MAT Palestras - Sistemas Dinâmicos

Hyperbolic Translations in K

Nesta palestra, estudamos a ação hiperbólica ht, t ∈ R na variedade homogênea G/AN, onde A e N vêm de uma decomposição Iwasawa fixa, G = KAN. Informalmente podemos pensar nesta variedade homogênea como o subgrupo compacto K.
Ricardo Sandoval MAT-UnB em 24/03/2022

Abstract

Given a connected real semi-simple Lie group G it is possible to “decompose” its elements g, in elliptic e, hyperbolic h and unipotent u components, g = ehu. These components commute and permit the study of actions of the group G in a manifold by studying the action of each of these components. In this talk, we study the hyperbolic action ht, t ∈ R in the homogeneous manifold G/AN, where A and N come from a fixed Iwasawa decomposition, G = KAN. Informally we can think of this homogeneous manifold as the compact subgroup K. We first show the fixed points of this action. All points in K converges to one of these fixed points, and all orbits in K can be neatly described. We show concrete examples in Sl(2) and Sl(3).

Local e Data

Tema: Hyperbolic Translations in K
Palestrante: Ricardo Sandoval MAT-UnB
Data: 24/03/2022