MAT Palestras - Geometria

Isoparametric hypersurfaces of Riemannian manifolds as initial data for the mean curvature flow

Mostramos que a evolução de hipersuperfícies isoparamétricas de variedades Riemannianas pelo fluxo de curvatura média é dada por uma reparametrização da família paralela em curto tempo, desde que a unicidade do fluxo de curvatura média seja válida para os dados iniciais e o espaço ambiente correspondente.
João Paulo dos Santos - UnB em 22/06/2022

Abstract

We show that the evolution of isoparametric hypersurfaces of Riemannian manifolds by the mean curvature flow is given by a reparametrization of the parallel family in short time, as long as the uniqueness of the mean curvature flow holds for the initial data and the corresponding ambient space. As an application, we provide a class of Riemannian manifolds that admit hypersurfaces with constant principal curvatures, which are not isoparametric hypersurfaces. Furthermore, for a class of ambient spaces, we show that the singularities developed by the mean curvature flow with isoparametric hypersurfaces as the initial data are Type I singularities. We apply our results to describe the evolution of isoparametric hypersurfaces by the mean curvature flow in ambient spaces with nonconstant sectional curvature, such as homogenous 3-manifolds E(κ,τ) with 4- dimensional isometry groups, and Riemannian products Q2c1 × Q2c2 of space forms. This is a joint work with Felippe Guimara ̃es and Joa ̃o Batista Marques dos Santos. (Leia mais clicando no tema abaixo)

Local e Data

Tema: Isoparametric hypersurfaces of Riemannian manifolds as initial data for the mean curvature flow
Palestrante: João Paulo dos Santos - UnB
Data: 22/06/2022