Other Teaching Publication Home

PUBLICATIONS

  1. Chatzdakis, Z. ; Zalesskii, P. A. Pro-p groups acting on trees with finitely many maximal vertex stabilizers up to conjugation. Israel Journal of Mathematics, v. 247, p. 593-634, 2022.
    PDF

  2. Snopce, I. ; Tanshevski, S. ; Zalesskii, P. A. Retracts of Free Groups and a Question of Bergman. International Mahematics Research Notices, v. 2022, p. 8280-8294, 2022.
    PDF

  3. Aguiar, M. ; Zalesskii, P. A. The profinite completion of the fundamental group of infinite graphs of groups. Israel Journal of Mathematics, v. 250, p. 429-462, 2022.
    PDF

  4. Snopce, I. ; Zalesskii, P. A. Right-angled Artin pro-p$p$ groups. Bulletin of the London Mathematical Society, v. 54, p. 1904-1922, 2022.
    PDF

  5. Chagas, S. C. ; Zalesskii, P. A. Hyperbolic 3-manifold groups are subgroup into conjugacy separable. Communication in Algebra, v. 50, p. 2264-2268, 2022.
    PDF

  6. Castellano, I. ; Zalesskii, P. A. Subgroups of pro-p $$PD ^3$$-groups. Monatshefte Fur Mathematik, v. 195, p. 391-400, 2021.
    PDF

  7. Shumyatsky, P.; Zalesskii, P. A. Profinite groups in which centralizers are virtually procyclic. Journal of Algebra, v. 586, p. 467-478, 2021.
    PDF

  8. Shusterman, M. ; Zalesskii, P. A. . Virtual retraction and howson's theorem in pro-p groups. Transactions of the american mathematical society, v. 373, p. 1501-1527, 2020.

  9. Zalesski', Pavel; Zapata, Theo . Profinite extensions of centralizers and the profinite completion of limit groups. REVISTA MATEMATICA IBEROAMERICANA, v. 36, p. 61-78, 2020.

  10. Macquarrie, John W. ; Symonds, Peter ; Zalesskii, Pavel A. . Infinitely generated pseudocompact modules for finite groups and Weiss' Theorem. ADVANCES IN MATHEMATICS, v. 361, p. 106925, 2020.

  11. Macquarrie, J. ; Zalesskii, Pavel . A characterization of permutation modules extending a theorem of Weiss. DOCUMENTA MATHEMATICA (PRINT), v. 25, p. 1159-1169, 2020.

  12. Boggi, M. ; Zalesskii, P. A. . A restricted Magnus property for profinite surface groups. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, v. 371, p. 729-753, 2019.

  13. Chagas, S. C. ; Zalesskii, P. A. . Hyperbolic 3-Manifolds Groups are Subgroup Conjugacy Separable. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, v. XIX, p. 951-963, 2019.

  14. Shumyatsky, Pavel ; Zalesskii, P. A. ; Zapata, T. . Profinite groups in which centralizers are abelian. ISRAEL JOURNAL OF MATHEMATICS, v. 230, p. 831-854, 2019.

  15. Wilton, Henry ; Zalesskii, Pavel A. . Profinite detection of 3-manifold decompositions. COMPOSITIO MATHEMATICA, v. 155, p. 246-259, 2019.

  16. Zalesskii, P. A.. Infinitely generated virtually free pro-p groups and p-adic representations. Journal of Topology, v. 12, p. 79-93, 2019.

  17. Lima, Igor dos Santos ; Zalesskii, Pavel A. . Virtually free groups and integral representations. JOURNAL OF ALGEBRA, v. 500, p. 303-315, 2018.

  18. Wilton H.; Zalesskii, P. A., Distinguishing geometries using finite quotients. G&T 21 (2017), 345-384.
    PDF

  19. Rio, A.; Zalesskii, P. A., Coherent groups of units of integral group rings and direct products of free groups. Math. Proc. Camb. Phil. Soc. (2017), 162, 191–209.
  20. Comments
    The unit group in case (iii) of Corollary 1.2, namely of the group ring $Z[D_8YQ_8]$ of the central product of dihedral and quaternion group is not coherent https://projecteuclid.org/download/pdf_1/euclid.gt/1513732517.
    | PDF

  21. Herfort, W. N.; Zalesskii, P. A., VIRTUALLY FREE PRO-p GROUPS. Publ. IHES 118 (2013) 193-211.
  22. Comments
    The statement of Lemma 2.6 is corrected in this version, the use of it and the proof of it in the published version meant exactly the statement in this version. We also correct the statement of Lemma 3.8 and make appropriate changes here it quoted. The file with correction can be found here: Lemma 3.8
    | PDF

