MAT Palestras - Sistemas Dinâmicos

Actions on positively curved manifolds and boundary in the orbit space

Estudamos ações isométricas de grupos de Lie compactos em n-variedades com curvas positivas orientáveis completas cujos espaços de órbita têm contorno não vazio no sentido da geometria de Alexandrov.
Claudio Gorodski IME-USP em 15/09/2022

Abstract

We study isometric actions of compact Lie groups on complete orientable positively curved n-manifolds whose orbit spaces have non-empty boundary in the sense of Alexandrov geometry. In particular, we classify quotients of the unit sphere with non- empty boundary. We deduce from this the list of representations of simple Lie groups that admit non-trivial reductions. As a tool of special interest, we introduce a new geometric invariant of a compact symmetric space, namely, the minimal number of points in a ”spanning set” of the space. (Joint work with Andreas Kollross and Burkhard Wilking.)

Local e Data

Tema: Actions on positively curved manifolds and boundary in the orbit space
Palestrante: Claudio Gorodski IME-USP
Data: 15/09/2022