Tutoring schedule: Monday, Wednesday and Friday, from 11 am to 12:30 pm. Room: ICC ANF 12
Abstract:
For more information about the course, exercises lists and others, see http://andrec.mat.unb.br/ensino/topologia/
The professor recommends that before the first day of class, everyone has read chapters 1 and 2 of the class notes.
1. Conceitos básicos de topologia geral
2. Topologias construídas a partir de outras topologias
3. Conexidade
4. Compacidade
5. Axiomas de separação
References:
1. J. L. Kelley, General Topology, Graduate Texts in Mathematics 27, Springer, 1955
2. J. R. Munkres, Topology, Prentice Hall, 2ª edição
3. Notas de Aula
x
Functional Analysis
Schedule:
Monday, Tuesday, Thursday and Friday, 2pm to 5 pm
Room:
Department of Mathematics, -Room B 427/10
The official language of the course is Portuguese.
1. Espaços normados;
2. Teoremas de Hahn-Banach, Baire, Aplicação aberta, Gráfico fechado e Banach-Steinhaus;
3. Formas geométricas do Teorema de Hahn-Banch;
4. Topologias fracas; reflexividade e separabilidade;
5. Espaços L^p;
6. Espaços de Hilbert;
7. Teoria espectral de operadores lineares compactos e auto-adjuntos;
8. Espaços de Sobolev sobre a reta e problemas variacionais.
References:
1. Geraldo Botelho, Daniel Pellegrino, Eduardo Teixeira, Fundamentos de Análise Funcional,
SBM, Coleção Textos Universitários, Rio de Jan_eneiro, 2014;
2. Brézis H.: Functional Analysis, Sobolev spaces and partial differential equations, universitext. Srpinger, New York, 2011;
3. Conway, J.B.: A course in Functional Analysis. Second edition. Graduate Texts in Mathematics, 96. Spinger-Verlag, New York, 1990;
4. Folland, G.B.: Real Analysis. Modern techniques and their applications . Second edition. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. John Wiley & Sons, Inc., Ney York, 1999;
5. Rudin W.: Functional Analysis. Second edition. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, 1991;
6. Kesavan, S.: Topins in Functional Analysis ans applications. John Wiley & Sons, Inc., New York, 1989;
7. Yosida K.; Functional Analysis, Springer-Verlag, New York, 1974;
8. Kreyszig, E.: Introdutory Functional Analysis with applications. John Wiley & Sons, Inc., New York, 1989;
9. Oliveira, C.: Introdução à Análise Funcional, IMPA;
10. Stein, E.M.; Shakarchi, R.: Functional Analysis. Introduction to further topics in Analysis. Princeton Lectures in Analysis, 4. Princeton University Press, Princeton, New Jersey, 2011.
x
Linear Algebra 2
Schedule:
Monday to Friday, 2pm to 4:30 pm
Room:
ICC ANF 12
The official language of the course is Portuguese.
It should be emphasized that the XLIX Summer School is particularly important to those who are interested in participating
in the selection process for the master's degree program (MSc) of the Department of Mathematics at UnB, as it includes complementary
assessment parameters to the selection process and to the distribution of scholarships.
In the current edition, all three courses will be used to assess candidates for the PPGMAT Master Program.
The following minicourses will be offered at XLIX Summer School
x
Dimension Theory of Commutative Rings
Dimension Theory of Commutative Rings
Schedule:
February 3rd to 7th, 2020, 10am - 12noon
Room:
Department of Mathematics, Room A - Miniauditorium
Professor:
Guram Donadze (Institute of Cybernetics of Georgian Technical University and Universidade de Brasília)
Abstract:
We will study the theory of Hilbert polynomials and prove that for regular
local rings the Krull, Chevalley and global dimensions are the same.
References:
1. Atiyah M. Macdonald I. G. Introduction to commutative algebra. Massachusetts: AddisonWesley Publishing, 1969.
2. Nagata M. Local rings. Interscience Publishers a division of John Wiley and Sons, New
York-London, 1962.
3. Serre J. P. Local algebra. Springer Monographs in Mathematics. Springer-Verlag, Berlin,
2000.
x
Recent trends in regularity theory of nonlinear PDEs and applications
Recent trends in regularity theory of nonlinear PDEs and applications
Schedule:
January 27 to 31, 2020, 8am - 10am
Room:
Department of Mathematics, Room A - Miniauditorium
Professor:
João Vitor da Silva (Universidade de Brasília)
Abstract:
In this series of Lectures we will address some recent progresses in regularity theory
of nonlinear elliptic/p´arabolic PDEs and Free Boundary Problems, which were developed in the last years. The insights behind the expositions consist of explaining their
mathematical relevance, intrinsic difficulties in being overcome and applications in other
classes of problems. In the end of the Lectures we will present new directions and some
mathematical expectations for the next years in such subjects of research.