  23. Hamilton E, Wilton H.; Zalesskii, P. A., Separability of double cosets and conjugacy classes in 3-manifold groups. J. LMS 87 (2013), no. 1, 269-288.
  24. Comments
    Lemma 4.7 i slightly weaker statement than is needed in the paper. The full strength of the needed lemma is proved in Lemma 4.5 of G&T The other proof can be found in Lemma 6.3 of arXiv:1605.08244.
    | PDF

  25. Rio, A.; Zalesskii, P. A., Subgroup separability in integral group rings. Journal of Algebra 347 (2011) 60–68.
  26. Comments
    The unit group in of the group ring $Z[D_8YQ_8]$ of the central product of dihedral and quaternion group that appear in Theorem 5 is not subgroup separable by Non-LERFness of arithmetic hyperbolic manifold groups and mixed 3-manifold groups, Duke Math. J. 168 (2019)), https://arxiv.org/pdf/1608.04816.pdf


  27. Kochloukova D.H.; Zalesskii P.A., ON PRO-p ANALOGUES OF LIMIT GROUPS VIA EXTENSIONS OF CENTRALIZERS. Math. Z. 267 (2011), no. 1-2, 109–128.
  28. Comments
    In this version the statement of Theorem 4.2 corrected. G&T


  29. Herfort, W. N.; Zalesskii, P. A., Profinite HNN-constructions. J. Group Theory 10 (2007), no. 6, 799�809.
  30. Comments
    A better and more careful writing of the proof of Theorem 11 is in Theorem 11
    | PDF

  31. Chagas, S. C.; Zalesskii, P. A., Finite Index Subgroups of Conjugacy Separable Groups. Forum Mathematicum, v. 21, (2009) 347-353.
    PDF

  32. Kochloukova D.H.; Zalesskii P.A., Profinite and pro-$p$ completions of Poincaré duality groups of dimension 3. Trans. Amer. Math. Soc. 360 (2008), 1927-1949.
    PDF

  33. ZALESSKI, Pavel ; A.W. MASON ; A. PREMET ; B. Sury, The congruence kernel of an arithmetic lattice in a rank one algebraic group over a local field. Journal für die Reine und Angewandte Mathematik. Crelles Journal, v. 623, (2008) 43-72.
    PDF

  34. Herfort, W. ; Zalesskii, P. A., Virtually free pro-p groups whose torsion elements have finite centralizer. Bulletin of the London Mathematical Society, v. 40, (2008) 929-936.

  35. Grunewald, F. ; Jaikin-Zapirain, A. ; Zalesskii, P. A., Cohomological goodness and the profinite completion of Bianchi groups. Duke Mathematical Journal, v. 144, (2008) 53-72.
    PDF

  36. Chagas, S. C.; Zalesskii, P. A., Limit groups are conjugacy separable. Internat. J. Algebra Comput. 17 (2007), no. 4, 851--857.
  37. Comments
    In the present version two corrections are made after the publication; the proof of Lemma 3.5 is corrected and $A$ is corrected to be of arbitrary finite rank, not just of rank 2.
    | PDF

  38. Jespers, Eric; Pita, Antonio; del Río, Ángel; Ruiz, Manuel; Zalesskii, Pavel, Groups of units of integral group rings commensurable with direct products of free-by-free groups. Adv. Math. 212 (2007), no. 2, 692--722.
    PDF

  39. Ribes, Luis; Stevenson, Katherine; Zalesskii, Pavel, On quasifree profinite groups. Proc. Amer. Math. Soc. 135 (2007), no. 9, 2669--2676.
  40. Comments
    At the very end of the proof it is not very clear as written why we have exactly m solutions for the embedding problem. Here is the link for the detailed explanation. Addemdum to RSZ
    | PDF

  41. Kochloukova, Dessislava H.; Zalesskii, Pavel A., Tits alternative for 3-manifold groups. Arch. Math. (Basel) 88 (2007), no. 4, 364--367.
    PDF

  42. Kochloukova, Dessislava H.; Zalesskii, Pavel A., Automorphisms of pro-$p$ groups of finite virtual cohomological dimension. Q. J. Math. 58 (2007), no. 1, 47--51.
    PDF

  43. Zalesskii, P. A., Profinite surface groups and the congruence kernel of arithmetic lattices in ${\rm SL}\sb 2(R)$. Israel J. Math. 146 (2005), 111--123.
  44. Comments
    We put here an apendix that gives much better proof of Theorem 2.2 of the paper. Apendix
    | PDF

