. There-
fore H w gHg−1 centralizes h, and so its image in M centralizes the image of h. We
conclude that the image of H w gHg−1 is cyclic.

If dim(S) = 4 then A = gAg−1, and so to establish (c) it is now sufficient to prove
that ifA = gAg−1 then g normalizesH. We shall do this and prove (b) simultaneously.
Let g be an element ofGwhich either satisfies the conditionA = gAg−1 or normalizes
H, and write

g =
(
a b
c d

)
.

The following matrices are in A:(
a b
c d

)(
0 1
0 0

)(
d −b
−c a

)
=
(
−ac a2

−c2 ac

)
,

(
d −b
−c a

)(
0 1
0 0

)(
a b
c d

)
=
(
cd d2

−c2 cd

)
,

(
a b
c d

)(
0 0
1 0

)(
d −b
−c a

)
=
(
bd −b2

d2 −bd

)
.

It follows that a2, b2, c2, d2, ac, cd, bd ∈ Q. If a ∈ Q we conclude that a, b, c, d ∈
Q w R = Z so that g ∈ H. If a ^ Q then since a2 ∈ Q we must have a = a′u with
a′ ∈ Q, and hence all of a′ = au−1, b′ = bu−1, c′ = cu−1, d′ = du−1 are in Q. Since
a2 = a′2u2 ∈ Q w R = Z, and since u2 is square-free in Z, a′ has denominator 1.
Arguing similarly for b′, c′, d′ we see that the entries of the matrix

g′ =
(
a′ b′

c′ d′

)
are in Z. Therefore 1 = det g = det ug′ = u2 det g′. Thus g can only fail to be in H
when u2 = −1, and in this case we have g = ig′ with g′ ∈ GL2(Z), so that g ∈ NG(H).
The quotient of two such matrices g1, g2 ∈ NG(H) \H clearly lies in H, so that if
u2 = −1 then both NG(H)/H and NΓ(M )/M have order 2. This completes the proof
of the lemma.

We now restrict attention to the Bianchi groups occurring in Theorem 1. We begin
by studying the group Γ1 = PSL2(O1).

Lemma 4·2. There exist subgroups G1, G2 of Γ1, containing M , with the following
properties:

(i) Γ1 is isomorphic to the amalgamated free product G1 ∗M G2 and |G2: M | = 2;
(ii) G1, G2 are virtually free;
(iii) there exist an involution u ∈ G2 \M and an automorphism φ of order 2 of G1

such that φ(x) = uxu−1 for all x ∈M ;
(iv) there is a surjective homomorphism τ from Γ1 to the semidirect product of G1 by
〈φ〉 such that τ |G1 is the identity map;

(v) G1, G2,M are closed in Γ1 with respect to the profinite topology, and the profinite
topology on Γ1 induces the profinite topology on each of the subgroups G1, G2,M .

Proof. A description of Γ1 as an amalgamated free product is given in Fine [4],
pp. 83–85. It is shown that there are generators s, a, u, v of Γ1 such that the group
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G1 generated by s, a, v has the presentation

〈s, a, v | v3 = s3 = a2 = (vs)2 = (va)2 = 1〉,

such that the group G2 generated by s, a, u has the presentation

〈s, a, u | u2 = s3 = a2 = (ua)2 = (us)2 = 1〉,

and such that G1 wG2 = M = 〈s, a〉 and the natural map from G1 ∗M G2 to Γ1 is an
isomorphism. It follows from the presentation of G2 that u normalizes M , so that
|G2 : M | = 2 (and hence G2 = NΓ1(M ) by Lemma 4.1) and G2 is virtually free. The
subgroup A of G1 generated by v, s has presentation

〈v, s | v3 = s3 = (vs)2 = 1〉

and is isomorphic to the alternating group A4, and the subgroup B generated by
v, a has presentation

〈v, a | v3 = a2 = (va)2 = 1〉

and is isomorphic to the symmetric group Σ3; and the natural map from A ∗〈v〉 B to
G1 is an isomorphism. Therefore, being isomorphic to an amalgamated free product
with finite free factors, G1 is virtually free (see [21], proposition 11 on p. 120). Now
if P1, P2 are distinct Sylow 3-subgroups of Σ4, there is a transposition in Σ4 which
acts as inversion on both P1 and P2. Hence there is an automorphism of A which
maps v, s to their inverses, and this extends to an automorphism φ of G1 fixing a.
Clearly φ has order 2 and φ(x) = uxu−1 for all x ∈ M . Thus (iii) holds. The map ψ
defined by xuε 7→ xφε for x ∈M, ε = 0, 1 is an isomorphism from G2 to M〈φ〉 which
fixes M pointwise, and thus there is a homomorphism τ from Γ1 which agrees with
ψ on G2 and with the identity map on G1.