References:
1. M.D. Amaral, J.V. da Silva, G.C. Ricarte & R. Teymurazyan, Sharp regularity
estimates for quasilinear evolution equations. Israel J. Math. 231 (2019), no. 1,
25-45.
2. J.V. da Silva, P. Ochoa & A. Silva, Regularity for degenerate evolution equations
with strong absorption. J. Differential Equations 264 (2018), no. 12, 7270-7293.
3. J.V. da Silva, J. Rossi & A. Salort, Regularity properties for p−dead core problems
and their asymptotic limit as p → ∞. J. London Math. Soc. (2) 99 (2019) 69-96.
4. J.V. da Silva & A. Salort, Sharp regularity estimates for quasi-linear elliptic dead
core problems and applications. Calc. Var. Partial Differential Equations 57
(2018), no. 3, 57: 83.
5. J.V. da Silva & E.V. Teixeira, Sharp regularity estimates for second order fully
nonlinear parabolic equations. Math. Ann. 369 (2017), no. 3-4, 1623-1648.
x
Introdução às equações diferenciais elípticas envolvendo medidas
Introdução às equações diferenciais elípticas envolvendo medidas
The course will be taught in Portuguese.
Schedule:
February 4th to 7th, 2020, 10am - 12noon.
Room:
Department of Mathematics, Room B - 427/10
Professor:
Augusto Ponce (Université catholique de Louvain)
Abstract:
O objetivo do curso é desenvolver e aplicar em detalhe técnicas que permitem demonstrar a
existência e regularidade de soluções do problema de Dirichlet associado ao operador de Schrödinger:
−Δu + V u = μ ∈ Ω,
u = 0 on ∂ Ω,
onde V é um potencial positivo e µ é uma medida boreliana finita. Os pré-requisitos são conceitos básicos de cursos introdutórios em teoria da medida, equações diferenciais parciais e espaços
de Sobolev.
References:
1. Class notes
2. Augusto C. Ponce, Elliptic PDEs, Measures and Capacities. From the Poisson equation to Nonlinear
Thomas-Fermi problems. EMS Tracts in Mathematics. European Mathematical Society, Zürich,
2016. EMS Monograph Award in 2014.
x
Introdução a grupos de Holonomia em Geometria
Riemanniana
Introdução a grupos de Holonomia em Geometria
Riemanniana
The course will be taught in Portuguese.
Schedule:
January 20 to 24, 2020, 10am - 12noon.
Room:
Department of Mathematics, Room A - Miniauditorium
Professor:
Felippe Guimarães (Universidade de Brasília)
Prerequisites:
Conceitos básicos de variedades diferenciáveis, geometria Riemanniana, tensores e grupos.
Abstract:
Dado um fibrado vetorial, podemos definir o conceito de transporte
paralelo ao longo de curvas da base com relação a uma conexão sobre este fibrado. Ao considerar curvas fechadas em um ponto, o transporte paralelo nos
fornece um isomorfismo natural da fibra sobre este ponto nela mesmo. O conjunto de isomorfismos obtidos por esta construção formam um grupo chamado
Grupo de Holonomia.
O objetivo deste minicurso é introduzir o Grupo de Holonomia de uma variedade Riemanniana, associado a conexão de Levi-Civita e o fibrado tangente, e
apresentar a sua relação natural com a geometria intrinsica de uma variedade.
Para no final motivar o famoso Teorema de Berger, sobre classificação de grupos de holonomia em variedades Riemannianas.
A one week course on elliptic partial differential equations with tough data: existence, uniqueness, regularity
A one week course on elliptic partial differential equations with tough data: existence, uniqueness, regularity
Schedule:
January 27 to 31, 2020, 10am - 12noon.
Room:
Department of Mathematics, Room A - Miniauditorium
Professor:
Stefano Buccheri (Universidade de Brasília)
Abstract:
The study of Elliptic Partial Differential Equation (EPDE) is a classical, huge and still really active research field in Mathematics. The attempt of giving a reasonably good description of the development of just one of its branch require a full-course of at least one semester. The much more modest aim of this small-course is to give a flavor, and maybe awake some interest, on some strategy and tools you can use when the data of your problem get tough.