Hyperbolic motions for a class of Hamiltonian and generalized N-body problem via a geometric approach Para o problema clássico de N-corpos, Maderna e Venturelli provaram a existência de movimentos hiperbólicos com qualquer constante de energia positiva, partindo de qualquer configuração e ao longo de qualquer configuração sem colisão.Duokui Yan - Beihang University em 18/03/2022 Abstract For the classical N-body problem, Maderna and Venturelli proved the existence of hyperbolic motions with any positive energy constant, starting from any configuration and along any non-collision configuration. We give a new and completely different proof for the above existence of hyperbolic motions. The central idea is that, via some geometric observation, we build up uniform estimates for Euclidean length and angle of geodesics of Mane’s potential starting from a given configuration and ending at the ray along a given non-collision configuration. Indeed, our geometric approach works for a wide range of potentials. Local e Data Tema: Hyperbolic motions for a class of Hamiltonian and generalized N-body problem via a geometric approachPalestrante: Duokui Yan - Beihang UniversityData: 18/03/2022 Secretaria Fale ConoscoRoteiros e ProcedimentosSolicitaçõesTelefones e e-mail Seminários Álgebra Análise Ensino Geometria Mecânica Sistemas Dinâmicos Teoria da Computação Teoria da Probabilidade Teoria dos Números