Let N be a subgroup of G1 of finite index, and let N1 be the preimage of N under
the map τ . Thus N1 is a subgroup of Γ1 of finite index, and we have N1 w G1 = N
since τG1 = id. It follows that the profinite topology on Γ1 induces the profinite
topology on G1, and a similar argument shows that it induces the profinite topology
on G2. Since |G2 : M | = 2, it also follows that the profinite topology is induced in
M . The fact that M is closed was proved in Lemma 4·1, and it follows that G2 is
closed. Finally, let L be the preimage of G1 under τ ; thus |Γ1: L| = 2. Consider the
homomorphism τ1: L → L defined by x 7→ τ (x). The set of elements x ∈ L whose
images under τ1 and the identity map on L coincide is G1, and since these two maps
are continuous it follows that G1 is closed.

Lemma 4·3. Let d = 2, 7 or 11 and write Γd = PSL2(Od). There exist a subgroup Kd

of Γd, containing M , and an element u ∈ Γd, with the following properties:
(i) Γd is isomorphic to an HNN extension Kd ∗f 〈u〉 with first associated subgroup

M ;
(ii) Kd is virtually free;
(iii) there is an automorphism ψ of Kd of order 2 such that ψ(x) = uxu−1 for all

x ∈M ;
(iv) there is a surjective homomorphism τ from Γd to the semidirect product of Kd by
〈ψ〉 such that τ |Kd is the identity map;

(v) Kd is closed in Γd with respect to the profinite topology on Γd, and the profinite
topology on Γd induces the profinite topology on Kd and M .
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Proof. We begin with assertions (i) and (iii), and treat the three cases d = 2, 7, 11
separately. Assertion (i) may be found in Fine [4], pp. 87–89; a complete proof was
given for the case d = 2 and the details for d = 7, 11 were left for the reader. Assertion
(iii) for d = 2 was given in Zalesskii [22]. We shall need to fill in some of the details
in Fine’s arguments since they are required for the proof of (iii). In all cases, Kd will
be an amalgamated free product of finite groups and therefore it is virtually free.

First suppose that d = 2. Then Γ2 has a presentation

Γ2 = 〈a, h, z, v | a2 = (ah)3 = v2 = (av)2 = (hv)3 = 1, z−1hz = h, z−1az = v〉

such that a, h are generators of M (see Fine [4], p. 88). Let K2 be the subgroup
generated by a, h, v; thus K2 has the presentation

K2 = 〈a, h, v | a2 = v2 = (av)2 = (ah)3 = (hv)3 = 1〉.

Set u = z−1 and write f for the isomorphism with domainM defined by a 7→ v, h 7→ h.
Thus f (x) = uxu−1 for all x ∈M , and the homomorphism from K2 ∗f 〈t〉 to Γ2 which
is the identity on K2 and maps t to u is an isomorphism. It is shown in [4] (loc.
cit.) that K2 is a free product of the alternating group A4 and a non-cyclic group of
order 4, with a subgroup of order 2 amalgamated. From the symmetry of the above
presentation there is an automorphism φ of K2 which fixes h and exchanges a, v; and
this clearly has order 2 and satisfies φ(x) = f (x) for all x ∈M .

Next suppose that d = 7. Then Γ7 has a presentation

Γ7 = 〈a, v, s,m,w | a2 = v3 = (av)2 = 1, av = ms,w−1aw = m,w−1sw = v〉

such that a, s are generators of M (see Fine [4], p. 86). Let K7 be the subgroup
generated by a, v, s,m; thus K7 has the presentation

K7 = 〈a, v, s,m | a2 = v3 = (av)2 = 1, av = ms,m2 = s3 = 1〉.

