Seminário de Análise - 27/06/2025 às 10:30 O seminário ocorrerá no próximo dia 27/06, às 10h30, no auditório do MAT Detalhes Publicado: Quarta, 25 Junho 2025 10:00 Título: On the space of C1 regular curves on sphere with constrained curvature Palestrante: Cong Zhou (UFF) Abstract: We prove that the C0 and C1 topologies are the same on the set of C1regular curves in the 2-sphere whose tangent vectors are Lipschitz continuous, and thea.e. existing geodesic curvatures are essentially bounded in an open interval. Besides, we study the subset consisting of curves that start and end at given pointswith given directions, and prove that this subset is a Banach manifold. Furthermore, we study C1 regular curves in the 2-sphere that start and end at givenpoints with given directions, whose tangent vectors are Lipschitz continuous, and theira.e. existing geodesic curvatures have essentially bounds in an open interval. Especially,we show that a C1 regular curve is such a curve if and only if the infimum of its lowercurvature and the supremum of its upper curvature are constrained in the same interval. References:[1] C. Zhou On the space of C1 regular curves on sphere with constrained curvature. Results in Mathematics, v. 76, p. 223, 2021.[2] C. Zhou The geometry of C1 regular curves in sphere with constrained curvature. J. Geom. Anal. 31 (2020), no. 6, 5974–5987. Últimas Notícias Oportunidade de bolsas no Edital Licenciaturas em Movimento – Saberes em Rede (2025-2026) Edital Licenciaturas em Movimento – Saberes em Rede (2025-2026) Oportunidade de bolsas de extensão Edital REPE Serão ofertadas 04 vagas para bolsistas (e voluntários) no Edital REPE - Polo Ceilândia e Polo Recanto Seminário de Pesquisa e Educação Matemática - 29/08/2025 "Mathematical problem-posing research: what do we know and where are we going?" Matrícula como aluno especial para o 2º semestre de 2025 Matrículas como aluno especial para o 2º semestre de 2025