  45. Kochloukova, Dessislava H.; Zalesskii, Pavel, Homological invariants for pro-$p$ groups and some finitely presented pro-$\scr C$ groups. Monatsh. Math. 144 (2005), no. 4, 285--296.
    PDF

  46. Kochloukova, Dessislava H.; Zalesskii, Pavel, Free-by-Demushkin pro-$p$ groups. Math. Z. 249 (2005), no. 4, 731--739.
    PDF

  47. Ribes, Luis; Zalesskii, Pavel, Profinite topologies in free products of groups. International Conference on Semigroups and Groups in honor of the 65th birthday of Prof. John Rhodes. Internat. J. Algebra Comput. 14 (2004), no. 5-6, 751--772.
    PDF

  48. Herfort, W.; Zalesskii, P. A., Virtually free pro-$p$ groups. C. R. Math. Acad. Sci. Soc. R. Can. 26 (2004), no. 3, 79--83.

  49. Zalesskii, P. A., On virtually projective groups. J. Reine Angew. Math. 572 (2004), 97--110.
  50. Comments
    On page 100, line -9, written "By construction the torsion of $G_0$ coincides with the torsion of $G$". This is true up to conjugation and can be seen using the Kurosh subgroup theorem for pro-$p$ groups.
    | PDF

  51. Weigel, Thomas; Zalesskii, Pavel, Profinite groups of finite cohomological dimension. C. R. Math. Acad. Sci. Paris 338 (2004), no. 5, 353--358.

  52. Engler, A.; Haran, D.; Kochloukova, D.; Zalesskii, P. A., Normal subgroups of profinite groups of finite cohomological dimension. J. London Math. Soc. (2) 69 (2004), no. 2, 317--332.

  53. Herfort, W.; Zalesskii, P. A., Finite $p$-extensions of free pro-$p$ groups. Groups St. Andrews 2001 in Oxford. Vol. I, 244--248, London Math. Soc. Lecture Note Ser., 304, Cambridge Univ. Press, Cambridge, 2003.

  54. Zalesskii, P. A., Profinite groups admitting just infinite quotients. Monatsh. Math. 135 (2002), no. 2, 167--171.

  55. Ribes, Luis; Zalesskii, Pavel, Profinite groups. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 40. Springer-Verlag, Berlin, 2000. xiv+435 pp. ISBN: 3-540-66986-8

  56. Ribes, Luis; Zalesskii, Pavel, Pro-$p$ trees and applications. New horizons in pro-$p$ groups, 75--119, Progr. Math., 184, Birkh�user Boston, Boston, MA, 2000.

  57. Grigorchuk, R. I.; Herfort, W. N.; Zalesskii, P. A., The profinite completion of certain torsion $p$-groups. Algebra (Moscow, 1998), 113--123, de Gruyter, Berlin, 2000.

  58. Zalesskii, Pavel A., Virtually free pro-$p$ groups. 15th School of Algebra (Portuguese) (Canela, 1998). Mat. Contemp. 16 (1999), 307--313.

  59. Burns, R. G.; Herfort, W. N.; Kam, S.-M.; Macedo\'nska, O.; Zalesskii, P. A., Recalcitrance in groups. Bull. Austral. Math. Soc. 60 (1999), no. 2, 245--251.

  60. Herfort, W.; Zalesskii, P. A., Cyclic extensions of free pro-$p$ groups. J. Algebra 216 (1999), no. 2, 511--547.

  61. Herfort, W. N.; Ribes, L.; Zalesskii, P. A., $p$-extensions of free pro-$p$ groups. Forum Math. 11 (1999), no. 1, 49--61.

  62. Herfort, W. N.; Ribes, L.; Zalesskii, P. A., Finite extensions of free pro-$p$ groups of rank at most two. Israel J. Math. 107 (1998), 195--227.

  63. Ribes, L.; Segal, D.; Zalesskii, P. A., Conjugacy separability and free products of groups with cyclic amalgamation. J. London Math. Soc. (2) 57 (1998), no. 3, 609--628.
    PDF

  64. Wilson, J. S.; Zalesskii, P. A., Conjugacy separability of certain Bianchi groups and HNN extensions. Math. Proc. Cambridge Philos. Soc. 123 (1998), no. 2, 227--242.
  65. Comments
    The proof of Theorem 3' is not complete due to the use of incorrect statement of Proposition 2.5 in [19].
    | PDF

  66. Herfort, W.; Zalesskii, P., Finitely generated pro-$2$ groups with a free subgroup of index $2$. Manuscripta Math. 93 (1997), no. 4, 457--464.