Set u = w−1 and write f for the isomorphism with domain M defined by a 7→
m, s 7→ v. Thus f (x) = uxu−1 for all x ∈ M , and the homomorphism from K7 ∗f 〈t〉
to Γ7 which is the identity on K7 and maps t to u is an isomorphism. From the
above presentation of K7 it follows that K7 is the amalgamated free product of the
subgroups 〈a, v | a2 = v3 = (av)2 = 1〉 and 〈m, s | m2 = s3 = (ms)2 = 1〉, both of
which are isomorphic to Σ3, with the subgroups 〈av〉 and 〈ms〉 amalgamated. It is
clear that the map a 7→ m,m 7→ a, v 7→ s, s 7→ v extends to an automorphism φ of
K7; evidently φ has order 2 and φ(x) = f (x) for all x ∈M .

Finally, suppose that d = 11. Then Γ11 has the presentation

Γ11 = 〈a, t, z | a2 = (at)3 = (z−1azat)3 = [t, z] = 1〉,

where the elements a, t generate M (see Fine [4], p. 87). Letting s = at, w = az,m =
w−1aw, v = w−1sw and applying Tietze transformations we obtain the presentation

Γ11 = 〈a, s, v,m,w | a2 = s3 = (sm)3 = 1, av = sm,m = w−1aw, v = w−1sw〉.

Let K11 be the subgroup generated by a, s, v,m; thus

K11 = 〈a, s, v,m | a2 = s3 = m2 = v3 = (sm)3 = 1, av = sm〉,

so that K11 is the amalgamated free product of the two groups

〈a, v | a2 = v3 = (av)3 = 1〉, 〈m, s | m2 = s3 = (ms)3 = 1〉,
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each isomorphic to the alternating group A4, with a subgroup of order 3 amalga-
mated. Let φ be the map s 7→ v, a 7→ vmv−1,m 7→ s−1as, v 7→ s. It is easy to check
that φ(a)φ(v) = φ(s)φ(m), and hence that φ extends to an automorphism of K11. This
automorphism has order 2, and if we define f : M → φ(M ) by f (x) = φ(x) and set
u = vw−1 then we have f (s) = usu−1, f (a) = uau−1, and hence f (x) = uxu−1 for all
x ∈ M . It is clear that the map from K11 ∗f 〈t〉 to Γ11 which is the identity on K11

and maps t to u is an isomorphism.
The proof of (iv) and (v) now follows easily. Because the automorphism φ of Kd

extends the map f from M , there is a natural map from Kd ∗f 〈t〉 to Kd ∗φ 〈t〉, and
we let τ be the composition of this map with the map from the latter group to the
split extension of Kd by 〈φ〉. Let N be a subgroup of finite index in Kd, and let N1 be
the preimage in Γd of N under the map τ ; thus N1 is a subgroup of finite index in Γd
and we have N1 wKd = N since τ |Kd = id. It follows that the profinite topology on
Γd induces the profinite topology on Kd; and since Kd is virtually free, the profinite
topology on Kd induces the profinite topology on M by Proposition 2·3 (c). Let L be
the inverse image of Kd under the map τ . Since |Γd: L| = 2 and since Kd is the set of
elements x ∈ L such that τ (x) = x, it follows that Kd is closed in Γd. This concludes
the proof of Lemma 4·3.

Proof of Theorem 1. It is sufficient to check that the Bianchi groups PSL2(Od)
with d = 1, 2, 7, 11 satisfy the hypotheses of Theorems 2 (a), 2 (b), and this is now an
easy matter. The only point which requires explanation is that the epimorphisms τ
constructed in Lemmas 4·2 and 4·3 have the properties required in hypothesis (iv) of
Theorems 2 (a), 2 (b). LetG1 be as described in Lemma 4·2 if d = 1 and writeG1 = Kd

if d = 2, 7 or 11. In each case, the image T of the map τ has G1 as a subgroup of
index 2; since G1 is virtually free, so is T , and hence T is conjugacy separable. Since
τ |G1 = id, the map τ |G1 is certainly injective. The set S = {g ∈ G | gHg−1 6 G1} is
clearly a union of cosets G1g; it contains G1 and u, and hence

τ (S) ⊇ τ (G1) x τ (G1u) = G1 xG1τ (u).

Since τ (u) ^ G1 and |T: G1| = 2 it follows that τ (S) = T . Therefore the hypotheses of
Theorems 2 (a), 2 (b) hold, and the Bianchi groups PSL2(Od) with d = 1, 2, 7, 11 are
conjugacy separable.
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