  67. Wilson, J. S.; Zalesskii, P. A., Conjugacy separability of certain torsion groups. Arch. Math. (Basel) 68 (1997), no. 6, 441--449.
    PDF

  68. Wilson, J. S.; Zalesskii, P. A., An embedding theorem for certain residually finite groups. Arch. Math. (Basel) 67 (1996), no. 3, 177--182.

  69. Zalesskii, P. A.; Tavgen\cprime, O. I., Closure of orbits and residual finiteness with respect to the conjugacy of free amalgamated products. (Russian) Dokl. Akad. Nauk 348 (1996), no. 1, 19--21.

  70. Ribes, Luis; Zalesskii, Pavel A., Conjugacy separability of amalgamated free products of groups. J. Algebra 179 (1996), no. 3, 751--774.
  71. Comments
    Statement of Proposition 2.5 is incorrect. The correct statement is Proposition 2.7 in Forum Mathematicum, v. 21, (2009) 347-353.


  72. Zalesskii, P. A.; Tavgen\cprime, O. I., Closure of orbits and residual finiteness with respect to the conjugacy of free amalgamated products. (Russian) Mat. Zametki 58 (1995), no. 4, 525--535, 639; translation in Math. Notes 58 (1995), no. 3-4, 1042--1048

  73. Zalesskii, P. A., Normal subgroups of free constructions of pro-finite groups, and the congruence kernel in the case of a positive characteristic. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 59 (1995), no. 3, 59--76; translation in Izv. Math. 59 (1995), no. 3, 499--516

  74. Herfort, Wolfgang N.; Ribes, Luis; Zalesskii, Pavel A., Fixed points of automorphisms of free pro-$p$ groups of rank $2$. Canad. J. Math. 47 (1995), no. 2, 383--404.

  75. Ribes, Luis; Zalesskii, Pavel A., The pro-$p$ topology of a free group and algorithmic problems in semigroups. Internat. J. Algebra Comput. 4 (1994), no. 3, 359--374.

  76. Ribes, Luis; Zalesskii, Pavel A., On the profinite topology on a free group. Bull. London Math. Soc. 25 (1993), no. 1, 37--43.

  77. Zalesskii, P. A., The structure of the congruence-kernel for ${\rm SL}\sb 2$ in the case of a global field of positive characteristic. (Russian) Mat. Sb. 183 (1992), no. 12, 117--124; translation in Russian Acad. Sci. Sb. Math. 77 (1994), no. 2, 489--495

  78. Zalesskii, P. A., Open subgroups of free profinite products. Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), 473--491, Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992.

  79. Zalesskii, P. A.; Tuzikov, A. V., Morphological filters and image symmetries. Computer analysis of images and patterns (Dresden, 1991), 113--117, Res. Inform., 5, Akademie-Verlag, Berlin, 1991

  80. Zalesskii, P. A., Open subgroups of free profinite products over a profinite space of indices. (Russian) Dokl. Akad. Nauk BSSR 34 (1990), no. 1, 17--20, 91--92.

  81. Zalesskii, P. A., Profinite groups, without free nonabelian pro-$p$-subgroups, that act on trees. (Russian) Mat. Sb. 181 (1990), no. 1, 57--67; translation in Math. USSR-Sb. 69 (1991), no. 1, 57--67

  82. Zalesskii, P. A.; Mel\cprime nikov, O. V., Fundamental groups of graphs of profinite groups. (Russian) Algebra i Analiz 1 (1989), no. 4, 117--135; translation in Leningrad Math. J. 1 (1990), no. 4, 921--940

  83. Zalesskii, P. A., Solvable profinite groups that act on trees. (Russian) Dokl. Akad. Nauk BSSR 33 (1989), no. 3, 201--204, 283.

  84. Zalesskii, P. A., Geometric characterization of free constructions of profinite groups. (Russian) Sibirsk. Mat. Zh. 30 (1989), no. 2, 73--84, 226; translation in Siberian Math. J. 30 (1989), no. 2, 227--235

  85. Zalesskii, P. A., Nilpotent and solvable profinite groups acting on trees. (Russian) Dokl. Akad. Nauk BSSR 32 (1988), no. 6, 485--488, 572.

  86. Zalesskii, P. A.; Mel\cprime nikov, O. V., Subgroups of profinite groups acting on trees. (Russian) Mat. Sb. (N.S.) 135(177) (1988), no. 4, 419--439, 559; translation in Math. USSR-Sb. 63 (1989), no. 2, 405--424

  87. Zalesskii, P. A., Geometric characterization of free constructions of profinite groups. (Russian) Dokl. Akad. Nauk BSSR 31 (1987), no. 8, 691--694, 764.

BOOK

RIBES, L. ; Zalesskii, Pavel . Profinite groups. 2. ed. Heidelberg: Springer, 2010. v. 1. 483p.